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Acyclic amines 1 were obtained by a nucleophilic aromatic
substitution (SNAr) reaction and N-methylation followed by
silane reduction. The optical resolution of C(aryl)–N(amine)
bond atropisomers of amines 1 is described. We found that

Introduction

After the discovery and application of BINAP,[1] biaryl-
type atropisomeric compounds have been widely used as
chiral ligands in asymmetric catalysis.[2] We previously re-
ported C–C bond axially chiral, biaryl-type compounds
such as BICMAP.[3] On the other hand, C–N bond axially
chiral compounds[4–6] have also been reported including
the N-arylquinazolinone-,[7] N-arylimide-,[8] indoline-,[9]

indole-,[10] and benzimidazole-type[11] phosphane ligand
for palladium-catalyzed asymmetric reactions. But these
phosphane ligands are cyclic nitrogen-containing com-
pounds.AlthoughmanyacyclicC–Nbondaxiallychiralamide-
type[4g,4l,4m,5] and imide-type[6] compounds have been re-
ported, the synthesis of an acyclic-type amine compound,
such as a binaphthyl surrogate with an inner N–H–N hy-
drogen bond has only been reported by Kawabata.[12] A C–
N bond axially chiral acyclic nitrogen-containing com-
pound for applications in asymmetric catalysis, such as an
amide-type hydrazine N,N�-dicarboxylic-type organocata-
lyst, has only been reported by Jørgensen.[13] To the best
of our knowledge, C(aryl)–N(amine) bond atropisomers of
acyclic amines for chiral ligands in a catalytic asymmetric
reaction have never been reported. Here, we report the first

Figure 1. Acyclic amines 1.
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chiral acyclic amine 1a can be resolved by crystallization
without any outside chiral source. Finally, we demonstrate
the ability of chiral amines 1 as a ligand in a palladium-cata-
lyzed asymmetric allylic alkylation (up to 93% ee).

example of the synthesis of C(aryl)–N(amine) bond atrop-
isomers of acyclic amines 1 and their application as chiral
ligands for catalytic asymmetric reactions such as palla-
dium-catalyzed asymmetric allylic alkylations (Figure 1).

Results and Discussion
Acyclic amines 1 were easily prepared in three steps. A

nucleophilic aromatic substitution (SNAr) reaction of the
corresponding phosphane oxide 2,3-dimethoxyphenyldi-
phenylphosphane oxide (2a)[14] with the lithium salt of 1-
adamantylamine gave the corresponding aminophosphane
oxide 3a. N-Methylation of 3a was carried out with MeI in
the presence of K2CO3. This aminophosphane oxide 4a was
converted into the desired acyclic amine (�)-1a by using
trichlorosilane-triethylamine in good yield (Scheme 1). Acy-

Scheme 1. Preparation of acyclic amines 1.



Atropisomerism at C–N Bonds of Acyclic Amines

clic amines (�)-1b and (�)-1c were also easily prepared
from 2b[14] and 2c[15] in the same manner. A suitable crystal
of amine (�)-1a was obtained from hexane/CHCl3. X-ray
analysis of (�)-1a was carried out (Figures S1 and S2, see
Supporting Information). The C(aryl)–N(amine) bonds
were twisted between the aryl ring with a diphenylphos-
phanyl group and the adamantyl moiety.

We next attempted the optical resolution of amines (�)-
1 into each atropisomer by using (S)-(+)-di-μ-chlorobis{2-
[(dimethylamino)ethyl]phenyl-C2,N}dipalladium(II) {(S)-
5}[16] as a chiral resolving agent. The resulting dia-
stereomeric palladium complex mixtures were easily sepa-
rated by silica gel column chromatography. The individual
diastereomers were treated with ethylenediamine (EDA) to
release optically active (aS)-1 or (aR)-1(Scheme 2). After
recrystallization, both the optical purity of (aS)-1 and (aR)-
1 exceeded 99% ee. The determination of the absolute con-
figurations of 1 was decided by single-crystal X-ray analysis
of (–)-1a–c (Figures S3–S5, see Supporting Information).[17]

Scheme 2. Optical resolution of (�)-1.

On the other hand, we prepared chiral acyclic amine 1a
by crystallization without any outside chiral source. After
single-crystal X-ray analysis, (�)-1a crystallized in a chiral
fashion in the space group P212121 {CIF file of (�)-1a-1
[absolute structure parameter = 0.47(3)] and (�)-1a-2 [ab-
solute structure parameter = –0.04(9)]}.[17] This means that
the crystals of (�)-1a formed conglomerates,[18] each con-
sisting exclusively of either (aR)-(–)- or (aS)-(+)-enantio-
mers. Using 10 mg (24 crystals) of recrystallized amine (�)-
1a, we prepared 24 samples of a small amount of hexane
solutions with each crystal and checked the optical purity
of each sample by chiral HPLC analysis. We obtained
6.9 mg of (aS)-1 (99.6% ee) from 14 crystals and 1.7 mg of
(aR)-1 (99.7% ee) from four crystals. Other crystals formed
twin-type chiral crystals;[19] the absolute structure param-
eters were different from 0, and their ee values were low.
We repeated this experiment using 20 crystals (11.8 mg) of
amine (�)-1a and obtained 2.1 mg of (aS)-1 (99.8% ee)
from seven crystals and 4.3 mg of (aR)-1 (99.8% ee) from
seven crystals. We successfully obtained chiral acyclic amine
1a spontaneously by crystallization without any outside chi-
ral source.

To investigate the nature of the structure of the palla-
dium complex, amine (�)-1a was treated with PdCl2-
(MeCN)2 to produce palladium complex (�)-6, and a suit-
able crystal was obtained from hexane/CHCl3. X-ray analy-
sis of (�)-6 was carried out (Figure S6, see Supporting In-
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formation).[17] The solid-state structure shows that amine
1a is coordinated to palladium with a five-membered che-
late ring by phosphorus and nitrogen atoms. The trans in-
fluence of the P,N-ligand is reflected in the lengthening of
the Pd–Cl bond that is in a trans disposition to the phos-
phorus atom relative to the Pd–Cl bond that is in the trans
disposition to the nitrogen atom [2.4138(8) vs. 2.3017(8) Å].

Barriers to the racemization of amines 1 in nonane for
the stability of the C–N bond axial chirality were also deter-
mined (Figure S7–S9, see Supporting Information). For ex-
ample, the rotational barrier (ΔG‡

rac) of 1a was found to be
29.3 kcal/mol in nonane at 25 °C, on the basis of the
Arrhenius and Eyring equations.[20] This result corresponds
to an estimated half-life of approximately 5.7 years.

Finally, we investigated the ability of chiral amines 1 as
ligands for palladium-catalyzed asymmetric allylic alk-
ylation.[21] Chiral ligands 1 can induce good enantio-
selectivities in toluene at room temperature by using 1,3-
diphenyl-2-propenyl acetate (7a) with dimethyl malonate
(8a). When the reaction was carried out with (aS)-1a as a
ligand, the enantioselectivity of product (S)-9a obtained
was higher than those obtained with chiral amines 1b and
1c, with good yield. Under the optimized reaction condi-
tions (Table S1, see Supporting Information), we investi-
gated the asymmetric allylic alkylation of similar allylic es-
ters and malonates (Scheme 3). The reaction gave corre-
sponding products (S)-9 in good yields with high enantio-
selectivities.

Scheme 3. Palladium-catalyzed asymmetric allylic alkylation by
using (aS)-1a.

Conclusions

We found that C–N bond axially chiral acyclic amines 1
were effective ligands for palladium-catalyzed asymmetric
allylic alkylation (up to 93 % ee). We successfully achieved
spontaneous resolution without any outside chiral source.
Further, we have demonstrated that acyclic amine 1a can
successfully be used in a catalytic asymmetric reaction. The
combination of spontaneous resolution and application to
catalytic asymmetric reactions was only reported by Balavo-
ine.[22] In this case, the product enantioselectivity in the
catalytic asymmetric reaction was moderate, 80% ee. We
successfully combined the spontaneous resolution and ap-
plication to a catalytic asymmetric reaction with high
enantioselectivity. This phenomenon is the model for the
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generation of an optically active compound from a fully
racemic system.

Supporting Information (see footnote on the first page of this arti-
cle): Experimental details, characterization data for products, OR-
TEP drawings, copies of NMR spectra of the products, and copies
of HPLC charts are presented.
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