ORGANOMETALLICS-

Reactions of Tungsten Acetylide–Silylene Complexes with Pyridines: Direct Observation of Silylene/Silyl Migration in Tungsten Acetylide and Carbyne/Vinylidene Frameworks

Hiroyuki Sakaba,*^{,†} Hiroyuki Oike,[†] Yasuhiro Arai,[†] and Eunsang Kwon[‡]

[†]Department of Chemistry and [‡]Research and Analytical Center for Giant Molecules, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan

Supporting Information

ABSTRACT: Reaction of acetylide–silylene complex Cp*- $(CO)_2W(SiPh_2)(CC'Bu)$ (1a) with 4-(dimethylamino)pyridine (DMAP) gave an equilibrium mixture of DMAPstabilized silylene acetylide complexes *trans-* and *cis-*Cp*- $(CO)_2W(SiPh_2\cdot DMAP)(CC'Bu)$ (*trans-*4 and *cis-*4). The

corresponding reaction using $Cp^*(CO)_2W(SiPh_2)(CCSiMe_3)$ (2) produced the novel DMAP-coordinated silenylcarbyne/ silylvinylidene complex $Cp^*(CO)_2W[CC(SiPh_2 DMAP)(SiMe_3)]$ (6a) as a major product, which was equilibrated with *trans*and *cis*- $Cp^*(CO)_2W(SiPh_2 DMAP)(CCSiMe_3)$ (*trans*-5a and *cis*-5a) via silylene/silyl migration. The novel structures of *cis*-4 and 6a were revealed by X-ray crystallography. A mixture of 2 and pyridine exhibited interesting temperature-dependent NMR spectral changes, indicating the formation of *trans*- and *cis*- $Cp^*(CO)_2W(SiPh_2 \cdot py)(CCSiMe_3)$ (*trans*-5b) and $Cp^*(CO)_2W[CC(SiPh_2 \cdot py)(SiMe_3)]$ (6b) at low temperature, while a mixture of 1a and pyridine showed no such spectral changes.

Recent extensive studies on transition-metal silylene complexes have demonstrated their novel reactivity and important roles in metal-mediated reactions of organosilicon compounds.¹ The silylene center is highly electrophilic and often forms a donor-stabilized silylene complex, typically with a lone-pair donor. We previously reported the synthesis of acetylide–silylene complexes (η^{5} -C₅Me₄R)(CO)₂W(SiPh₂)-(CCR') (1a: R = Me, R' = ^tBu; 1b: R = Et, R' = ^tBu; 2: R = Me, R' = SiMe₃) (Scheme 1),² whose unique charge transfer

Scheme 1. Reaction of Acetylide-Silylene Complex 2 with Acetone

(CT) interactions between the acetylide and silylene ligands have been disclosed by a theoretical study.³ Considering the CT from the acetylide to the silylene, they can be viewed as an intramolecularly π -bond-donor-stabilized silylene complex, and the electrophilic nature of the silylene ligand has been recently shown by the reaction of **2** with acetone to give the insertion product Cp*(CO)₂W=C=C(SiMe₃)CMe₂OSiPh₂ (**3**).^{2b} We describe here the reactivity of **1a** and **2** toward typical lone-pair donors, pyridine and 4-(dimethylamino)pyridine (DMAP), demonstrating the formation of novel donor-stabilized silylene acetylide and silenylcarbyne/silylvinylidene complexes.

The reaction of **1a** with DMAP in toluene at room temperature resulted in the isolation of a yellow solid in 42% yield (Scheme 2). X-ray analysis of crystals obtained by

recrystallization from toluene/hexane showed the interesting structure of DMAP-stabilized silylene acetylide complex *cis*-4, which adopts a four-legged piano stool geometry with two *cis*-arranged CO ligands (Figure 1). The W–Si bond distance (2.5125(7) Å) is much shorter than that (2.567(2) Å) of acetylide–silylene complex $1b^{2a}$ and is in the range (2.45-2.51 Å) for the W–Si bonds of donor-stabilized silylene tungsten complexes.⁴ The Si–C1 and Si–C2 interatomic distances (2.436(3) and 3.141(3) Å, respectively) are significantly longer than those (1.937(7) and 2.009(7) Å) of $1b.^{2a}$ The W–C1–C2 angle $(178.6(3)^{\circ})$ is linear, in contrast to the bent geometry

Received: August 10, 2012

Figure 1. Molecular structures of *cis*-4 showing thermal ellipsoids at the 50% probability level. All hydrogen atoms are omitted for clarity. Selected bond lengths (Å) and angles (deg): W1–Si1, 2.5125(7); W1–C1, 2.137(3); Si1–N1, 1.941(3); C1–C2, 1.213(4); Si1–W1–C1, 62.59(7); Si1–W1–C26, 74.40(7); C26–W1–C27, 76.51(12); C1–W1–C27, 83.50(11); W1–C1–C2, 178.6(3).

 $(153.8(5)^{\circ})$ of the corresponding moiety in 1b. The C1–C2 bond distance (1.213(4) Å) is shorter than that (1.270(9) Å) of 1b and comparable to a typical C-C triple bond distance. These observations indicate considerably increased metalsilylene and decreased acetylide-silylene interactions in cis-4 than in 1b. However, the following feature suggests that a weak acetylide-silylene interaction may still exist in cis-4; the Si-W-C1 angle $(62.59(7)^{\circ})$ between two bulky DMAPcoordinated silvlene and tert-butylethynyl ligands is the smallest among four basal interligand angles: $Si-W-C26 = 74.40(7)^{\circ}$, $C1-W-C27 = 83.50(11)^{\circ}$, and $C26-W-C27 = 76.51(12)^{\circ}$ for the other three angles. Also in comparison with the P-W- C_{α} angle (75.1(2)°) and W-P distance (2.491(2) Å) of cis- $Cp(CO)_2W(PPh_3)(C_a \equiv CPh)$,⁵ whose PPh₃ ligand has a bulkiness similar to the SiPh2·DMAP in cis-4, the Si-W-C1 angle is found to be fairly small.

The ¹H NMR spectrum of the isolated solid in toluene- d_8 showed a single ^tBu signal at 20 °C (Figure 2A). When the temperature was lowered, the signal broadened and then decoalesced into two signals in 27:73 ratio at -50 °C. In the ²⁹Si NMR spectrum at -50 °C, minor and major signals were observed at 69.4 (J_{WSi} = 111 Hz) and 41.4 ppm (J_{WSi} = 93 Hz), respectively. The minor component was characterized as trans-DMAP-stabilized silvlene complex trans-4 on the basis of the ²⁹Si chemical shift and ¹⁸³W satellites, which are in the ranges (62-145 ppm and 70-132 Hz, respectively) for those of donor-stabilized silylene tungsten complexes.⁴ The major component was assigned to cis-4, and its ²⁹Si resonance is upfield-shifted by 28 ppm compared to that of trans-4. This upfield shift may result from the weak acetylide-silylene interaction suggested by the X-ray structure, considering the characteristic upfield ^{29}Si resonance (-48.1 ppm) of acetylide-silylene complex $1a^{2a}$ and the minor contribution of the acetylide-silylene interaction in cis-4. These VT-NMR experiments demonstrated an equilibrium between trans and cis isomers of the DMAP-stabilized silvlene complex in solution.

Treatment of **2** with DMAP gave a yellow solid in 48% yield, and recrystallization from *p*-xylene/pentane gave single crystals, the X-ray analysis of which revealed the three-legged pianostool structure **6a** with a unique W–C1–C2–Si1 backbone (Figure 3 and Scheme 3). A characteristic difference was found for the two Si–C bonds. The Si1–C2 bond (1.813(2) Å) is shorter by 2.5% than the Si2–C2 bond (1.859(2) Å). This

Figure 2. Variable-temperature ¹H NMR spectra in toluene- d_8 . (A) ¹Bu signals of *trans*-4 and *cis*-4. (B) SiMe₃ signals of *trans*-5a, *cis*-5a, and 6a. (C) SiMe₃ signals of *trans*-5b, *cis*-5b, and 6b. ^XImpurities.

Figure 3. Molecular structure of 6a showing thermal ellipsoids at the 50% probability level. All hydrogen atoms are omitted for clarity. Selected bond lengths (Å) and angles (deg): W1-C1, 1.918(2); C1-C2, 1.359(3); Si1-C2, 1.813(2); Si2-C2, 1.859(2); Si1-N1, 1.850(2); W1-C1-C2, 176.55(19); Si1-C2-Si2, 129.29(12); Si1-C2-C1, 111.20(17); Si2-C2-C1, 117.65(17).

bond shortening suggests a weak multiple-bond character for the Si1–C2 bond, although the Si1–C2 bond distance is considerably longer than Si=C bond distances (1.74-1.76 Å)of nitrogen donor-stabilized silenes Do·R₂Si=CR₂,^{6,7} and the bond shortening is smaller than that (3.3%) in a typical example, Me₂EtN·Me₂Si=C(SiMe₂Ph)₂ (Si=C = 1.761(4) Å and Si–C = 1.822(4) Å for the average of two PhMe₂Si–C bonds).^{6b} The Si1–N1 bond distance (1.850(2) Å) is intermediate between the Si–N bond distance (1.988(4) Å)of the Me₂EtN-stabilized silene and a typical Si–N covalent Scheme 3. Reactions of Acetylide-Silylene Complex 2 with DMAP and Pyridine

bond distance $(1.70-1.76 \text{ Å}).^8$ The W–C1 bond distance (1.918(2) Å) is longer than W=C bond distances (1.81-1.82 Å) in tungsten carbyne complexes Cp(CO)₂W=CR (R = *p*-Tol, SiPh₃)⁹ and in the range (1.88-1.98 Å) of W=C bond distances in tungsten vinylidene complexes.¹⁰ However, interesting differences were found in comparison of the W–C1–C2 moiety of **6a** with the W=C=C framework of structurally closely related vinylidene complex **3**. The W–C1 bond is 0.04 Å shorter than the W=C=C bond (1.957(3) Å) of **3**,^{2b} whereas the C1–C2 bond (1.309(4) Å). These structural features are attributable to a major contribution of vinylidene form **6a** accompanied by a minor contribution of DMAP-stabilized silenylcarbyne form **6'a**.

In the ¹H NMR spectrum of the isolated solid in toluene- d_8 at 20 °C, two SiMe₃ signals were observed at 0.31 (major) and 0.08 ppm (minor) (Figure 2B).¹¹ Although the shape of the major signal did not change in low-temperature measurements, the minor signal became broad at -10 °C and separated into two signals at 0.20 and 0.11 ppm at -50 °C. At this temperature, three components were observed in 70:18:12 ratio, based on the relative intensities of the SiMe₃ signals at 0.41, 0.20, and 0.11 ppm, which were characterized as 6a, trans-5a, and cis-5a, respectively. The ²⁹Si NMR spectrum at -60 °C showed three pairs of signals, which were assigned to trans-5a (68.2 (SiPh₂·DMAP) and -29.4 (SiMe₃) ppm), cis-5a (50.5 (SiPh₂ DMAP) and -27.9 (SiMe₃) ppm), and 6a (-10.8 (SiPh₂·DMAP) and -10.6 (SiMe₃) ppm), judging from their relative intensities and ¹H-²⁹Si HMBC correlations between the SiMe₃ and SiMe₃ signals. The chemical shift of the SiPh₂·DMAP signal of trans-5a (68.2 ppm) is very close to that of trans-4 (69.4 ppm), while the SiPh₂·DMAP signal of cis-5a (50.5 ppm) is 9 ppm downfield-shifted from that of cis-4 (41.4 ppm). This difference would be derived from stronger metalsilylene and weaker acetylide-silylene interactions in 2 than in **1b** observed in their molecular structures: W-Si = 2.5474(16)Å and Si-C_{β}(acetylide) = 2.059(6) Å for 2 and W-Si = 2.567(2) Å and Si- $C_{\beta}(acetylide) = 2.009(7)$ Å for 1b.² Compared to these ²⁹Si signals, the SiPh₂·DMAP signal of **6a** is considerably upfield-shifted, and the vinylidene-type structure is supported by ¹³C signals at 320.9 (C_{α}) and 87.4 (C_{β}) ppm at -70 °C. The low-temperature NMR measurements indicated fast interconversion between trans-5a and cis-5a, similar to the case for trans-4 and cis-4, and high-temperature measurements demonstrated their slow interconversion with 6a, as evidenced by coalescence of the SiMe₃ signals to give a broad signal at 0.10 ppm at 70 °C (Figure 2B). The latter behavior strongly suggests the first direct observation of interconversion between a metal acetylide and a metal carbyne/vinylidene by silylene/ silyl migration; the SiPh₂·DMAP moiety in *trans*-5a, *cis*-5a, and 6a can be viewed as a resonance hybrid of DMAP-stabilized silylene and 4-(dimethylamino)pyridiniumsilyl groups (Scheme 3). For the isomerization mechanism, the formation of 6a via metallacyclopropene(η^2 -vinyl)/alkyne complex **A**, which is derivable from cis-5a, might be also conceivable. However, coordination of the η^2 -vinyl/alkyne-type ligand having two bulky silyl substituents would cause steric repulsion toward the metal fragment to favor the formation of 6a rather than that of A from cis-5a. As a supportive example, it has been reported that $(\eta^6 - C_6 Me_6)(CO)_2 Cr = C = C(SiMe_3)_2$ is thermodynamically more stable than $(\eta^6 - C_6 Me_6)(CO)_2 Cr(\eta^2 - Me_3 SiC \equiv$ CSiMe₃).¹² Considering also a recent theoretical study by Koga et al. that the activation energy for 1,3-silyl migration is considerably lower than those for 1,3-hydrogen and methyl migrations in the conversion of the acetylide complex $(H_3P)_2ClRhR(C \equiv CH)$ to the vinylidene complex $(H_3P)_2$ ClRh=C=CHR (R = SiH₃, 12.84; H, 18.71; CH₃, 25.38 kcal mol⁻¹),¹³ 1,3-silylene/silyl migration seems to be favored in the interconversion between cis-5 and 6a.

Reactivity of 1a and 2 toward pyridine was also investigated. The room-temperature ¹H NMR spectrum of a toluene- d_8 solution of **1a** and pyridine (3 equiv) showed their sharp signals with no observable products, in contrast to the reaction with DMAP, and slight signal broadening was observed only upon cooling to -60 °C. Very interestingly, by contrast, the treatment of 2 with pyridine (3.3 equiv) led to clear temperature-dependent spectral changes. The ¹H NMR spectrum at 20 °C showed sharp signals of the starting materials, involving one SiMe₃ signal at -0.05 ppm (Figure 2C and see also Supporting Information, Figure S5), whereas three SiMe₃ signals assigned to pyridine adducts **6b**, *trans*-**5b**, and *cis*-5b were observed at 0.32, 0.09, and -0.07 ppm in a 6:31:63 ratio at -50 °C (Figure 2C). This spectral change indicates that the starting materials are equilibrated with the adducts and that the equilibrium shifts toward the adducts at low temperature. At -60 °C, three sets of ²⁹Si signals were detected: 79.3 (J_{WSi} = 115 Hz, SiPh₂·py) and -29.2 (SiMe₃) ppm for *trans*-5b, 37.8 (vbr, SiPh₂·py) and -25.5 (br, SiMe₃) ppm for *cis*-**5b**, and -3.6(SiPh₂·py) and -10.3 (SiMe₃) ppm for **6b** (Figure 4A). Signal assignments were performed on the basis of the ¹H-²⁹Si HMBC spectrum and the similarity of their ²⁹Si chemical shifts to those of trans-4,5a, cis-4,5a, and 6a. The chemical shift and

Figure 4. ²⁹Si{¹H} NMR spectra of *trans-5b, cis-5b,* and 6b in toluene- d_8 at -60 °C (A) and at -90 °C (B).

¹⁸³W satellites for the SiPh₂·py signal of *trans*-5b are reasonable for the typical donor-stabilized silvlene complex,⁴ and the SiPh₂·py signal of *cis*-5b is upfield-shifted relative to it, similar to the case for cis-4 and cis-5a, supporting its cis-donorstabilized silylene structure. Notably, only the signals of cis-5b were broad at -60 °C and sharpened at -90 °C (Figure 4). In the ¹H NMR spectrum at -60 °C, the coordinated pyridine signals of trans-5b were clearly detected at 8.67, 6.48, and 6.08 ppm (see Supporting Information, Figure S6). On the other hand, the corresponding signals of cis-5b were observed as coalescent signals with free pyridine at 8.46, 6.89, and 6.55 ppm at -60 °C, and they considerably broadened at -80 °C (see Supporting Information, Figures S6 and S7). These observations imply that the dissociation equilibrium of pyridine is much more facilitated in cis-5b than in trans-5b, most likely due to the weak acetylide-silylene interaction remaining in the cis isomer. Dissociation of the coordinated donor in the DMAP system is also demonstrated by the reaction of a mixture of trans-5a, cis-5a, and 6a with BPh₃ (1 equiv) in benzene- d_{6i} leading to the rapid and clean formation of 2 and DMAP·BPh₃.

From the above results, important substituent effects of SiMe₃ vs CMe₃ group on the reactivity of acetylide-silylene complexes are derived as follows. The SiMe₃ substituent increases the reactivity of an acetylide-silylene complex toward a nitrogen base, as shown by the reactivity of 1a and 2 toward pyridine. This is ascribed to the stronger metal-silylene and weaker acetylide-silylene interactions in 2 than in 1a, as evidenced by X-ray structural comparison of 2 and 1b. The reactions of 1a and 2 with DMAP demonstrate that the SiMe₃ group favors the formation of silvlvinylidene/silenylcarbyne complex 6a, and a similar stabilization effect for a vinylidenetype structure has been observed in their reactions with acetone.^{2b} The strength of bases also affects the product distribution. In the reactions of 2, the weaker base pyridine favors the formation of cis-donor-stabilized silvlene acetylide complex cis-5b over trans isomer trans-5b, while the stronger base DMAP overcomes the acetylide-silvlene interaction to favor trans isomer trans-5a over cis isomer cis-5a, although the most favorable product is silylvinylidene/silenylcarbyne complex 6a. Further studies of the acetylide-silylene complexes are in progress to uncover their novel property and reactivity.

EXPERIMENTAL SECTION

General Procedures. All manipulations were carried out using standard Schlenk, high-vacuum, and glovebox techniques. Hexane, pentane, toluene, benzene- d_6 , and toluene- d_8 were distilled from sodium benzophenone ketyl. 4-(Dimethylamino)pyridine and triphenylborane were purchased from Sigma-Aldrich. Cp*(CO)₂W(SiPh₂)-(CC'Bu) (1a),^{2a} Cp*(CO)₂W(SiPh₂)(CCSiMe₃) (2),^{2b} Cp*(CO)₂W-(NCMe)Me,¹⁴ Ph₂HSiC \equiv C'Bu,^{2a} and Ph₂HSiC \equiv CSiMe₃^{2b} were prepared according to the literature methods. NMR spectra were recorded on a Bruker AV-400 or AV-600 spectrometer, and IR spectra were obtained on a Shimadzu FTIR-8100 M spectrometer. High-resolution mass spectra were recorded on a Bruker Daltonics solariX 9.4T FT-ICR mass spectrometer. Mass spectrometric analysis, elemental analysis, and X-ray crystal analysis were performed at the Research and Analytical Center for Giant Molecules, Tohoku University.

Reaction of 1a with DMAP. An NMR tube was charged with **1a** (7.0 mg, 11 μ mol), DMAP (1.3 mg, 11 μ mol), and benzene- d_6 (0.5 mL), and the tube was flame-sealed under vacuum. The ¹H NMR spectrum of the solution showed coalescent signals of *trans*-4 and *cis*-4 in 87% yield. ¹H NMR (400 MHz, benzene- d_6 , rt): δ 1.11 (s, 9H, ¹Bu), 2.03 (br, 6H, NMe₂), 2.07 (s, 15H, Cp*), 5.82 (s, 2H, DMAP), 7.19–7.27 (m, 2H, Ph), 7.27–7.37 (m, 4H, Ph), 8.00 (br, 2H, DMAP), 8.30 (br, 4H, Ph).

In a preparative reaction, toluene (3 mL) was vacuum transferred to a mixture of Cp*(CO)₂W(NCMe)Me (100 mg, 0.23 mmol) and $Ph_2HSiC \equiv C'Bu$ (64 mg, 0.24 mmol) with cooling in a liquid nitrogen bath. The mixture was thawed at -70 °C and warmed to room temperature with stirring. After 30 min at room temperature, the solvent was removed under vacuum to leave crude 1a, to which DMAP (30 mg, 0.25 mmol) and toluene (2.5 mL) were added. The mixture was stirred at room temperature for 50 min. After removal of the volatiles, the residual solid was washed with hexane $(4 \times 2 \text{ mL})$ to give an air-sensitive yellow solid (74 mg, 42% yield based on Cp*-(CO)₂W(NCMe)Me). The room-temperature spectrum of the solid was the same as that of the NMR tube reaction, and variabletemperature NMR measurements were performed using toluene- d_8 as a solvent. ¹H NMR (600 MHz, toluene- d_{8} , -60 °C): δ 1.06 (s, ^tBu, *cis*-4), 1.23 (s, ^tBu, trans-4), 1.62 (s, NMe₂, trans-4), 1.71 (s, NMe₂, cis-4), 2.08 (s, Cp*, overlapped with a $C_6D_5CD_2H$ signal), 2.15 (s, Cp*, cis-4), 5.12 (m, DMAP, cis-4), 5.18 (m, DMAP, trans-4), 7.22-7.26 (m, Ph), 7.32-7.38 (m, Ph), 7.54 (m, Ph), 7.63 (m, DMAP, cis-4), 8.14-8.19 (m, Ph), 8.27 (m, DMAP, trans-4), 8.35 (m, Ph). ¹³C{¹H} NMR (150 MHz, toluene-d₈, -70 °C): δ 11.5 (C₅Me₅, trans-4), 11.7 (C₅Me₅, cis-4), 30.2 (CMe₃, trans-4), 30.6 (CMe₃, cis-4), 31.5 (CMe₃, cis-4), 32.7 (CMe3, trans-4), 38.2 (NMe2, trans- and cis-4), 86.5 (WCC, cis-4), 89.3 (WCC, trans-4), 100.0 (C₅Me₅, cis-4), 100.1 (C₅Me₅, trans-4), 104.8 (DMAP, cis-4), 105.1 (DMAP, trans-4), 127.3, 130.2, 132.5, 135.0, 135.5 (Ph), 136.5 (WCC, trans-4), 142.9 (Ph), 145.7 (DMAP, cis-4), 146.2 (WCC, cis-4), 147.4 (DMAP, trans-4), 153.9 (DMAP, cis-4), 154.7 (DMAP, trans-4), 221.1 (CO, trans-4), 238.2 (CO, cis-4), 249.0 (CO, cis-4). Several acetylide and aromatic carbon signals were not assigned due to their poor intensities or overlap with solvent signals. ²⁹Si $\{^{1}H\}$ NMR (118 MHz, toluene- d_{8} , -70 °C): δ 69.4 (¹ J_{WSi} = 111 Hz, trans-4), 41.4 (¹ J_{WSi} = 93 Hz, cis-4). IR (KBr): ν_{CO} 1892, 1806 cm⁻¹. Anal. Calcd for $C_{37}H_{44}N_2O_2SiW$: C, 58.42; H, 5.83; N, 3.68. Found: C, 58.15; H, 6.03; N, 3.42.

Reaction of 2 with DMAP. An NMR tube was charged with 2 (9.5 mg, 16 μ mol), DMAP (2.0 mg, 16 μ mol), and benzene- d_6 (0.5 mL), and the tube was flame-sealed under vacuum. The ¹H NMR spectrum of the solution showed the coalescent signals of *trans*-5a and *cis*-5a and the signals of 6a in 37% (*trans*-5a + *cis*-5a) and 63% (6a) yields, respectively. ¹H NMR (400 MHz, benzene- d_6 , rt): δ 0.13 (s, SiMe₃, *trans*- and *cis*-5a), 0.39 (s, SiMe₃, 6a), 1.84 (s, NMe₂, 6a), 1.90 (br, NMe₂, *trans*- and *cis*-5a), 2.03 (s, Cp*, *trans*- and *cis*-5a), 2.24 (s, Cp*, 6a), 5.36–5.66 (br, DMAP, *trans*- and *cis*-5a), 5.66–5.90 (br, DMAP, 6a), 7.18–7.28 (m, Ph, *trans*- and *cis*-5a + 6a), 7.28–7.39 (m, Ph, *trans*- and *cis*-5a + 6a), 8.14–8.33 (m, DMAP, *trans*- and *cis*-5a + 6a).

In a preparative reaction, toluene (2.5 mL) was vacuum transferred to a mixture of Cp*(CO)₂W(NCMe)Me (100 mg, 0.23 mmol) and Ph₂HSiC=CSiMe₃ (69 mg, 0.24 mmol) with cooling in a liquid nitrogen bath. The mixture was thawed at -70 °C and warmed to room temperature with stirring. After 30 min at room temperature, the volatiles were removed under vacuum to leave crude 2, to which DMAP (29 mg, 0.24 mmol) and toluene (2.2 mL) were added. The mixture was stirred at room temperature for 2 h. After removal of the volatiles, the residual solid was washed with hexane (4 mL) and then with hexane/toluene (5 \times 3.7 mL/0.3 mL) to give an air-sensitive yellow solid (86 mg, 48% yield based on Cp*(CO)₂W(NCMe)Me). The room-temperature spectrum of the powder was the same as that of the NMR tube reaction, and variable-temperature NMR measurements were performed using toluene- d_8 as a solvent. ¹H NMR (600 MHz, toluene- d_{81} -60 °C): δ 0.12 (s, SiMe₃, *cis*-5a), 0.21 (s, SiMe₃, trans-5a), 0.42 (s, SiMe₃, 6a), 1.733 (s, NMe₂, 6a), 1.735 (s, NMe₂, trans-5a), 1.78 (s, NMe₂, cis-5a), 2.03 (s, Cp*, trans-5a), 2.09 (s, Cp*, cis-5a, overlapped with a $C_6D_5CD_2H$ signal), 2.30 (s, Cp^* , 6a), 5.20 (br m, DMAP, trans-5a), 5.23 (br m, DMAP, cis-5a), 5.61 (m, DMAP, **6a**), 7.0–7.6 (br m, Ph), 7.53 (m, DMAP, *trans*-**5a**), 8.15 (m, DMAP, **6a**), 8.2–8.5 (br, Ph). ¹³C NMR (100 MHz, toluene- d_8 , -70 °C): δ 1.1 (SiMe₃, cis-5a), 1.8 (SiMe₃, trans-5a), 2.7 (SiMe₃, 6a), 11.3 $(C_5Me_{5}, trans-5a), 11.5 (C_5Me_{5}, cis-5a), 12.0 (C_5Me_{5}, 6a), 38.1$ (NMe₂, trans-5a), 38.3 (NMe₂, cis-5a), 38.5 (NMe₂, 6a), 87.4 (WCC, 6a), 100.4 (C₅Me₅, trans-5a and cis-5a), 101.7 (C₅Me₅, 6a), 105.2 (DMAP, cis-5a), 106.3 (DMAP, trans-5a), 106.4 (DMAP, 6a), 133.9, 134.6, 135.3, 136.7, 145.4, 145.9, 146.9, 154.7, 155.4 (Ph), 234.4 (CO), 237.2 (CO), 237.5 (CO), 247.6 (CO), 320.9 (WCC, 6a). Several acetylide and aromatic carbon signals were not assigned due to overlap with solvent signals. ²⁹Si NMR (79 MHz, toluene- d_{8} , -60 °C): δ -29.4 (SiMe₃, $\leftrightarrow \delta_{\rm H}$ 0.21, trans-5a), -27.9 (SiMe₃, $\leftrightarrow \delta_{\rm H}$ 0.12, cis-**5a**), -10.8 (SiPh₂·DMAP, **6a**), -10.6 (SiMe₃, $\leftrightarrow \delta_{\rm H}$ 0.42, **6a**), 50.5 (SiPh₂·DMAP, *cis*-**5a**), 68.2 (SiPh₂·DMAP, *trans*-**5a**); ²⁹Si-¹H HMBC correlations are indicated by \leftrightarrow . IR (KBr): $\nu_{\rm CO}$ 1869, 1767 cm⁻¹. HRMS: calcd for C₃₆H₄₄N₂O₂Si₂W 776.24503, found 776.25060.

Reaction of 2 with Pyridine. An NMR tube was charged with 2 (40 mg, 0.061 mmol), pyridine (0.20 mmol, 3.3 equiv), and toluene- d_8 (0.6 mL). The tube was flame-sealed under vacuum, and variabletemperature NMR measurements were carried out. ¹H NMR (600 MHz, toluene- d_{8} , -60 °C): δ -0.07 (s, SiMe₃, *cis*-**5b**), 0.10 (s, SiMe₃, trans-5b), 0.33 (s, SiMe₃, 6b), 1.95 (s, Cp*, trans-5b), 1.98 (s, Cp*, cis-5b), 2.26 (s, Cp*, 6b), 6.08 (m, py, trans-5b), 6.48 (m, py, trans-**5b**), 6.55 (m, py, free + *cis*-**5b**), 6.89 (m, py, free + *cis*-**5b**), 7.20 (m, Ph), 7.29 (m, Ph), 7.33 (m, Ph), 8.03 (m, Ph), 8.28 (m, Ph), 8.46 (m, py, free + cis-5b), 8.67 (m, py, trans-5b). ¹³C NMR (150 MHz, toluene-d₈, -60 °C): δ 0.5 (SiMe₃, cis-5b), 1.6 (SiMe₃, trans-5b), 2.5 (SiMe₃, 6b), 11.2 (C₅Me₅, trans-5b), 11.4 (C₅Me₅, cis-5b), 11.9 $(C_{\varsigma}Me_{\varsigma}, 6b)$, 100.5 $(C_{\varsigma}Me_{\varsigma}, trans-5b)$, 100.7 $(C_{\varsigma}Me_{\varsigma}, cis-5b)$, 102.0 (C₅Me₅, **6b**), 123.6 (py, free + cis-5b), 124.4 (py, trans-5b), 129.6, 134.7 (Ph), 134.9 (WCC, trans-5b), 136.0 (py, free + cis-5b), 137.1, 138.4, 140.1, 141.1, 141.5, 144.1 (Ph), 148.2 (py, trans-5b), 149.6 (py, free + cis-5b), 149.9 (WCC, cis-5b), 235.6 (CO, cis-5b), 246.9 (CO, cis-5b). Several acetylide, vinylidene, carbonyl, and aromatic carbon signals were not assigned due to their poor intensities or overlap with solvent signals. ²⁹Si{¹H} NMR (119 MHz, toluene- d_{8} , -60 °C): δ -29.2 (SiMe₃, $\leftrightarrow \delta_{\rm H}$ 0.10, trans-5b), -25.5 (br, SiMe₃, $\leftrightarrow \delta_{\rm H}$ -0.07, *cis*-5b), −10.3 (SiMe₃, $\leftrightarrow \delta_{\rm H}$ 0.33, 6b), −3.6 (SiPh₂·py, 6b), 37.8 (vbr, SiPh₂·py, *cis*-**5b**), 79.3 ($J_{WSi} = 115$ Hz, SiPh₂·py, *trans*-**5b**). ²⁹Si-¹H HMBC correlations are indicated by \leftrightarrow .

Reaction of a Mixture of *cis*-5a, *trans*-5a, and 6a with BPh₃. BPh₃ (3.3 mg, 13 μ mol) was added into an NMR tube containing a mixture of *cis*-5a, *trans*-5a, and 6a (10 mg, 13 μ mol) in benzene- d_6 (0.5 mL), and the tube was flame-sealed under vacuum. The ¹H NMR spectrum showed their quantitative conversion into 2 and DMAP·BPh₃.

X-ray Crystal Structure Determination. Single crystals of *cis*-4-0.5hexane and **6a** were obtained by recrystallization from toluene/ hexane and *p*-xylene/pentane, respectively. The diffraction data were collected on a Rigaku Saturn70 CCD diffractometer with graphitemonochromated Mo K α radiation ($\lambda = 0.71069$ Å) at -100 °C. The structures were solved by direct methods using SHELXS97¹⁵ for *cis*-4-0.5hexane and SIR2004¹⁶ for **6a**, and structural refinements were performed by full-matrix least-squares using SCHLXL97 for *cis*-4-0.5hexane and CRYSTALS¹⁷ for **6a**. The non-hydrogen atoms were refined anisotropically, and the hydrogen atoms were refined using the riding model. Selected crystallographic data are summarized in Table S1 in the Supporting Information.

ASSOCIATED CONTENT

Supporting Information

¹H and ¹³C{¹H} NMR spectra and selected crystallographic data (PDF and CIF). This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*E-mail: sakaba@m.tohoku.ac.jp.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was supported by Grants-in-Aid for Scientific Research (No. 22550051) from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

REFERENCES

(1) For recent reviews on silylene complexes, see: (a) Eisen, M. S. In *The Chemistry of Organic Silicon Compounds*; Rappoport, Z., Apeloig, Y., Eds.; Wiley: New York, 1998; Vol. 2, Chapter 35. (b) Ogino, H. *Chem. Rec.* 2002, 2, 291. (c) Okazaki, M.; Tobita, H.; Ogino, H. *Dalton Trans.* 2003, 493. (d) Waterman, R.; Hayes, P. G.; Tilley, T. D. *Acc. Chem. Res.* 2007, 40, 712.

(2) (a) Sakaba, H.; Yoshida, M.; Kabuto, C.; Kabuto, K. J. Am. Chem. Soc. 2005, 127, 7276. (b) Sakaba, H.; Yabe-Yoshida, M.; Oike, H.; Kabuto, C. Organometallics 2010, 29, 4115.

(3) Ray, M.; Nakao, Y.; Sato, H.; Sakaba, H.; Sakaki, S. J. Am. Chem. Soc. 2006, 128, 11927.

(4) (a) Ueno, K.; Masuko, A.; Ogino, H. Organometallics 1997, 16, 5023. (b) Ueno, K.; Sakai, M.; Ogino, H. Organometallics 1998, 17, 2138. (c) Sakaba, H.; Tsukamoto, M.; Hirata, T.; Kabuto, C.; Horino, H. J. Am. Chem. Soc. 2000, 122, 11511. (d) Ueno, K.; Asami, S.; Watanabe, N.; Ogino, H. Organometallics 2002, 21, 1326. (e) Okazaki, M.; Suzuki, E.; Miyajima, N.; Tobita, H.; Ogino, H. Organometallics 2003, 22, 4633. (f) Suzuki, E.; Komuro, T.; Okazaki, M.; Tobita, H. Organometallics 2009, 28, 1791.

(5) Bruce, M. I.; Ke, M.; Low, P. J.; Skelton, B. W.; White, A. H. Organometallics **1998**, *17*, 3539.

(6) (a) Wiberg, N.; Köpf, H. J. Organomet. Chem. 1986, 315, 9.
(b) Wiberg, N.; Joo, K.-S.; Polborn, K. Chem. Ber. 1993, 126, 67.
(c) Mickoleit, M.; Schmohl, K.; Kempe, R.; Oehme, H. Angew. Chem., Int. Ed. 2000, 39, 1610. (d) Mickoleit, M.; Kempe, R.; Oehme, H. Chem.—Eur. J. 2001, 7, 987. (e) Pötter, M.; Bäumer, U.; Mickoleit, M.; Kempe, R.; Oehme, H. J. Organomet. Chem. 2001, 621, 261.
(f) Bäumer, U.; Reinke, H; Oehme, H. J. Organomet. Chem. 2006, 691, 229.

(7) For reviews on silenes, see: (a) Brook, A. G.; Baines, K. M. Adv. Organomet. Chem. **1986**, 25, 1. (b) Brook, A. G.; Brook, M. A. Adv. Organomet. Chem. **1996**, 39, 71. (c) Müller, T.; Ziche, W.; Auner, N. In The Chemistry of Organic Silicon Compounds; Rappoport, Z., Apeloig, Y., Eds.; Wiley: New York, 1998; Vol. 2, Chapter 16. (d) Escudié, J.; Couret, C.; Ranaivonjatovo, H. Coord. Chem. Rev. **1998**, 178–180, 565. (e) Morkin, T. L.; Leigh, W. J. Acc. Chem. Res. **2001**, 34, 129. (f) Gusel'nikov, L. E. Coord. Chem. Rev. **2003**, 244, 149. (g) Ottosson, H.; Eklöf, A. M. Coord. Chem. Rev. **2008**, 252, 1287. (h) Fischer, R. C.; Power, P. P. Chem. Rev. **2010**, 110, 3877.

(8) Sheldrick, W. S. In *The Chemistry of Organic Silicon Compounds*; Patai, S.; Rappoport, Z., Eds.; Wiley: New York, 1989; Chapter 3. (9) (a) Fischer, E. O.; Lindner, T. L.; Huttner, G.; Friedrich, P.; Kreissl, F. R.; Besenhard, J. O. *Chem. Ber.* **1977**, *110*, 3397. (b) Fischer, E. O.; Hollfelder, H.; Friedrich, P.; Kreissl, F. R.; Huttner, G. *Angew. Chem.*, *Int. Ed. Engl.* **1977**, *16*, 401.

(10) (a) Crane, T. W.; White, P. S.; Templeton, J. L. Organometallics 1999, 18, 1897. (b) Nakamura, G.; Harada, Y.; Mizobe, Y.; Hidai, M. Bull. Chem. Soc. Jpn. 1996, 69, 3305. (c) Birdwhistell, K. R.; Burgmayer, S. J. N.; Templeton, J. L. J. Am. Chem. Soc. 1983, 105, 7789.

(11) To investigate the concentration effect of DMAP toward the equilibrium between **6a** (major) and **5a** (minor: *cis* and *trans* isomers), the ¹H NMR spectrum was measured in the presence of 3 equiv of DMAP in benzene- d_6 at room temperature, but no change of the ratio of **6a** to **5a** (*cis* + *trans*) was observed within experimental error.

(12) Connelly, N. G.; Geiger, W. E.; Lagunas, M. C.; Metz, B.; Rieger, A. L.; Rieger, P. H.; Shaw, M. J. J. Am. Chem. Soc. **1995**, 117, 12202.

(13) Suresh, C. H.; Koga, N. J. Theor. Comp. Chem. 2005, 4, 59.

(14) Sakaba, H.; Watanabe, S.; Kabuto, C.; Kabuto, K. J. Am. Chem. Soc. 2003, 125, 2842.

(15) Sheldrick, G. M. Acta Crystallogr., Sect. A 2008, 64, 112.

(16) Burla, M. C.; Caliandro, R.; Camalli, M.; Carrozzini, B.; Cascarano, G. L.; De Caro, L.; Giacovazzo, C.; Polidori, G.; Spagna, R. J. Appl. Crystallogr. 2005, 38, 381.

(17) Carruthers, J. R.; Rollett, J. S.; Betteridge, P. W.; Kinna, D.; Pearce, L.; Larsen, A.; Gabe, E. *CRYSTALS* Issue 11; Chemical Crystallography Laboratory: Oxford, UK, 1999.