2:2 CONDENSATION PRODUCTS FROM THE REACTION OF N-SUBSTITUTED 1,2-DIAMINOETHANES AND 1,3-DIAMINOPROPANES WITH SUCCINALDEHYDE AND GLUTARALDEHYDE ${ }^{1}$

Tadashi Okawara,* Yoshinari Okamoto, Shuji Ehara, Tetsuo Yamasaki, and Mitsuru Furukawa

Faculty of Pharmaceutical Sciences, Kumamoto University, Oe-hon-machi, Kumamoto 862, Japan

Abstract

The reaction of N -substituted 1,2-diaminoethanes and 1,3-diaminopropanes (1) with succinaldehyde (2) and glutaraldehyde (9) in water gave the $2: 2$ condensation products ($\mathbf{4}$ and 10).

INTRODUCTION

The reaction of succinaldehyde and glutaraldehyde with functionalized compounds, such as amines and 2aminoethanols, produces various heterocycles, such as pyrrole, ${ }^{2-7}$ piperidine, ${ }^{8}$ dihydropyridine, ${ }^{9}$ tetrahydropyran, ${ }^{10}$ pyridodiazocin, ${ }^{11}$ and oxazolpiperidine. ${ }^{12-16}$ All of these reactions give only $1: 1$ condensation products. The reaction of glutaraldehyde with hydroxylamine to give dipiperidinoperhydrodioxadiazin is the only reported example of a $2: 2$ condensation product. ${ }^{17}$ Recently, we succeeded in preparing 2:2 condensation products, polyazaperhydroperylenes, ${ }^{18,19}$ by reacting glyoxal and glutaraldehyde with polyfunctionalized compounds.

To obtain additional novel polyheterocycles in one-pot reactions, we hoped to prepare of 2:2 condensation products using N-substituted diamino groups.
We report here the reaction of N-substituted 1,2-diaminoethanes and 1,3-diaminopropanes (1a-e) with succinaldehyde (2) and glutaraldehyde (9) to give the 2:2 condensation products (4 and 10).
RESULTS AND DISCUSSION
Compounds ($\mathbf{1 a - c}$) were reacted with 2, which was derived from 2,5-dimethoxytetrahydrofuran, in aqueous hydrochloric acid at room temperature to give two products ($\mathbf{3}$ and 4) in yields of 12-44 and 22$30 \%$, respectively (Scheme 1). These products were purified by distillation under reduced pressure, and structural assignments were made on the basis of spectral data and elemental analyses. The mass spectra for the two products ($\mathbf{3 a}$ and $\mathbf{4 a}$) from $\mathbf{1 a}$ and $\mathbf{2}$ showed corresponding molecular ions at $m / z 138$ and 276, which indicated the loss of two and four molecules of water from the combination of one and two equivalents of 1a and 2, respectively, and their molecular formulae were equivalent to those of the $1: 1$ and 2:2 condensation products. In the reaction of 1 a with 2 , the $1: 1$ condensation product exhibited characteristic pyrrole triplet signals at $\delta 6.13$ and 6.65 ppm in the ${ }^{1} \mathrm{H}-\mathrm{nmr}$ spectrum. The ${ }^{13} \mathrm{C}-\mathrm{nmr}$ spectrum
showed one methyl carbon at $\delta 36.54$, three methylene carbons at $\delta 31.68,47.51$, and 49.12 ppm , and β and α-carbons of pyrrole at $\delta 107.95$ and 120.49 ppm . Based on these spectral data, the structure for the 1:1 adduct was presumed to be 3a.

Scheme 1
With regard to the structure of the $2: 2$ condensation product from 1a, the ir spectrum showed absorption assignable to the NH group at $3310 \mathrm{~cm}^{-1}$, while in the ${ }^{1} \mathrm{H}-\mathrm{nmr}$ spectrum, singlets of two methyl groups appeared at $\delta 2.20$ and 2.39 ppm , the multiplet and triplet of two methine groups appeared at $\delta 2.24$ and 3.15 ppm , and each triplet ($J=2.2 \mathrm{~Hz}$) of the three hydrogens on the pyrrole was observed at $\delta 6.12,6.54$, and 6.58 ppm . The ${ }^{13} \mathrm{C}-\mathrm{nmr}$ spectrum showed 16 carbons; 9 of which were used to calculate the ratios $5: 1$ of each carbon for the two isomers. The DEPT spectrum indicated 2 methyl carbons at $\delta 36.55$ and 41.74 ppm, 8 methylene carbons at $\delta 21.45-56.16 \mathrm{ppm}, 2$ methine carbons at $\delta 61.38$ and 86.55 ppm , and 4 pyrrole carbons at $\delta 107.29,118.69,120.37$, and 125.53 ppm . Based on these spectral data, two possible structures ($\mathbf{4 a}$ and $\mathbf{5}$) were deduced. The ${ }^{1} \mathrm{H}-\mathrm{nmr}$ spectrum of $\mathbf{4 a}$ showed the same chemical shift and J values as the three methylene hydrogens of the pyrrole $1: 1$ condensation product. Moreover, the mass. spectrum of the 2:2 condensation product indicated a fragment of N-substituted pyrrole at $m / z 137$ corresponding to $\mathbf{3 a}$. These results strongly supported structure ($\mathbf{4 a}$) rather than $\mathbf{5}$. All of the protons and carbons of $4 a$ were assigned based on ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}-$ and ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ COSY. The unequivalent hydrogens on $\mathrm{C}-7$ and C-9 were observed at $\delta 1.76$ and 2.94 ppm and at $\delta 1.93$ and 2.94 ppm , respectively, with a shift difference of more than 1 ppm . This result could be attributed to the fact hydrogens which are proximal to the lone pairs on nitrogen are shifted downfield compared to hydrogens in the opposite direction. The following reaction mechanism is proposed based on the spectral data for compounds ($\mathbf{3}$ and 4): The intermediates (6), which were derived from 1 and 2 , are presumably obtained from 3 via Mannich reactions which proceed through 4 (Scheme 2).

Scheme 2. ${ }^{6}$
$3 \mathrm{a}-\mathrm{c}+\mathrm{OHCCOOH}$

7

To ascertain the structure of $\mathbf{3}$, the reaction of $\mathbf{3}$ with glyoxalic acid (7) was carried out in EtOH to give pyrrolodiazepines (8) in $74-90 \%$ yields (Scheme 3). Their spectral data were consistent with the proposed structure (8). The structure of $\mathbf{3}$ was confirmed based on these results.
Next, compound (1) was reacted with 9 in EtOH to give the 2:2 condensation products (10) in 52-64 \% yields (Scheme 4), which were then purified by distillation under reduced pressure and recrystallization. The product of the reaction of 1 d with 9 had a molecular ion at $\mathrm{m} / \mathrm{z} 336$, which represented the loss of four molecules of water from two equivalents of 1 d and 9 . The ir spectrum showed a characteristic strong absorption for the $\mathrm{C}=\mathrm{C}$ double bond of the enamine at $1650 \mathrm{~cm}^{-1}$. The DEPT spectrum exhibited 13 methylene carbons at δ 19.45-59.60, 4 methine carbons at $\delta 66.83$-129.34, and a quaternary carbon at 111.64 ppm . Only two of four possible stereoisomers resulted, with the chemical shifts of 8 carbons out of being different for each isomer in the ${ }^{13} \mathrm{C}-\mathrm{nmr}$ spectrum. Relative ratio of these isomers was determined to be 13:8 by the intensities of stereoisomeric carbon pairs. Compound (10d) was recrystallized from AcOEt three times, but the ratio of the stereoisomers was unchanged. Based on these results and comparison with the ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}-\mathrm{nmr}$ spectral data of related derivatives, ${ }^{18,19}$ the structure for the $2: 2$ condensation product was deduced to be $\mathbf{1 0 d}$. All of the protons and carbons were assigned from ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}-$ and ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ COSY.

9

$$
\begin{aligned}
& \text { 10a: } n=1, R=M e \\
& b: n=1, R=n-B u \\
& c: n=0, R=E t \\
& d: n=0, R=H O\left(C_{2}\right)_{2}-
\end{aligned}
$$

Scheme 4
The reaction pathway was deduced to proceed via formation of an enamine intermediate (11) from 1 and 9, followed by electrophilic attack of another molecule of 9 to produce intermediate (12). This then reacted again with $\mathbf{1}$ to give $\mathbf{1 0}$.
In conclusion, the reaction of dialdehydes with 1-substituted diamino compounds to give 2:2 condensation products, occurs via a 1:1 condensation product intermediate.

EXPERIMENTAL

Melting points were determined on a Yanagimoto micromelting point apparatus and are uncorrected. Ir spectra were recorded as KBr pellets on a JASCO IRA-1 grating infrared spectrometer. ${ }^{1} \mathrm{H}-\mathrm{Nmr}$ spectra were determined with a JEOL JNM GX400 (400 MHz) and EX270 $(270 \mathrm{MHz})$ photospectrometers using tetramethylsilane as an internal standard. ${ }^{13} \mathrm{C}-\mathrm{Nmr}$ spectra were measured with a JEOL JNM GX400 (100 $\mathrm{MHz})$ and EX270 $(67.5 \mathrm{MHz})$ spectrometers. Mass spectra were measured with a JEOL JMX-DX 3030HF mass spectrometer.
General Procedure for 1-(N-Substituted 3-aminopropyl)pyrroles (3) and 1-Substituted 6-[1-(N-substituted 3-aminopropyl)pyrrol-2-yl]octahydropyrrole[1,2-a]pyrimidines
-------- To an aqueous solution of 2,5 -dimethoxytetrahydrofuran ($3.24 \mathrm{ml}, 2.5 \mathrm{mmol}$) was added concentrated hydrochloric acid (1.1 ml). After the acidic solution was stirred for 20 min at room temperature, a solution of $1(2.5 \mathrm{mmol})$ in $\mathrm{EtOH}(25 \mathrm{ml})$ was gradually added. The reaction mixture was stirred for 12 h . After evaporation of EtOH and water under reduced pressure, the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (25 ml) and washed with sat. NaHCO_{3}. After removal of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, the residue was distilled under reduced pressure.
3a: yield $0.04 \mathrm{~g}(12 \%)$; bp $43^{\circ} \mathrm{C} / 0.9 \mathrm{mmHg}$; ir \vee (film) $3300(\mathrm{NH}) \mathrm{cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 1.09(\mathrm{~s}$, NH), 1.91 (qui, $\mathrm{CH}_{2}, J=7.0 \mathrm{~Hz}$), $2.40\left(\mathrm{~s}, \mathrm{NCH}_{3}\right), 2.55\left(\mathrm{t}, \mathrm{CH}_{2}, J=7.0 \mathrm{~Hz}\right), 3.95\left(\mathrm{t}, \mathrm{CH}_{2}, J=7.0 \mathrm{~Hz}\right.$), $6.13(\mathrm{t}, 2 \times 3-\mathrm{H}, J=2.2 \mathrm{~Hz}), 6.65(\mathrm{t}, 2 \times 2-\mathrm{H}, J=2.2 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}-\mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 36.54\left(\mathrm{CH}_{3}\right), 31.68,47.51$, $49.12\left(\mathrm{CH}_{2}\right), 107.95,120.49$ (pyrrole); HR-ms $m / z: 138.1145$ (Calcd for $\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{~N}_{2}: 138.1157$); Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{~N}_{2}$: C, 69.52; H, 10.21; N, 20.27. Found C, $69.77 ; \mathrm{H}, 10.40 ; \mathrm{N}, 19.95$.
3b: yield 0.15 g (33\%); bp $74^{\circ} \mathrm{C} / 0.6 \mathrm{mmHg}$; ir v (film) $3300(\mathrm{NH}) \mathrm{cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 0.84(\mathrm{t}$, $\left.\mathrm{CH}_{3}, J=7.0 \mathrm{~Hz}\right), 1.21-1.58\left(\mathrm{~m}, 2 \times \mathrm{CH}_{2}\right.$ and NH$), 1.76\left(\mathrm{t}, \mathrm{CH}_{2}, J=7.2 \mathrm{~Hz}\right), 2.31-2.52\left(\mathrm{~m}, 2 \times \mathrm{CH}_{2}\right)$, $3.89\left(\mathrm{~d}, \mathrm{CH}_{2}, J=7.2 \mathrm{~Hz}\right), 5.95(\mathrm{t}, 2 \times 3-\mathrm{H}, J=2.4 \mathrm{~Hz}), 6.71(\mathrm{t}, 2 \times 2-\mathrm{H}, J=2.4 \mathrm{~Hz}) ;$ HR-ms m / z : 180.1654 (Calcd for $\mathrm{C}_{11} \mathrm{H}_{20} \mathrm{~N}_{2}: 180.1626$); Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{20} \mathrm{~N}_{2}: \mathrm{C}, 73.28 ; \mathrm{H}, 11.18 ; \mathrm{N}, 15.54$. Found C, 72.97; H, 11.33; N, 15.80.
3c: yield $0.21 \mathrm{~g}(44 \%)$; bp $78^{\circ} \mathrm{C} / 0.5 \mathrm{mmHg}$; ir $v(f i l m) 3300(\mathrm{NH}) \mathrm{cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 0.92$ (d, $2 \mathrm{x} \mathrm{CH}_{3}, J=7.0 \mathrm{~Hz}$), 1.13-1.62 (m, $\mathrm{CH}_{2}, \mathrm{CH}$, and NH$), 1.96\left(\mathrm{t}, \mathrm{CH}_{2}, J=7.2 \mathrm{~Hz}\right), 2.59\left(\mathrm{t}, \mathrm{CH}_{2}, J=6.6\right.$ $\mathrm{Hz}), 2.63\left(\mathrm{t}, \mathrm{CH}_{2}, J=7.2 \mathrm{~Hz}\right), 4.00\left(\mathrm{t}, \mathrm{CH}_{2}, J=7.2 \mathrm{~Hz}\right), 6.17(\mathrm{t}, 2 \times 3-\mathrm{H}, J=2.4 \mathrm{~Hz}), 6.69(\mathrm{t}, 2 \times 2-\mathrm{H}$, $J=2.4 \mathrm{~Hz}$); HR-ms m/z: 194.1780 (Calcd for $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{~N}_{2}$ 194.1783); Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{~N}_{2}: \mathrm{C}, 74.17$; H, 11.41; N, 14.42. Found C, 74.42; H, 11.60; N, 14.67.

4a: yield $0.21 \mathrm{~g}(30 \%)$; bp $68^{\circ} \mathrm{C} / 0.9 \mathrm{mmHg}$; ir $v($ film $) 3310(\mathrm{NH}) \mathrm{cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 1.50-$ 1.53 ($\mathrm{m}, \mathrm{CH} \mathrm{H}$), 1.74-1.84 ($\mathrm{m}, 2 \times \mathrm{CH} \mathrm{H}$), 1.86-1.97 (m, $5 \times \mathrm{CHH}$ and CH_{2}), 2.12 (s, NH), 2.17-2.22 (m, CHH), $2.22\left(\mathrm{~s}, \mathrm{CH}_{3}\right), 2.39$ and $2.40\left(\mathrm{~s}, \mathrm{CH}_{3}\right), 2.53-2.56\left(\mathrm{~m}, \mathrm{NCH}_{2}\right), 2.90-2.94(\mathrm{~m}, 2 \times \mathrm{NCHH})$, $3.15(\mathrm{t}, \mathrm{CH}, J=7.0 \mathrm{~Hz}), 3.88\left(\mathrm{t}, \mathrm{NCH}_{2}, J=7.0 \mathrm{~Hz}\right), 6.12\left(\mathrm{t}, 3^{\prime}-\mathrm{H}, J=2.2 \mathrm{~Hz}\right), 6.54\left(\mathrm{t}, 4^{\prime}-\mathrm{H}, J=2.2 \mathrm{~Hz}\right)$, 6.58 (t, $5^{\prime}-\mathrm{H}, J=2.2 \mathrm{~Hz}$); ${ }^{13} \mathrm{C}-\mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 21.45$ and $25.29,28.14$ and $28.46,30.68,31.56$ and $31.77\left(\mathrm{CH}_{2}\right), 36.55,41.74$ and $42.15\left(\mathrm{CH}_{3}\right), 47.59,49.21$ and $49.26,49.44,55.77$ and $56.16\left(\mathrm{CH}_{2}\right)$, $61.38,82.09$ and $86.55(\mathrm{CH}), 107.29,118.69$ and $118.96,120.37$ and $120.58,125.30$ and 125.53 (pyrrole); HR-ms $m / z: 276.2258$ (Calcd for $\mathrm{C}_{16} \mathrm{H}_{28} \mathrm{~N}_{4}$ 276.2314); Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{28} \mathrm{~N}_{4}$: $\mathrm{C}, 69.52$; H, 10.21; N, 20.27. Found C, 69.11; H, 9.90; N, 19.98.

4b: yield $0.20 \mathrm{~g}(22 \%)$; bp $120 / 0.6 \mathrm{mmHg}$; ir $v($ film $) 2950(\mathrm{NH}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 0.91(\mathrm{t}, 2 \mathrm{x}$ $\mathrm{CH}_{3}, J=6.8 \mathrm{~Hz}$), $1.26-1.45\left(\mathrm{~m}, 3 \times \mathrm{CH}_{2}\right), 1.51-1.63\left(\mathrm{~m}, 2 \times \mathrm{CH}_{2}\right), 1.77-1.99\left(\mathrm{~m}, 3 \mathrm{XCH}_{2}\right), 2.08-2.17$ $\left(\mathrm{m}, \mathrm{CH}_{2}\right), 2.53-2.60\left(\mathrm{~m}, 2 \times \mathrm{CH}_{2}\right), 2.64-2.68\left(\mathrm{~m}, \mathrm{CH}_{2}\right), 3.08-3.20\left(\mathrm{~m}, 2 \times \mathrm{CH}_{2}\right), 3.85-3.97\left(\mathrm{~m}, \mathrm{NCH}_{2}\right.$ and NCHN), 6.08 (d, $3^{\prime}-\mathrm{H}, J=2.2 \mathrm{~Hz}$), $6.57\left(\mathrm{t}, 4^{\prime}-\mathrm{H}, J=2.2 \mathrm{~Hz}\right), 6.65\left(\mathrm{~d}, 5^{\prime}-\mathrm{H}, J=2.2 \mathrm{~Hz}\right) . \mathrm{HR}-\mathrm{ms} m / z$: 360.3254 (Calcd for $\mathrm{C}_{22} \mathrm{H}_{40} \mathrm{~N}_{4} 360.3253$); Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{40} \mathrm{~N}_{4}: \mathrm{C}, 73.28 ; \mathrm{H}, 11.18 ; \mathrm{N}, 15.54$. Found C, 72.88; H, 10.91; N, 15.15.
4c: yield $0.25 \mathrm{~g}(26 \%)$; bp $117^{\circ} \mathrm{C} / 0.4 \mathrm{mmHg}$; ir $v(f i l m) 2950(\mathrm{NH}) \mathrm{cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{nmr} \cdot\left(\mathrm{CDCl}_{3}\right) \delta 0.88(\mathrm{~d}$, $\left.2 \times \mathrm{CH}_{3}, J=6.6 \mathrm{~Hz}\right), 0.89\left(\mathrm{~d}, 2 \times \mathrm{CH}_{3}, J=6.6 \mathrm{~Hz}\right), 1.07(\mathrm{~s}, \mathrm{NH}), 1.32-1.37\left(\mathrm{~m}, 2 \times \mathrm{CH}_{2}\right), 1.56-1.65(\mathrm{~m}$, CH_{2}), 1.77-2.08 (m, $3 \times \mathrm{CH}_{2}$), $2.30-2.56\left(\mathrm{~m}, \mathrm{CH}_{2}\right), 2.57\left(\mathrm{t}, \mathrm{CH}_{2}, J=6.6 \mathrm{~Hz}\right), 2.58\left(\mathrm{t}, \mathrm{CH}_{2}, J=6.6 \mathrm{~Hz}\right)$, $2.66-3.30\left(\mathrm{~m}, \mathrm{CH}_{2}\right.$ and CH$), 3.88\left(\mathrm{t}, \mathrm{CH}_{2}, J=7.0 \mathrm{~Hz}\right), 3.86-3.90\left(\mathrm{~m}, \mathrm{CH}_{2}\right), 3.95\left(\mathrm{t}, \mathrm{CH}_{2}, J=7.0 \mathrm{~Hz}\right)$, 4.22 (t, NCHN, $J=6.0 \mathrm{~Hz}$), $6.13\left(\mathrm{~d}, 3^{\prime}-\mathrm{H}, J=2.2 \mathrm{~Hz}\right), 6.57\left(\mathrm{t}, 4^{\prime}-\mathrm{H}, J=2.2 \mathrm{~Hz}\right), 6.65\left(\mathrm{~d}, 5^{\prime}-\mathrm{H}, J=2.2\right.$ Hz); HR-ms m/z: 388.3561 (Calcd for $\mathrm{C}_{24} \mathrm{H}_{44} \mathrm{~N}_{4} 388.3566$); Anal. Caled for $\mathrm{C}_{24} \mathrm{H}_{44} \mathrm{~N}_{4}: \mathrm{C}, 74.17$; H , 11.41; N, 14.42. Found C, 74.52; H, 11.70; N, 14.03.

General Procedure for 2-Substituted 1-Carboxy-2,3,4,5-tetrahydro-1H-pyrrolo[1,2-a][1,4]diazepines (8) ------ Glyoxalic acid hydrate (7) ($0.46 \mathrm{~g}, 5 \mathrm{mmol}$) was added dropwise to a stirred solution of $3(5 \mathrm{mmol})$ in $\mathrm{EtOH}(20 \mathrm{ml})$ at room temperature. The reaction mixture was stirred for 3 h and evaporated under reduced pressure. The resulting residue was washed with $\mathrm{Et}_{2} \mathrm{O}$ and recrystallized from solvent.
8a: yield $0.72 \mathrm{~g}(74 \%)$ (recryst. from $\mathrm{EtOH}-\mathrm{Et}_{2} \mathrm{O}$); $\mathrm{mp} 167-168^{\circ} \mathrm{C}$; ir $\mathrm{v}(\mathrm{KBr}) 1620(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}-$ $\mathrm{nmr}\left(\mathrm{DMSO}-\mathrm{d}_{6}\right) \delta 1.56-2.01\left(\mathrm{~m}, \mathrm{CH}_{2}\right), 2.29\left(\mathrm{~s}, \mathrm{CH}_{3}\right), 3.11-3.46\left(\mathrm{~m}, \mathrm{CH}_{2}\right), 3.93-4.21\left(\mathrm{~m}, \mathrm{CH}_{2}\right), 4.82$ (s, CH), 5.02-5.35 (br, NH^{+}), $5.81-6.14(\mathrm{~m}, 2 \times \mathrm{CH}=), 6.69-6.76(\mathrm{~m} \mathrm{CH}=)$; FAB-ms $\mathrm{m} / \mathrm{z}: 195(\mathrm{M}+1)^{+}$; Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 56.59 ; \mathrm{H}, 7.59 ; \mathrm{N}, 13.20$. Found C, $56.37 ; \mathrm{H}, 7.39 ; \mathrm{N}, 13.06$. 8b: yield $0.92 \mathrm{~g}(78 \%)$ (recryst. from THF-petr. ether); mp $138-139^{\circ} \mathrm{C}$; ir $v(\mathrm{KBr}) 1640(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{nmr}\left(\mathrm{DMSO}-\mathrm{d}_{6}\right) \delta 0.86-2.20\left(\mathrm{~m}, \mathrm{CH}_{3}\right.$ and $3 \mathrm{xCH}_{2}$), $3.61-3.69\left(\mathrm{~m}, 2 \times \mathrm{CH}_{2}\right), 4.10-4.21\left(\mathrm{~m}, \mathrm{CH}_{2}\right)$, $5.16(\mathrm{~s}, \mathrm{CH}), 6.00(\mathrm{~s}, \mathrm{CH}=), 6.30(\mathrm{~s}, \mathrm{CH}=), 6.57(\mathrm{~s}, \mathrm{CH}=), 8.18\left(\mathrm{br}, \mathrm{NH}^{+}\right)$; FAB-ms $(\mathrm{m} / \mathrm{z}) 237(\mathrm{M}+1)^{+}$; Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2}$: C, 66.07; H, 8.53; $\mathrm{N}, 11.85$. Found C, $65.85 ; \mathrm{H}, 8.64 ; \mathrm{N}, 11.81$. 8 c : yield $1.13 \mathrm{~g}(90 \%)$ (recryst. from THF-petr. ether); mp $140-141^{\circ} \mathrm{C}$; ir $v(\mathrm{KBr}) 1640(\mathrm{C}=0) \mathrm{cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{nmr}$ (DMSO-d d_{6}) $\delta 0.82\left(\mathrm{~d}, 2 \times \mathrm{CH}_{3}, J=4.2 \mathrm{~Hz}\right.$), $1.16-3.01\left(\mathrm{~m}, 2 \times \mathrm{CH}_{2}\right.$ and CH), 3.17-3.43 (m, $\left.\mathrm{CH}_{2}\right), 3.93-4.23\left(\mathrm{~m}, \mathrm{CH}_{2}\right), 4.80(\mathrm{~s}, \mathrm{CH}), 5.80-6.13(\mathrm{~m}, 2 \times \mathrm{CH}=),, 6.63-6.94\left(\mathrm{~m}, \mathrm{CH}=\right.$ and $\left.\mathrm{NH}^{+}\right)$; FAB-ms $m / z: 251(\mathrm{M}+1)^{+} ;$Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2}: \mathrm{C}, 67.17 ; \mathrm{H}, 8.86 ; \mathrm{N}, 11.19$. Found C, 67.03; H, 8.62; N, 10.97.
General Procedure for 1-Substituted 7-(1-Substituted Octahydro-2H-pyrido[1,2-a]-pyrimidin-6-yl)-1,3,4,8,9,9a-hexahydro-2H-pyrido[1,2-a]pyrimidines (10a, b) and 1-Substituted 6-(1-Substituted Octahydroimidazo[1,2-a]pyridin-5-yl)-1,2,3,7,8,8a-hexahydroimidazo[1,2-a]pyridines (10c, d) ------- Glutaraldehyde (9) ($0.6 \mathrm{ml}, 3 \mathrm{mmol}, 50 \%$ w/v in water) was added slowly to a stirred solution of $1(3 \mathrm{mmol})$ in $\mathrm{EtOH}(20 \mathrm{ml})$ containing a drop of AcOH under cooling with ice and water, over 1 h at room temperature under an atmosphere of argon. The reaction mixture was stirred for 12 h , and then evaporated to dryness under reduced pressure. The residue
was dissolved in water (100 ml), and the aqueous solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{ml})$. After removal of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, the residue was purified by distillation under reduced pressure or recrystallized from EtOH . All compounds are a mixture of two isomers.
10a: yield $0.58 \mathrm{~g}(64 \%)$; bp $90^{\circ} \mathrm{C} / 0.4 \mathrm{mmHg}$; ir v (film) $1662(\mathrm{C}=\mathrm{C}) \mathrm{cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 1.33-$ $1.47\left(\mathrm{~m}, 2 \times \mathrm{CH}_{2}\right), 1.55-1.79\left(\mathrm{~m}, \mathrm{CH}_{2}\right), 1.81-1.89\left(\mathrm{~m}, 2 \times \mathrm{CH}_{2}\right), 1.91-1.95\left(\mathrm{~m}, 2 \times \mathrm{CH}_{2}\right), 1.98-2.09$ ($\mathrm{m}, 2 \times \mathrm{CH}_{2}$) $, 2.22,2.26,2.28$, and $2.56\left(\mathrm{~s}, 2 \times \mathrm{NCH}_{3}\right), 2.29-2.86(\mathrm{~m}, \mathrm{CH}), 2.87-3.12(\mathrm{~m}, 2 \times \mathrm{NCHN}$ and $2 \times \mathrm{NCH}_{2}$), 5.57 and $5.60\left(\mathrm{~s}, \mathrm{CH}=\right.$); ${ }^{13} \mathrm{C}-\mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 23.16$ and 23.32, 23.89, 24.17 and 24.29, 24.53 and $24.59,26.11,26.55$ and $26.81,28.26,29.90,31.79$ and $31.89\left(7 \mathrm{xCH}_{2}\right), 39.50$ and 39.95 , 40.36 and $42.18\left(2 \times \mathrm{NCH}_{3}\right), 52.22$ and $52.26,52.40,55.84$ and $56.00,56.25$ and $56.30\left(\mathrm{NCH}_{2}\right)$, 68.00 and 68.12 ($\mathrm{NCH}-$), 76.84 and 77.87 (NCHN), 84.15 and $84.23(\mathrm{NCHN}), 113.57$ and 113.93 ($=\mathrm{C}$), 132.09 and 132.98 (=CH-); EI-ms m/z : $304\left(\mathrm{M}^{+}\right)$; Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{32} \mathrm{~N}_{4}: \mathrm{C}, 71.01 ; \mathrm{H}, 10.59 ; \mathrm{N}$, 18.40. Found C, 70.88 ; H, 10.36; N, 18.14.

10b: yield $0.74 \mathrm{~g}(64 \%)$; bp $108^{\circ} \mathrm{C} / 0.25 \mathrm{mmHg}$; ir $v($ film $) 1650(\mathrm{C}=\mathrm{C}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 0.93$ and $1.03\left(\mathrm{t}, 2 \mathrm{x} \mathrm{CH}_{3}, J=7.3 \mathrm{~Hz}\right), 1.16-1.62\left(\mathrm{~m}, 8 \times \mathrm{CH}_{2}\right), 1.62-1.96\left(\mathrm{~m}, 2 \mathrm{xCH}_{2}\right), 1.97-2.11(\mathrm{~m}, 2 \mathrm{x}$ CH_{2}), 2.11-2.80 ($\mathrm{m}, 4 \times \mathrm{CH}_{2}$ and CH), 2.80-3.20 ($\mathrm{m}, 2 \times \mathrm{NCHN}$ and CH_{2}), 5.83 and $5.70(\mathrm{~s}, \mathrm{CH}=$); HR-ms m/z: 388.3557 (Calcd for $\mathrm{C}_{24} \mathrm{H}_{44} \mathrm{~N}_{4} 388.3566$); Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{44} \mathrm{~N}_{4}: \mathrm{C}, 74.17 ; \mathrm{H}, 11.41$; N, 14.42. Found C, 74.49; H, 11.63; N, 14.17.
10c: yield $0.47 \mathrm{~g}(52 \%)$; bp $156-157^{\circ} \mathrm{C} / 1.5 \mathrm{mmHg}$; ir v (film) $1660(\mathrm{C}=\mathrm{C}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta$ $1.09\left(\mathrm{t}, \mathrm{CH}_{3}, J=7.3 \mathrm{~Hz}\right), 1.15\left(\mathrm{t}, \mathrm{CH}_{3}, J=7.3 \mathrm{~Hz}\right), 1.18-1.44\left(\mathrm{~m}, 2 \mathrm{x} \mathrm{CH}_{2}\right), 1.80-1.85\left(\mathrm{~m}, \mathrm{CH}_{2}\right)$, 1.89-2.43 (m, $5 \times \mathrm{CH}_{2}$), 2.76-2.89 ($\mathrm{m}, \mathrm{CH}_{2}$ and CH), $3.01-3.14\left(\mathrm{~m}, \mathrm{CH}_{2}\right), 3.17-3.24\left(\mathrm{~m}, \mathrm{CH}_{2}\right), 3.28$ (q, $\mathrm{CH}, J=6.6 \mathrm{~Hz}$), $3.47-3.51(\mathrm{~m}, \mathrm{CH}), 5.97\left(\mathrm{~s}, \mathrm{CH}=\right.$); ${ }^{13} \mathrm{C}-\mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 13.68,13.75\left(\mathrm{CH}_{3}\right), 19.51$ and 20.33, 22.89 and 23.03, 26.99 and 27.17, 29.19 and $29.30,30.95$ and $31.65,\left(\mathrm{C}-\mathrm{CH}_{2}-\mathrm{C}\right), 46.58$ and $46.62,47.88,48.66,48.85,49.48,51.20$ and $51.30\left(\mathrm{NCH}_{2}\right), 66.79$ and $67.32(\mathrm{CHN}), 77.40$ and $77.75,83.83$, and $84.17(\mathrm{NCHN}), 112.11$ and $112.46(-\mathrm{C}-), 128.95$ and $129.17(\mathrm{CH}=)$, EI-ms $\mathrm{m} / \mathrm{z} 304$ $\left(\mathrm{M}^{+}\right) ;$Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{32} \mathrm{~N}_{4}: \mathrm{C}, 71.00 ; \mathrm{H}, 10.59 ; \mathrm{N}, 18.40$. Found C, $71.23 ; \mathrm{H}, 10.75 ; \mathrm{N}, 18.32$. 10d: yield $0.60 \mathrm{~g}(60 \%)$; mp $122^{\circ} \mathrm{C}$; ir $v(\mathrm{KBr}) 3500(\mathrm{OH}), 1650(\mathrm{C}=\mathrm{C}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 1.12-$ $1.36\left(\mathrm{~m}, \mathrm{CH}_{2}\right), 1.38-1.61\left(\mathrm{~m}, \mathrm{CH}_{2}\right), 1.84-1.94\left(\mathrm{~m}, \mathrm{CH}_{2}\right), 1.94-2.04\left(\mathrm{~m}, \mathrm{CH}_{2}\right), 2.04-2.60(\mathrm{~m}, 4 \mathrm{x}$ CH_{2}), 2.85-3.11 ($\mathrm{m}, 2 \times \mathrm{CH}_{2}$), 3.12-3.54 (m, CH and $2 \times \mathrm{NCH}_{2} \mathrm{~N}$), 3.56-3.75 ($\mathrm{m}, 2 \times \mathrm{NCH}_{2} \mathrm{~N}$), 6.00 and $5.99(\mathrm{~s},=\mathrm{CH}) ;{ }^{13} \mathrm{C}-\mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 19.45$ and 19.86, 22.74, 26.55 and 26.95, 28.92, 30.65 and $31.11,48.72,48.81$ and $48.99,49.64,51.26,54.69,55.17,59.52,59.60\left(\mathrm{CH}_{2}\right), 66.83$ and 67.34 , 76.84 and $77.19,83.61$ and $83.85,128.99$ and $129.34(\mathrm{CH}), 111.64(-\mathrm{C}-)$; EI-ms $\mathrm{m} / \mathrm{z}: 336\left(\mathrm{M}^{+}\right)$; Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{32} \mathrm{~N}_{4} \mathrm{O}_{2}$: C, $64.25 ; \mathrm{H}, 9.59 ; \mathrm{N}, 16.65$. Found C, $64.32 ; \mathrm{H}, 9.56 ; \mathrm{N}, 16.59$.

REFERENCES AND NOTES

1. A part of this work was reported in a preliminary communication. T. Okawara, S. Ehara, S. Matsumoto, Y. Okamoto, and M. Furukawa, J. Chem. Soc., Perkin Trans. 1, 1990, 2160.
2. M. Villacampa, M. Martinez, G. G-. Trigo, and M. M. Sollhuber, J. Heterocycl. Chem., 1992, 29, 1541.
3. S. Boyer, E. Blazier, M. Barabi, G. Long, G. Zaunius, J. W. F. Wasley, and A. Hamdan, J.

Heterocycl. Chem., 1988, 25, 1003.
4. H. Amri and J. Villieras, Tetrahedron Lett., 1987, 28, 5521.
5. J. Royer and H. P. Husson, Tetrahedron Lett., 1987, 28, 6175.
6. N. P. Peet and S. Sunder, Heterocycles, 1986, 24, 3213.
7. C. Kashima, S. Hibi, T. Maruyama, and Y. Omote, Tetrahedron Lett., 1986, 27, 2131.
8. K. Takahashi, T. Mikajiri, H. Kurita, K. Ogura, and H. Iida, J. Org. Chem., 1985, 50, 4372.
9. J. Foos, F. Steel, S. Q. A. Rizvi, and G. Fraenkel, J. Org. Chem., 1979, 44, 2522.
10. F. W. Lichtenthaler and D. Fleischer, J. Org. Chem., 1972, 37, 1670.
11. M. J. Kukla and H. J. Breslin, J. Org. Chem., 1987, 52, 5046.
12. C. Yue, J. Royer, and H. P. Husson, J. Org. Chem., 1990, 55, 1140.
13. J. Zhu, J. C. Quirion, and H. P. Husson, Tetrahedron Lett., 1989, 30, 5137.
14. J. C. Quirion, D. S. Grierson, J. Royer, and H. P. Husson, Tetrahedron Lett., 1988, 29, 3311.
15. J. Royer and H. P. Husson, J. Org. Chem., 1985, 50, 670.
16. L. Guerrier, J. Royer, D. S. Grierson, and H. P. Husson, J. Am. Chem. Soc., 1983, 105, 7754.
17. Von G. Eikelmann, W. Heimberger, G. Nonnenmacher, and W. M. Weigert, Liebigs Ann. Chem., 1972, 759, 183.
18. T. Okawara, S. Ehara, M. Eto, K. Harano, and M. Furukawa, Tetrahedron Lett., 1993, 34, 4231.
19. T. Okawara, S. Ehara, H. Kagotani, Y. Okamoto, M. Eto, K. Harano, T. Yamasaki, and M. Furukawa, J. Org. Chem., 1996, 61, 4125.

