

A Journal of the Gesellschaft Deutscher Chemiker A Deutscher Chemiker GDCh International Edition www.angewandte.org

Accepted Article

Title: A Photoswitchable Agonist for the Histamine H3 Receptor, a prototypic family A G protein-coupled receptor

Authors: Niels J. Hauwert, Tamara A.M. Mocking, Daniel Da Costa Pereira, Ken Lion, Yara Huppelschoten, Henry F. Vischer, Iwan J.P. De Esch, Maikel Wijtmans, and Rob Leurs

This manuscript has been accepted after peer review and appears as an Accepted Article online prior to editing, proofing, and formal publication of the final Version of Record (VoR). This work is currently citable by using the Digital Object Identifier (DOI) given below. The VoR will be published online in Early View as soon as possible and may be different to this Accepted Article as a result of editing. Readers should obtain the VoR from the journal website shown below when it is published to ensure accuracy of information. The authors are responsible for the content of this Accepted Article.

To be cited as: Angew. Chem. Int. Ed. 10.1002/anie.201813110 Angew. Chem. 10.1002/ange.201813110

Link to VoR: http://dx.doi.org/10.1002/anie.201813110 http://dx.doi.org/10.1002/ange.201813110

WILEY-VCH

10.1002/anie.201813110

WILEY-VCH

A Photoswitchable Agonist for the Histamine H₃ Receptor, a prototypic family A G protein-coupled receptor

Niels J. Hauwert^{*}, Tamara A.M. Mocking^{*}, Daniel Da Costa Pereira, Ken Lion, Yara Huppelschoten, Henry F. Vischer, Iwan J.P. De Esch, Maikel Wijtmans^{*}, Rob Leurs^{*}

Abstract

Spatiotemporal control over biochemical signaling processes involving G protein-coupled receptors (GPCRs) is highly desired for dissecting their complex intracellular signaling. We developed a set of sixteen photoswitchable ligands for the human histamine H₃ receptor (hH₃R). Upon illumination key compound 65 decreases its affinity for the hH₃R 8.5-fold and its potency in hH₃R-mediated G₁ protein activation over 20-fold, with the *trans* and *cis* isomer both acting as full agonist. Furthermore, in real-time two-electrode voltage clamp experiments in Xenopus oocytes, 65 shows rapid lightinduced modulation of hH₃R activity. Ligand 65 shows good binding selectivity amongst the histamine receptor subfamily and has good photolytic stability. In all, 65 (VUF15000) is the first photoswitchable GPCR agonist confirmed to be modulated through its affinity and potency upon photoswitching while maintaining its intrinsic activity, rendering it a new chemical biology tool for spatiotemporal control of GPCR activation.

Introduction

In recent years, photopharmacology has been gaining momentum as a strategy to optically control biochemical processes.^[1] The use of light as an external trigger to change ligand shape and consequently its pharmacological properties allows the probing of biological systems with great spatiotemporal resolution.^[2] The azobenzene moiety is often used in photoswitchable ligands^[1a] due to its limited size, high photostability and tunability of the peak absorption wavelength λ_{max} .^[3] Its thermodynamically stable trans isomer typically involves a flat elongated structure, whereas its photoinduced cis configuration has a bent geometry with considerably shorter end-toend distance.^[4] Whereas photopharmacology is well established in the field of enzyme and ion channel modulation, it is an upcoming technology for G protein-coupled receptors (GPCRs).^[1a] GPCRs constitute one of largest families of transmembrane proteins, their dysfunction is associated with a plethora of diseases and consequently GPCRs are one of the most successful classes of drug targets.^[5] Recently, various GPCRs have been successfully targeted using photopharmacology approaches, including µ-opioid^[6],

[a] N.J. Hauwert MSc.*, T.A.M. Mocking MSc.*, D. Da Costa Pereira, Z. Lion MSc., Y. Huppelschoten MSc., Dr. H.F.Vischer, Prof. Dr. I.J.P.de Esch, Dr. M. Wijtmans, Prof. Dr. R. Leurs
* Authors contributed equally Division of Medicinal Chemistry Amsterdam Institute for Molecules Medicines and Systems (AIMMS) Vrije Universiteit Amsterdam De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands E-mail: M.Wijtmans@vu.nl, R.Leurs@vu.nl
Supporting information for this article is given via a link at the end of the document. CXCR3^[7], CB1^[8], H₃R^[9], mGlu5^[10] and GLP1^[11]. Yet, almost all these examples include at least one but more frequently two antagonistic/partial agonist isomeric forms. In contrast, freely diffusible affinity and potency photoswitches in which both isomers act as full agonists are scarce^[1a] even though such compounds would be very useful for photopharmacology approaches and complementary to agonist-to-antagonist switches.

The histamine H₃R receptor is an intensively studied GPCR that is known to play an important role in sleep disorders and cognitionrelated diseases such as Alzheimer's and Parkinson's disease. The first H₃R antagonist pitolisant (Wakix[®]) has been approved by the European Medicines Agency for the treatment of narcolepsy.^[12] Recently, we published a toolbox of photoswitchable antagonists^[9] that competitively inhibit histamine-induced H₃R activity. In the current work, we aimed to develop high-potency H₃R photoswitchable agonists that can simplify spatiotemporal studies of the signaling network of the H₃R. We disclose unique photoswitchable H₃R agonists that can be optically converted to isomers differing in their affinity and potency.

Figure 1. General design and concept of photoswitchable H₃R full agonists.

Main Text

The scaffold design was inspired by hH_3R full agonist VUF5980 previously published by our lab^[13] (Figure 1). To date, virtually every published hH_3R full agonist contains a 4-substituted imidazole moiety combined with a basic or neutral side chain, as is the case for VUF5980. We left the imidazole portion of the molecule unchanged, and considered the diphenylacetylene moiety to be an attractive candidate for an "azologization" strategy.^[3] Introducing the azobenzene at this position furthermore allows for great flexibility in the diversification of the scaffold. Based on the steep SAR observed with VUF5980^[13] it was postulated that small changes would have significant impact on the affinity and potency for hH_3R . Therefore, primarily the azobenzene was decorated with small substituents (i.e. methyl and fluorine groups) on both phenyl rings.

This article is protected by copyright. All rights reserved.

WILEY-VCH

 $\label{eq:scheme-1} \begin{array}{l} \mbox{Scheme-1}. \mbox{ General synthetic scheme for photoswitchable H_3R agonists. See supporting information for detailed experimental procedures \\ \end{array}$

То svnthesize the ligands. imidazole-4-carbaldehyde **2** was protected usina N.Ndimethylsulfamoylchloride (DMS-Cl, Scheme 1) to afford 3, which was reduced to 4. Alcohol 4 was converted to chloride 5 using an in situ mesylation. A diverse set of anilines 6-15 was oxidized to the corresponding nitrosobenzenes 16-25 using Oxone™. After workup, they were directly used in a Mills reaction with 3-aminophenylboronic acid pinacol esters 26-32 to yield azobenzene-pinacol esters 33-48. Cross coupling with chloride 5 yielded 49-64 in generally good yields. Acidic deprotection vielded final compounds 65-80 which were used for biological evaluation.

Compounds **65-80** all have λ_{max} values for the π - π * transition of the trans isomer between 313 and 330 nm (Table 1). The observed limited variation is due to the absence of strong electron-donating or withdrawing substituents. Similarly, λ_{max} values for the n- π^* transition of the cis isomer differed marginally, ranging between 417 and 430 nm. Upon continuous illumination with 360 ± 20 nm, the values for the photostationary states (PSS) of 65-80 ranged between 92.3 and 97.5% cis, except for 69 which has 82.6% cis. Compounds 65-80 all showed slow thermal relaxation at

>99% trans 0.4 360 nm PSS cis PSS trans (NAU) 434 nm 0.3 N trans cis trans ਸ਼ੂ 0.2 cis Δ R 250 300 350 400 450 Wavelength (nm) 500 550 t = 0 s D t = 200 s t = 400 s 4 5 10 100 500 1000 1 2 3 N 0.35 Ε 0.3 t = 600 s 0.25 200 0.2 0.15 0.1 Ahsor 360 nm 0.05 t = 800 s 434 nm 4.2 4.1 4.0 3.9 Chemical shift (ppm) 3.5 4.0 Elution time (min) 200 Õ 50 100 150 Time (sec)

Figure 2: (A) Representative part of ¹H NMR spectra of 10 mM **65** in DMSO-*d*₆ illuminated at 360 ± 20 nm displayed at various time points (seconds). The presented peak belongs to the hydrogen atoms explicitly drawn in the structure shown above the spectrum. Full spectra are available in Figure S4. (B) Representative part of LC–MS chromatograms belonging to the illuminated NMR sample in Figure 2A. Full chromatograms are available in Figure S5. (C) UV–Vis spectra of 25 µM of **65** in 50 mM Tris–HCl pH 7.4 buffer + 1% DMSO-*d*₆. PSS *cis* represents a sample which has been illuminated for 300 s using 360 ± 20 nm light. PSS *trans* represents subsequent illumination for 300 s using 434 ± 9 nm. (D) Repeated isomerization of 25 µM of **65** in 50 mM Tris–HCl pH 7.4 buffer + 1% DMSO-*d*₆ analyzed at 320 nm. PSS *cis* was obtained by using illuminations for 40 s at 360 ± 20 nm. PSS *trans* was obtained by using illuminations for 40 s at 360 ± 20 nm. YeS *trans* was obtained by using illuminations for 40 s to 45 µM of **65** in 50 mM Tris–HCl pH 7.4 buffer + 1% DMSO-*d*₆. UV–Vis spectra were obtained with 1 s intervals under alternating illumination with 360 ± 20 nm and 434 ± 9 nm perpendicular to the light source of the UV–Vis spectra.

room temperature (20 °C, Table 1). The observed thermal relaxation half-lives were impractically long for direct quantification, therefore extrapolations of high temperature thermal relaxation were used to quantify half-lives at 20 °C (Table 1, Figure S1).^[14] Compound 69 shows the fastest thermal relaxation in 50 mM Tris-HCl pH 7.4 buffer, having a halflife of 26.6 days, while 72 shows the slowest relaxation with a half-life of 147 days.

Based on its favorable pharmacological profile (vide infra) and synthetic tractability,

WILEY-VCH

subjected to in-depth photochemical compound 65 was characterization using ¹H-NMR and LC-MS analysis during illumination with 360 ± 20 nm. The well-resolved signal of the benzylic CH₂ group provided a clear handle for quantification in ¹H-NMR analysis (Figure 2A). An overestimation of isomerization percentage is observed in LCMS analysis at 254 nm compared to ¹H-NMR analysis (Figure 2B, Table S1), which can be explained by the differences in extinction coefficients for the trans and cis isomer at 254 nm (Figure 2C, S2, S3). Compound 65 shows excellent resistance to photobleaching upon >1000 times isomerization (Figure 2D). The dynamic isomerization was studied using UV-Vis spectroscopy under alternating illumination (Figure 2E). At 25 µM of 65 in 50 mM Tris-HCl pH 7.4 buffer + 1% DMSO-d₆, a half-life of 4.2 \pm 0.16 s for 360 \pm 20 nm and 5.7 \pm 0.19 s for 434 \pm 9 nm was

Figure 3. Representative curves of **65** (A) in competition binding with [³H]-NAMH or (B) in G_i protein activation as measured by [³⁵S]-GTP₇S accumulation on HEK293T cell homogenates transiently expressing hH₃R. Black lines refer to a sample containing >99% *trans*, while magenta lines refer to a sample illuminated to PSS with 360 ± 20 nm prior to the assay. (C) Schematic drawing of the TEVC setup used for dynamic hH₃R and GIRK current activation in *Xenopus laevis* oocytes expressing hH₃R and GIRK. (D) Representative part of a GIRK-mediated current trace during continuous perfusion with 1 µM **65** under illumination of the oocyte with alternating 360 ± 20 and 434 ± 9 nm wavelength as measured by TEVC. Error bars shown are mean ± SD.

observed.

The long thermal relaxation half-lives allowed for detailed pharmacological evaluation using hH3R competition binding as well as functional experiments. For this, the compound solutions were either illuminated using 360 ± 20 nm to reach a PSS cis or kept in the dark to ensure >99% trans isomer. Then, the affinity of both isomers for the hH₃R was assessed in competition binding with [³H]- N^{α} -methylhistamine (NAMH). All compounds display $hH_{3}R$ binding affinity, which decreases upon illumination reaching up to a 21-fold affinity difference in the case of 76. In terms of absolute affinity, 65 displays the highest affinities for the hH₃R with a pK_i value of 8.42 \pm 0.04 for its *trans* isomer and a pK_i of 7.49 ± 0.05 for its *cis* isomer, resulting in an 8.5-fold shift upon illumination (Figure 3A, Table 1). Fluorine-substituted analogues 67 and 80 perform similarly to 65 in competition binding displaying only a marginally lower affinity (Table 1). Notably, para-methyl substitution on the R¹ position (78) decreases the binding affinity and abrogates the photoisomerization induced affinity shift compared to 65 (Table 1). Reduction of the size of the para-substituents to either chlorine (71) or fluorine (68) gradually rescues hH₃R affinity and reestablishes the shift in affinity to 6- and 15-fold, respectively. Methyl addition to either the ortho (76) or meta (77) position of R¹ still results in decent binding affinities and high (21-fold) to good (8.5-fold) affinity shifts upon illumination. Addition of substituents at the R² position results in a clear affinity cliff, with fluorine substitutions (79 and 80) still being allowed, but addition of a methyl substituent (72-75) highly decreased the binding affinity of the cis isomer. Moreover, for the trans isomers, 4-Me (73) and 6-Me (75) substitution is still tolerated yet showing a log-unit decrease in hH₃R affinity compared to 65, while 2-Me (72) and 5-Me (74) groups highly reduce hH₃R affinity and consequently reduce or even abolish (72) the affinity shift (Table 1).

Based on the observed affinities and photo-induced affinity shifts, the efficacy to stimulate hH₃R-mediated G_i protein activation was evaluated for ligands 65 and 76 in a [³⁵S]-GTP₇S binding assay. Highest affinity ligand 65 (pK_i trans = 8.42 ± 0.04) also displays the highest potency (pEC₅₀ trans = 7.60 \pm 0.13) to induce G_i activation, which upon photoisomerization decreases 20-fold (pEC₅₀ at PSS cis: 6.30 ± 0.13) with both isomers being full agonists with both having intrinsic activities of α = 1.0 ± 0.03, as compared to histamine (Figure 3B). Since the observed shift in hH₃R affinity was 8.5-fold, the larger (20-fold) shift in functional potency indicates that for 65 the efficacy (propensity to activate a GPCR^[15]) is also affected upon trans-cis isomerization. Interestingly, a large photo-induced decrease in potency of 23-fold was also obtained for 76 (pEC₅₀ *trans*: 6.78 \pm 0.11, PSS *cis*: 5.41 \pm 0.11, α = 1.00 \pm 0.0). This shift in potency of 76 is completely explained by the observed change of its affinity (vide supra).

Compound **65** (VUF15000) was selected as tool compound for further analysis as it has good synthetic tractability and because its superior potency is a clear advantage for pharmacological studies. As the imidazole-based pharmacophore/scaffold used in the design of these photoswitchable ligands is prone to interact with other histamine receptor subtypes^[13], **65** was tested for its subtype selectivity. Binding of **65** is >300-fold selective for hH₃R over hH₁R and hH₂R (Table S2), while a 31-fold selectivity is observed over its

WILEY-VCH

closest homologue hH₄R (Table S2). Interestingly, **65** displays high nM (*trans*) to low μ M (PSS *cis*) binding affinities for both mouse and rat H₃R with a 4-fold and 8-fold shift in binding affinity upon photoisomerization, respectively (Table S2).

Real-time photomodulation of hH_3R activity by 65 was measured using two-electrode voltage clamp (TEVC) on Xenopus laevis oocytes expressing both hH3R and G protein-coupled inwardlyrectifying potassium (GIRK)-channels (Figure 3C). In this expression system, histamine application results in hH₃R-mediated GIRK activation, which is insensitive to optical modulation.^[9] As expected based on our data with the [35 S]-GTP γ S binding assay, trans-65 elicits an agonistic response in this system, which could be reduced by switching to the less active cis isomer upon illumination with 360 ± 20 nm. Retrieval of the agonistic response could be provoked by either actively switching the *cis* isomer back into its *trans* isomer by illuminating with 434 ± 9 nm or by stopping illumination, due to continuous perfusion of the trans isomer (Figure 3D). Dynamic photoswitching of 65 could be performed repeatedly, illustrating that the use of two specific wavelengths allows optical control of the hH₃R activation mediated by 65. Furthermore, photoswitchable agonist 65 shows rapid hH₃R activation and deactivation kinetics, aiding in its use in in vivo experimentation.

Conclusion

We have synthesized and characterized 16 photoswitchable hH₃R agonists that change their affinity and potency upon illumination, indicating a successful azologization strategy. All possess long thermal relaxation half-lives at room temperature making them useful for a variety of pharmacological studies. Compound 65 (VUF15000). was selected as key compound on the basis of synthetic tractability and highest absolute hH₃R affinity. Moreover, upon illumination 65 displays a high potency and 20-fold potency shift while maintaining full intrinsic activity in Gi protein activation making it especially attractive as a tool compound. With a 20-fold shift in potency, 65 is one of the best photoswitchable GPCR agonists reported so far. Electrophysiology experiments showed the dynamic optical modulation of hH₃R activation induced by 65 in real time, setting the stage for further unraveling of the downstream signaling of hH₃R with great spatiotemporal precision. Recently, photopharmacology approaches with freely diffusible GPCR ligands have for the first time been used successfully in vivo to modulate tadpole and zebrafish $behavior^{\left[10,\ 16\right]}$ and to elucidate the role of the metabotropic glutamate receptor 4 in the nervous system using a mouse model of chronic pain.^[17] In view of the widespread distribution of the H₃R in the central and peripheral nervous system, photopharmacology approaches with tools such as 65 offer new means (complimentary to optogenetic approaches^[18]) to investigate the spatial and temporal details of H₃R modulation of important processes like arousal, cognition and neuropathic pain.[12a-e]

10.1002/anie.201813110

Table 1. Structure-affinity relationship of photoswitchable azobenzene-derived H₃R agonists.

	R ¹								
				N ^{-N}			4		
Compound number	R ¹	R ²	p <i>K_i trans</i> ± SEM	p <i>K</i> iat PSS <i>cis</i> ^[a] ± SEM	pK _i shift ± SEM	λ _{max} <i>trans</i> ^[b] (nm)	λ _{max} cis ^[b] (nm)	t _{1/2} ^[c] (days)	PSS ^[d] ± SEM
1	C N		8.74 ± 0.10 ^[a]		-	-			-
65	Н	н	8.42 ± 0.04	7.49 ± 0.05	-0.93 ± 0.06	320	427	106	96.1 ± 1.9
66	2-F	н	8.28 ± 0.08	7.09 ± 0.03	-1.19 ± 0.04	323	425	128	95.7 ± 0.27
67	3-F	н	8.35 ± 0.09	7.42 ± 0.05	-0.93 ± 0.04	320	425	101	94.1 ± 1.3
68	4-F	н	7.69 ± 0.08	6.51 ± 0.08	-1.18 ± 0.09	322	426	95.9	95.9 ± 1.6
69	2,6-F	н	8.00 ± 0.02	7.26 ± 0.09	-0.74 ± 0.10	313	417	26.6	82.6 ± 1.9
70	2-Cl	н	7.86 ± 0.03	6.85 ± 0.04	-1.02 ± 0.03	324	420	96.1	95.3 ± 0.22
71	4-Cl	Н	6.76 ± 0.07	5.98 ± 0.07	-0.78 ± 0.10	326	428	29.7	97.5 ± 0.48
72	н	2-Me	5.57 ± 0.09	5.45 ± 0.03	-0.12 ± 0.10	323	428	147	92.3 ± 4.9
73	н	4-Me	6.90 ± 0.06	5.77 ± 0.13	-1.13 ± 0.08	327	430	42.9	96.3 ± 1.1
74	н	5-Me	5.75 ± 0.03	5.13 ± 0.17	-0.62 ± 0.19	322	427	122	94.5 ± 1.4
75	н	6-Me	7.15 ± 0.03	5.94 ± 0.06	-1.21 ± 0.04	324	426	125	95.8 ± 0.92
76	2-Me	н	7.72 ± 0.03	6.40 ± 0.04	-1.32 ± 0.05	326	426	35.6	96.5 ± 1.6
77	3-Me	н	7.39 ± 0.08	6.46 ± 0.06	-0.94 ± 0.09	323	428	77.0	95.4 ± 0.39
78	4-Me	Н	5.72 ± 0.14	5.71 ± 0.06	-0.01 ± 0.16	330	429	34.1	94.0 ± 4.4
79	н	4-F	7.81 ± 0.07	6.54 ± 0.06	-1.27 ± 0.02	324	425	91.7	96.6 ± 0.51
80	н	6-F	8.39 ± 0.06	7.36 ± 0.03	-1.03 ± 0.03	322	427	84.6	94.6 ± 1.3

[a] Adapted from Wijtmans et al.^[13] [b] Determined at 25 μ M in 50 mM Tris-HCl pH 7.4 buffer + 1% DMSO-d₆ [c] Thermal relaxation half-life times as determined according to the method of Primagi et al.^[14] in 50 mM Tris-HCl pH 7.4 buffer + 1% DMSO-d₆ extrapolating to 20 °C. Arrhenius plots are available in Figure S1. [d] Photostationary state area percentages after illumination with 360 ± 20 nm at 1 mM in DMSO-d₆ and as determined by LC-MS analysis at 254 nm. All pharmacology experiments were at least performed as triplicate.

Acknowledgements

We acknowledge The Netherlands Organisation for Scientific Research (NWO) for financial support (TOPPUNT, "7 ways to 7TMR modulation (7-to-7)", 718.014.002). All authors participate in the European Cooperation in Science and Technology Action CM1207 [GPCR-Ligand Interactions, Structures, and Transmembrane Signaling: A European Research Network (GLISTEN)]. We thank Hans Custers for HRMS analyses, Andrea van de Stolpe for setting

- a) K. Hull, J. Morstein, D. Trauner, *Chem. Rev.* 2018, *118*, 10710-10747; b) M. W. H. Hoorens, W. Szymanski, *Trends Biochem. Sci.* 2018, *43*, 567-575.
- [2] W. Szymanski, J. M. Beierle, H. A. Kistemaker, W. A. Velema, B. L. Feringa, *Chem. Rev.* 2013, 113, 6114-6178.
- [3] J. Broichhagen, J. A. Frank, D. Trauner, *Acc. Chem. Res.* **2015**, *48*, 1947-1960.
- [4] A. A. Beharry, G. A. Woolley, *Chem. Soc. Rev.* **2011**, *40*, 4422-4437.
- [5] a) A. S. Hauser, S. Chavali, I. Masuho, L. J. Jahn, K. A. Martemyanov, D. E. Gloriam, M. M. Babu, *Cell* 2018, *172*, 41-54 e19; b) K. Sriram, P. A. Insel, *Mol. Pharmacol.* 2018, *93*, 251-258.
- [6] M. Schönberger, D. Trauner, *Angew*. *Chem. Int. Ed. Engl.* **2014**, *53*, 3264-3267.
- [7] X. Gomez-Santacana, S. M. de Munnik, P. Vijayachandran, D. Da Costa Pereira, J. P. M. Bebelman, I. J. P. de Esch, H. F. Vischer, M. Wijtmans, R. Leurs, *Angew. Chem. Int. Ed. Engl.* 2018, *57*, 11608-11612.
- [8] M. Westphal, M. A. Schafroth, R. Sarott, M. Imhof, C. Bold, P. Leippe, A.
 Dhopeshwarkar, J. Grandner, V. Katritch, K. Mackie, D. Trauner, E. M. Carreira, J.
 A. Frank, J. Am. Chem. Soc. 2017, 139, 18206-18212.
- [9] N. J. Hauwert, T. A. M. Mocking, D. Da Costa Pereira, A. J. Kooistra, L. M. Wijnen, G. C. M. Vreeker, E. W. E. Verweij, A. H. De Boer, M. J. Smit, C. De Graaf, H. F. Vischer, I. J. P. de Esch, M. Wijtmans, R. Leurs, J. Am. Chem. Soc. 2018, 140, 4232-4243.

up the photochemistry equipment and Fons Lefeber (Leiden University) for NMR assistance. Kristoffer Sahlholm (Karolinska institute) is kindly acknowledged for providing the pcDNA3.1-Kir3.1 and -Kir3.4 plasmids.

Keywords: Photopharmacology • VUF15000 • H₃R • Agonism • Dynamic modulation

- S. Pittolo, X. Gomez-Santacana, K. Eckelt, X. Rovira, J. Dalton, C. Goudet, J. P. Pin, A. Llobet, J. Giraldo, A. Llebaria, P. Gorostiza, *Nat. Chem. Biol.* 2014, 10, 813-815.
- J. Broichhagen, T. Podewin, H. Meyer-Berg, Y. von Ohlen, N. R. Johnston, B. J. Jones, S. R. Bloom, G. A. Rutter, A. Hoffmann-Roder, D. J. Hodson, D. Trauner, *Angew. Chem. Int. Ed. Engl.* 2015, 54, 15565-15569.
- $\{12\}$ a) R. Leurs, R. A. Bakker, H. Timmerman, I. J. P. de Esch, Nat. Rev. Drug Discov. 2005, 4, 107-120; b) P. Panula, P. L. Chazot, M. Cowart, R. Gutzmer, R. Leurs, W. L. Liu, H. Stark, R. L. Thurmond, H. L. Haas, Pharmacol. Rev. 2015, 67, 601-655; c) M. A. Khanfar, A. Affini, K. Lutsenko, K. Nikolic, S. Butini, H. Stark, Front. *Neurosci.* **2016**, *10*, 201; d) P. Panula, S. Nuutinen, Nat. Rev. Neurosci. 2013, 14, 472-487; e) E. Tiligada, K. Kyriakidis, P. L. Chazot, M. B. Passani, CNS Neurosci. Ther. 2011, 17, 620-628; f) M. Kollb-Sielecka, P. Demolis, J. Emmerich, G. Markey, T. Salmonson, M. Haas, Sleep Med. 2017, 33, 125-129.
- [13] M. Wijtmans, S. Celanire, E. Snip, M. R. Gillard, E. Gelens, P. P. Collart, B. J. Venhuis, B. Christophe, S. Hulscher, H. van der Goot, F. Lebon, H. Timmerman, R. A. Bakker, B. I. Lallemand, R. Leurs, P. E. Talaga, I. J. P. de Esch, *J. Med. Chem.* 2008, *51*, 2944-2953.
- [14] Z. Ahmed, A. Siiskonen, M. Virkki, A. Priimagi, *Chem. Commun.* 2017, 53, 12520-12523.
- [15] T. P. Kenakin, *Pharmacologic analysis of drug-receptor interaction*, 2nd ed., Raven

WILEY-VCH

COMMUNICATION

Press, New York, United States of America, **1993**.

- [16] X. Gomez-Santacana, S. Pittolo, X. Rovira, M. Lopez, C. Zussy, J. A. Dalton, A. Faucherre, C. Jopling, J. P. Pin, F. Ciruela, C. Goudet, J. Giraldo, P. Gorostiza, A. Llebaria, ACS Cent. Sci. 2017, 3, 81-91.
- [17] C. Zussy, X. Gomez-Santacana, X. Rovira,
 D. De Bundel, S. Ferrazzo, D. Bosch, D.
 Asede, F. Malhaire, F. Acher, J. Giraldo, E.
 Valjent, I. Ehrlich, F. Ferraguti, J. P. Pin,
 A. Llebaria, C. Goudet, *Mol. Psychiatry*2018, 23, 509-520.
- [18] R. H. Williams, M. J. Chee, D. Kroeger, L. L. Ferrari, E. Maratos-Flier, T. E. Scammell, E. Arrigoni, *J. Neurosci.* 2014, 34, 6023-6029.

WILEY-VCH

COMMUNICATION

Entry for the Table of Contents

COMMUNICATION

Shedding light on G proteincoupled receptor activation: VUF15000 is a photoswitchable

histamine H_3 receptor agonist showing full G_i protein activation in both its *trans* and *cis* isomer. Moreover, it shows dynamic optical H_3 receptor modulation in electrophysiology experiments. VUF15000 can serve as a valuable photochromic tool compound for unraveling the H_3 receptor signaling cascade with spatiotemporal precision.

Niels J. Hauwert^{*}, Tamara A.M. Mocking^{*}, Daniel Da Costa Pereira, Ken Lion, Yara Huppelschoten, Henry F. Vischer, Iwan J.P. De Esch, Maikel Wijtmans^{*}, Rob Leurs^{*}

Page No. – Page No.

A Photoswitchable Agonist for the Histamine H₃ Receptor, a prototypic family A G protein-coupled receptor

This article is protected by copyright. All rights reserved.