
Inorganic Chemistry Communications 13 (2010) 1466–1469

Contents lists available at ScienceDirect

Inorganic Chemistry Communications

j ourna l homepage: www.e lsev ie r.com/ locate / inoche
Synthesis and characterization of rare examples of stable potassium and arylcalcium
triethylboranate complexes

Sven Krieck, Helmar Görls, Matthias Westerhausen ⁎
Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, August-Bebel-Str. 2, D-07743 Jena, Germany
⁎ Corresponding author. Fax: +49 3641 948102.
E-mail address: m.we@uni-jena.de (M. Westerhause

1387-7003/$ – see front matter © 2010 Elsevier B.V. A
doi:10.1016/j.inoche.2010.08.018
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 16 June 2010
Accepted 10 August 2010
Available online 18 August 2010

Keywords:
Arylcalcium complexes
Metathesis reactions
Hydride
Potassium
Boranate
Stabilization of potassium triethylboranate can be achieved in solution as well as in the solid state with
tridentate 1,3,5-trimethyl-1,3,5-triazinane (tmta) as dimeric [(tmta)K(μ-H)BEt3]2 (1). The metathesis
reaction of the post-Grignard reagent [2,6-(tol)2C6H3-Ca(thf)3I] (2) with potassium triethylboranate yields
an unusual hydrogen bridged organocalcium contact ion pair as hydrocarbon soluble [(thf)(dme)Ca(C6H3-
2,6-tol2)HBEt3] (3) which shows no tendency to dismutate to the homoleptic derivatives.
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Hydrides ofmain groupmetals aswell as transitionmetals provide a
wide range of applications in synthetic chemistry as versatile catalysts
[1] and reducing reagents [2] aswell as targets for hydrogen storage [3].
The binary hydride of calcium CaH2 is an insoluble colorless solid which
can be prepared from the elements at 400 °C and crystallizes under
standard conditions with a PbCl2 type structure [4]. This calcium(II)
hydride is rather inert and reacts only with acidic compounds such as
water or ammonia (yielding corresponding calcium(II) hydroxide or
amide). Due to the fact that solid CaH2 exhibits a very low reactivity
numerous attempts were undertaken to prepare soluble calcium
derivatives containing a reactive Ca–H bond. Harder and co-workers
demonstrated that R–Ca–H is a valuable synthon [5] for the hydroge-
nation of alkenes [6], an intermediate during hydrosilylation of ketones
[7], and reacts also as a strong reducing reagent [8]. Phenylcalcium
hydride (R=Ph)wasprepared via a cocondensation reaction of calcium
with benzene yielding extremely reactive PhCaH [9,10]. Stability of an
organylcalcium hydride can be enhanced if R represents an extremely
bulkyβ-diketiminate ligandwhich is able to prevent theprecipitation of
insoluble CaH2 via a dismutation reaction [11]. These heteroleptic
calciumhydride complexes crystallize as dimers containing theH atoms
in bridging positions [12]. Monomerization can be achieved via the
formation of borane adducts with Ca–H–B bridges [8,12,13]. Generation
of organoboranate adducts strongly enhances solubility in common
organic solvents [14]. As a consequence of a large lattice energy CaH2 is
nearly insoluble in organic solvents whereas the solubility of Ca(BH4)2
in ethereal solvents via formation of donor adducts [L2Ca(BH4)2]
[L=tetrahydrofuran (thf), 1,2-dimethoxyethane (dme), and diglyme]
is much larger [15–18]. Furthermore, there exist some structure–
property relationships between the heavier organoalkaline earth metal
chemistry and the organolanthanide(II) chemistry [19]. Baudry and co-
workers studied the steric and electronic control of the stability of
organolanthanide alkylborohydrides [20,21] and furthermore, some
complexes were structurally characterized such as e.g. [(dipp-nacnac)
Sm{(μ-H)BEt3}NH-C6H2-2,4,6-t Bu3] [22], [(C5Me5)2La{(μ-H)(μ-Et2)
BEt}] and [(C5Me5)2La(thf){(μ-H)(μ-Et)BEt2}] [23].

Abroadportfolio of alkalimetal organoborohydrides is commercially
available as ethereal solutions which are used as hydride sources [24]
and synthons in preparative chemistry but due to their high reactivity
only very few of these compounds are structurally characterized. In the
case of potassium triethylboranate a ligand exchange of the mono-
dendate THF by sterically demanding tridendate 1,3,5-trimethyl-1,3,5-
triazinane (tmta) led to the formation of [(tmta)K(μ-H)BEt3]2 (1)
(Eq. (1)) and isolation succeeded without decomposition [25].
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Themolecular structure of the dimeric contact ion pair [(tmta)K(μ-H)
BEt3]2 (1) is represented in Fig. 1a [26]. The boron-bound hydrogen
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Fig. 1. a: Molecular structure and numbering scheme of [(tmta)K-μ(H)BEt3]2 (1). The ellipsoids represent a probability of 40%, H atoms (with the exception of the bridging B–H) and
intercalated toluene molecules are neglected for clarity reasons. Selected bond lengths (pm): K1A–H1BA 256(3), K1A–H1B1 261(3), K1AA–H1BA 255(4), K1AA–H1B1 259(4), B1A–
H1B1 124(4); angles (°): K1A–H1B1–K1AA 117.4(8), H1B1–K1A–H1B2 62.6(8). b: Schematic representation of the chain-like structure of the dimeric units of [(tmta)K-μ(H)BEt3]2
(1) (η3-K-tmta interactions are represented as hollow sticks to the centroids of the nitrogen atoms of the tmta ligands for clarity reasons.).

1467S. Krieck et al. / Inorganic Chemistry Communications 13 (2010) 1466–1469
atoms (av. B–H 125 pm) adopt bridging positions between two
potassium centers (av. K–H 258.6 pm) resulting in a rhombus-like
geometry with average K1–H–K1A and H1–K–H1B angles of 115.7° and
64.4°, respectively, and a non-bonding potassium contact K⋯K′ of 431.15
(14) pm. A similar structural fragment with angles of 106.5° and 73.5°,
respectively, was found in [{η6-C6H3-1,3,5-Me3)Na(μ-H)BEt3}2{Na(μ-H)
BEt3}2] [31] whereas tetrameric [(Et2O){Na(μ-H)BMe3}4] contains a
distorted heterocubane-type arrangement of the metal atoms and the
four-coordinate hydrides [32]. The coordination sphere of the potassium
atoms in (1) is completed by the tridentate tmta ligand (av. K–N
294.4 pm) resulting in a penta-coordination environment.

In the crystalline state intermolecular long-range agostic interac-
tions between the potassium centers and the ethyl groups of the
boranate functionalities (K⋯H–C) [K–C 330.3(4)–341.9(4) pm] addi-
tionally stabilize the complex via formation of an oligomeric chain-
like structure of the dimers (1), represented in Fig. 1b. This
aggregation leads to a tetrahedral arrangement of the ligands, due
to the tridentate tmta a 5+1 coordination number at K results.

Thus far bulky groups are employed in order to kinetically protect
Ca–H bonds. Based on our earlier findings that para-phenyl sub-
stituents destabilize arylcalcium halides [33] we investigated steric
protection by m-terphenyl groups. Furthermore, substitution of the
halides by bulkier anions such as amides and phosphanides
additionally stabilize the organocalcium derivatives [34]. The met-
athetical reaction of the heavier Grignard reagent [2,6-(tol)2C6H3-Ca
(thf)3I] (2) [35] with an equimolar amount of potassium triethyl-
borohydride yielded [(thf)(dme)Ca(C6H3-2,6-tol2)HBEt3] (3) which
was recrystallized from a solvent mixture of thf and dme (Eq. (2))
[36].
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The arylcalcium triethylboronate (3) is stable as solid and in

solution and shows no tendency to dismutate to the homoleptic
derivatives. In accordance to the findings of Hanusa and co-workers
[14e] regarding [(thf)2Ca(HBEt3){1,2,4-C5(SiMe3)3H2}] an abstraction
of the triethylborane moiety failed both by refluxing in hydrocarbons
(toluene, n-heptane) and drying in vacuo, respectively. Refluxing of a
THF solution led to fast decomposition of (3) by well-known ether
cleavage reactions [34b,37].
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Fig. 2. Molecular structure and numbering scheme of [(thf)(dme)Ca(C6H3-2,6-tol2)
HBEt3] (3). The ellipsoids represent a probability of 40%, H atoms (with the exception of
the bridging B–H) are neglected for clarity reasons. Selected bond lengths (pm): Ca1–
C1 254.8(3), Ca1–O1 235.7(2), Ca1–O2 244.7(2), Ca1–O3 247.1(2), Ca1···B1 293.0(5);
angles (deg.): Ca1–C1–C2 131.7(2), Ca1–C1–C6 111.9(2), C2–C1–C6 114.0(3).
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The molecular structure of (3) is displayed in Fig. 2 [38]. The
bridging hydride was not found by X-ray diffraction but its position is
obvious from the arrangement of the B and Ca atoms as well as from
spectroscopic data. The calcium center is penta-coordinated and in
agreement with the VSEPR model the sterically demanding m-
terphenyl moiety coordinates in the trigonal plane of the resulting
distorted trigonal pyramid, whereas the borohydride binds in axial
position. The Ca–Ci bond length of 254.8(3) pm lies in a characteristic
region for arylcalcium halides, amides, and phosphanides [30a]. Due
to the bulkiness of the attached groups strongly different distal Ca–
C1–C2 [131.7(2)°] and proximal Ca–C1–C6 angles [111.9(2)°] are
observed. The Ca1–B1 bond [293.0(5) pm] is elongated in comparison
to the β-diketiminate stabilized complex [(thf)(dipp-nacnac)Ca(μ-H)
BsecBu3] (Ca–B 286.1(4) pm) [12]. The boron atom is located in a
distorted tetrahedral coordination sphere.

As crystallographically shown for the crystalline state also spectro-
scopic investigations of (1) and (3) confirm the presence of the boranate
moiety and of metal–hydrogen–boron interactions in solution. In IR
spectra strong B–H stretching modes for (μ-H)-B fragments were
observed for (1) and (3) (1918 and 1926 cm−1) in comparison to
1935 cm−1 for [(thf)2Ca(HBEt3){1,2,4-C5(SiMe3)3H2}] [14e], 1924 and
1906 cm−1 for [(thf)(dipp-nacnac)Ca(μ-H)BsecBu3)] [12], as well as
1870–1950 cm−1 for M[HBEt3] (M=Li, Na, K) [39]. The 11B NMR
resonances are detected in a characteristic region for bridging H–B units
at−15.9 (1) and−15.5 ppm (3) and are similar to−13.3 ppm for [(thf)
(dipp-nacnac)Ca(μ-H)BsecBu3] [12], and to values of Na[HBEt3] [39].

Stabilization of the hydrido complexes has been achieved by
coordination of Lewis acidic BEt3 to the hydride base whereas the
Lewis bases tmta or dme bind to the metal cation thus saturating the
coordination sphere and preventing oligomerization, dismutation and
precipitation of the otherwise insoluble corresponding metal hydrides.
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608, 10175 reflections in h(−9/10), k(−11/13), l(−25/25), measured in the
range 2.89°≤Θ≤27.41° completeness Θmax=97.8%, 6861 independent reflec-
tions, Rint=0.0333, 4643 reflections with FoN4σ(Fo), 354 parameters, 0 restraints,
R1obs=0.0750, wR2obs=0.1831, R1all=0.1168, wR2all=0.2107, GOOF=0.997,
largest difference peak and hole: 1.414/−0.454 e Å−3.
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