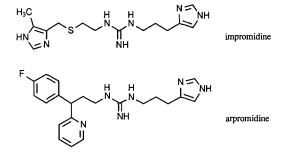
Synthesis and histamine H₂ agonistic activity of arpromidine analogues: replacement of the pheniramine-like moiety by non-heterocyclic groups*

A Buschauer¹, A Friese-Kimmel¹, G Baumann², W Schunack¹

¹Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 2+4, W-1000 Berlin 33;

²1st Department of Medicine, Division Cardiology and Circulation, Technical University of Munich, Ismaninger Straße 22, W-8000 Munich 80, Germany


(Received 16 September 1991; accepted 19 November 1991)

Summary — Analogues of the potent histamine H_2 agonist arpromidine, characterized by non-heterocyclic groups (phenyl, cyclohexyl, alkyl) instead of the pheniramine-like portion, were prepared and tested for their H_2 agonistic and H_1 antagonistic activity in the isolated guinea pig right atrium and ileum, respectively. In the diphenylpropylguanidine series an increase in H_2 agonistic potency resulted from mono- or difluorination at one or both phenyl rings in the *meta* and/or *para* position $(pD_2 \le 7.75 \text{ vs } pD_2 = 7.15 \text{ for the unsubstituted parent compound}. Compounds chlorinated at both phenyl rings were considerably less potent. Highest combined <math>H_2$ agonistic/ H_1 antagonistic potency was found in the 4-fluorophenyl series. The arpromidine analogue with cyclohexyl and methyl group instead of phenyl and pyridine ring proved to be 30 times more potent than histamine in the atrium. The H_1 antagonistic potency in cyclohexyl compounds was lower than in the diaryl series. Thus, aromatic rings appear not to be required for high H_2 agonistic/ H_1 antagonistic/ H_1 antagonistic/ H_1 antagonistic/ H_1 antagonistic/ H_1 antagonistic combined H_2 agonistic/ H_1 antagonistic rings appear not to be required for high H_2 agonistic/ H_1 antagonistic activity.

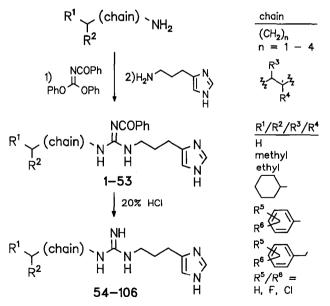
histamine / H₂ receptor / H₂ agonist / arpromidine / impromidine / H₁ antagonist / antihistamine

Introduction

The synthesis of the potent and selective histamine H_2 agonist impromidine [1, 2] (scheme 1) has stimulated the search for further guanidine-type H₂ histaminergic compounds both as regards theoretical considerations and the development of future drugs. For example, as demonstrated by using impromidine in severely ill patients, agonism on cardiovascular H2 receptors may be a promising new approach superior to conventional therapy with sympathomimetics in the acute treatment of end-stage heart failure [3]. The 'affinity-conferring' cimetidine-like 2-[(5-methyl-imidazol-4-yl)methylthio]ethyl portion in impromidine has been replaced by a large number of various substructures chemically derived from other H₂ antagonists or by H₂ nonspecific groups (for recent reviews see [4, 5]). The incorporation of a pheniramine-like moiety resulted in arpromidine [6, 7] which may be considered a new chemical lead for the development of cardiohistaminergics [4, 8–10]. Arpromidine, a pharmacological

hybrid, is about 100 times more potent than histamine as an H_2 agonist in the guinea pig right atrium and an H_1 antagonist which is about equipotent with pheniramine. Some diphenylpropylguanidine analogues of arpromidine are known to produce a similar dual mode of action but at a lower level of potency [6, 7, 11]. However, structure-activity relationships have not been studied in more detail regarding their similarities to arpromidine-like compounds, *eg* the influence of multiple ring halogenation (F, Cl) that was found to be very effective in the arpromidine series.

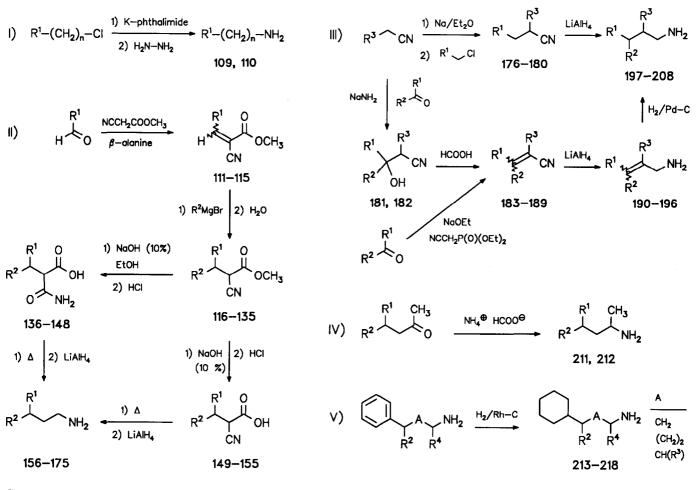
^{*}Presented in part at the satellite symposium of the XIth IUPHAR Congress, New Perspectives in Histamine Research, July 6–8, 1990, Noordwijkerhout, The Netherlands


The aim of the present paper was to investigate the contribution to H_2 agonistic potency of non-heterocyclic groups such as unsubstituted or halogenated phenyl, cyclohexyl, or alkyl groups instead of the pyridyl and/or the phenyl group in arpromidine. Moreover, the connecting chain was modified concerning length, branching and arrangement of the aromatic rings, respectively.

Chemistry

For the synthesis of the guanidines 54-106 diphenyl benzoylcarbonimidate [12] was first allowed to react with appropriate primary amines at ambient temperature (scheme 2). The phenylisoureas formed were directly treated with 3-(imidazol-4-yl)propanamine [13] under reflux in pyridine and, finally, the benzoylguanidines 1-53 were hydrolyzed under acidic conditions. The requisite amines not commercially available were prepared according to the synthetic pathways I–V outlined in scheme 3.

Results and discussion


The H_2 agonistic activity of the guanidines **54–106** was determined in the isolated spontaneously beating guinea pig right atrium (positive chronotropic response). All compounds were also tested for H_1 antagonism in the isolated guinea pig ileum. Additionally, the hemodynamic profile of the

Scheme 2.

guanidines 56, 64 and 65 was investigated in isolated perfused guinea pig hearts (Langendorff technique) *versus* impromidine. All pharmacological experiments were performed with the dihydrochlorides of the guanidines 54–106. The results are summarized in tables I–IV.

All compounds tested proved to be full or nearly full H_2 agonists (intrinsic activity 0.8–1.0) in the atrium with potencies ranging from $pD_2 = 5.0$ (88) to 7.75 (65, 71) corresponding to about 0.1 and 40 times the activity of histamine. In the phenylalkylguanidine series (55-62) the highest potency is found in compounds with 3- and 4-membered carbon chain. However, there is clear evidence that an aromatic ring is not required at all. The cyclohexyl analogues 95-97 are about equipotent with 56, 57 and 59. Moreover, a small alkyl group also appears to contribute to the H₂ receptor affinity. Compound 54 characterized by an isopentyl substituent at the guanidine system is slightly more active than histamine and there is about a 6-fold increase in potency resulting from an additional methyl substituent both in the phenyl and in the cyclohexyl series (59, 97). The positive influence of methyl is even higher than that of a second phenyl or cyclohexyl ring as in 64 or 98. The impact of halogen substitution on H₂ agonistic activity seems to be contrary in monoaryl and in diarylalkyl compounds. For example substitution with fluorine in para position of 59 results in a rather slight decrease (see 61, 62), whereas the analogues of 64 fluorinated at one or both phenyl rings are up to 3 times more potent than the respective parent compound. So far, these results agree fairly well with findings on the benzylthioalkylguanidines [14] and the arpromidine series [6]. It was speculated in a recent QSAR study that in contrast to monoaryl compounds, the second aromatic ring in diarylalkylguanidines such as arpromidine or 65 places the substituted phenyl ring in a position so that interactions of substituents with the binding site become favourable (Franke R, Buschauer A, submitted for publication). However, contrary to the arpromidine series the positive substituent effect is only found in fluorinated analogues of 64, such as 65-67, 71-73, 77, 78 and 81. The corresponding chlorinated substances – except 70 – are about equipotent with the parent compound 64 or up to 100 times less active. The imidazolylpropylguanidine moiety in guanidine-type H₂ agonists is considered essential in eliciting a biological response [2]. Recently, a gene encoding the canine histamine H₂ receptor has been cloned [15]. It is conceivable that the imidazole ring is bound to an H-bonding region in the putative fifth transmembrane helix (Asp and Thr) of the receptor protein and that the guanidinium cation interacts with a negatively charged group in the third helix (Asp). Presumably, the contribution of the phenylalkyl or

Scheme 3.

diphenylalkyl substituents consists of providing additional binding by interacting with an accessory binding site [4]. Possibly, fluorine atoms are more favourable substituents than chlorine atoms owing to the formation of electron donor-acceptor complexes, dipol-dipol or dipol-ion interactions, respectively. Nevertheless, in the case of chloro compounds steric factors might also play a role in lower affinity, and it cannot be excluded that the lipophilicity of the chloro compounds is beyond the optimum in the diphenylalkylguanidine series rather than in arpromidine-like substances.

Compounds with 2,3- or 3,4-diarylalkyl groups, such as **89–94**, are considerably less potent in the atrium than 3,3-diarylpropylguanidines. Obviously, the distance between the guanidino group and aromatic rings should be 3 carbon atoms, as also found in the arpromidine series [6]. In contrast to H_2 agonists of

the imidazole or pyridine series [16, 17] most of the substances chain-branched α to the guanidine system ($R^4 = Me$), eg **99–101**, **105** (table III), are less potent than the corresponding non-branched compounds. The influence of a β -methyl group ($R^3 = Me$) is less pronounced.

Concerning both H_2 agonism and H_1 antagonism the fluorinated compounds proved to be the optimum, the antagonist activity in the ileum achieving up to $pK_B = 7.45$ corresponding to about half the potency of pheniramine.

In isolated perfused guinea pig hearts arpromidine and its phenyl analogue **65** produce about the same maximal increase in contractility as impromidine (table IV). However, comparing ED_{50} values, arpromidine and **65** are about 1.5 and 1.2 times more potent than the reference compound. By contrast, the diphenylpropylguanidine **64** is only a partial agonist

2	2	Λ
Э	4	4

\mathbb{R}^{2} $(CH_{2})_{\pi}$ \mathbb{H} {\mathbb{H}} \mathbb{H} {\mathbb{H}} \mathbb{H} \mathbb{H} \mathbb{H} \mathbb{H} {\mathbb{H}} \mathbb{H} \mathbb{H} \mathbb{H} \mathbb{H} {\mathbb{H}} \mathbb{H} \mathbb{H} \mathbb{H} {\mathbb{H}} \mathbb{H} \mathbb{H} \mathbb{H} {\mathbb{H}} \mathbb{H} \mathbb{H} \mathbb{H} {\mathbb{H}} \mathbb{H} {\mathbb{H}} \mathbb{H} {\mathbb{H}} \mathbb{H} {\mathbb{H}} {\mathbb{H}} \mathbb{H} {\mathbb{H}} \mathbb{H} {\mathbb{H}} {\mathbb{H}} \mathbb{H} {\mathbb{H}}		ł	Benzoylguanidines 1 - 45: Z = COPh				Guanidines 54 - 98: Z = H				
R ¹	NZ R2		n	No.	Mp ^a (°C)	Molecular formula ^b Anal (C, H, N)	EI-MS (m/z) ^c (% rel. int.)	No.	Mp ^d (°C)	Molecular formula ^b Anal (C, H, N)	FAB-MS / [EI-MS] (m/z) ^e (% rel. int.)
Me	Me		2		130 ^f	C ₁₉ H ₂₇ N ₅ O	341 (2)		133	C ₁₃ H ₂₅ N ₅ ·2C ₆ H ₃ N ₃ O ₇ ·H ₂ O	252 (<1), 238 (100)
Ph	н		1	2	153	$C_{22}H_{25}N_5O$	375 (15)	55	137	$C_{15}H_{21}N_5 \cdot 2C_6H_3N_3O_7 \cdot H_2O$	272 (100), 109 (96)
Ph	н		2	3	146 ^f	C ₂₃ H ₂₇ N ₅ O	389 (1)	56	86	$C_{16}H_{23}N_5 2C_6H_3N_3O_7H_2O$	286 (100), 109 (86)
Ph	Ĥ		3	4	132 ^f	C ₂₄ H ₂₉ N ₅ O	403 (3)	57	147	$C_{17}H_{25}N_5 \cdot 2C_6H_3N_3O_7 \cdot H_2O$	300 (100), 109 (83)
Ph	н		4	5	126	$C_{25}H_{31}N_{5}O$	417 (9)	58	125	$C_{18}H_{27}N_5 \cdot 2C_6H_3N_3O_7$	314 (100), 109 (87)
Ph	Me		2	6	111 ^f	C ₂₄ H ₂₉ N ₅ O	403 (7)	59	140	$C_{17}H_{25}N_5 \cdot 2C_6H_3N_3O_7$	328 (67), 109 (100)
Ph	Et		2	7	109	C ₂₅ H ₃₁ N ₅ O	417 (15)	60	145	$C_{18}H_{27}N_5 2C_6H_3N_3O_7$	314 (88), 91 (100)
4-FC ₆ H₄			2	8	110	$C_{24}H_{28}FN_5O$	421 (6)	61	140	$C_{17}H_{24}FN_5 \cdot 2C_6H_3N_3O_7$	318 (100), 109 (95)
4-FC ₆ H ₄			2	9	102 ^f	C ₂₅ H ₃₀ FN ₅ O	435 (15)	62	140	$C_{18}H_{26}FN_5 \cdot 2C_6H_3N_3O_7$	332 (53), 109 (100)
Ph	Ph		1	10	132	C ₂₈ H ₂₉ N ₅ O	451 (5)	63	175	$C_{21}H_{25}N_5 C_6H_3N_3O_7$	348 (40), 109 (100)
Ph	3-FC	н.	2	13	131	C ₂₉ H ₃₀ FN ₅ O	483 (2)	66	141	$C_{22}H_{26}FN_5 \cdot 2C_6H_3N_3O_7$	380 (49), 109 (100)
Ph		2C6H3	2	14	131	$C_{29}H_{29}F_2N_5O$	501 (1)		147	$C_{22}H_{25}F_2N_5 \cdot 2C_6H_3N_3O_7 \cdot H_2O$	398 (36), 109 (100)
Ph	3-CK		2	16	116 ^f	C ₂₉ H ₃₀ ClN ₅ O	499 (1)	69	170	C ₂₂ H ₂₆ ClN ₅ ⁻² C ₆ H ₃ N ₃ O ₇	396 (43), 109 (100)
4-FC ₆ H₄			2	19	125	C ₂₉ H ₃₀ Env ₅ O·H ₂ O	501 (5)	72	147	$C_{22}H_{25}F_2N_5 \cdot 2C_6H_3N_3O_7 \cdot H_2O$	398 (48), 109 (100)
4-FC ₆ H ₄		61 44 2C6H3	2	20		C ₂₉ H ₂₈ F ₃ N ₅ O	519 (29)	73	137	C ₂₂ H ₂₄ F ₃ N ₅ ·2C ₆ H ₃ N ₃ O ₇	416 (46), 109 (100)
4-FC ₆ H ₄		- • •	2	21	161		517 (5)	74	154	C ₂₂ H ₂₅ ClFN ₅ ·2C ₆ H ₃ N ₃ O ₇ ·1/ ₂ H ₂ O	
			2	23	141 ^f	C ₂₉ H ₂₉ ClFN5O C ₂₉ H ₂₈ Cl ₂ FN5O		76			
4-FC ₆ H ₄		I ₂ C ₆ H ₃	2				551 (8) 501 (<i>s</i> 1)		165	$C_{22}H_{24}Cl_2FN_5 \cdot 2C_6H_3N_3O_7$	448 (81), 109 (100)
3-FC ₆ H ₄				24	137	$C_{29}H_{29}F_2N_5O$	501 (<1)	77	173	$C_{22}H_{25}F_2N_5 \cdot 2C_6H_3N_3O_7 \cdot H_2O$	398 (53), 109 (100)
3-FC ₆ H ₄		₂ C ₆ H ₃	2	25	128	$C_{29}H_{28}F_{3}N_{5}O$	519 (4)	78	160	$C_{22}H_{24}F_{3}N_{5}\cdot 2C_{6}H_{3}N_{3}O_{7}$	416 (22), 109 (100)
3-FC ₆ H ₄		• •	2	26	144 ^f ار		517 (1)	79	134	$C_{22}H_{25}CIFN_5 \cdot 2C_6H_3N_3O_7$	414 (15), 109 (100)
3-FC ₆ H ₄			2	27		C ₂₉ H ₂₉ ClFN ₅ O ⁻¹¹ / ₂ H ₂ O	517 (2)	80	178	C ₂₂ H ₂₅ CIFN ₅ ·2C ₆ H ₃ N ₃ O ₇	414 (32), 109 (100)
3,4-F ₂ C ₆		₂ C ₆ H ₃	2	28	155 ⁱ	$C_{29}H_{27}F_4N_5O$	537 (9)	81	170	C ₂₂ H ₂₃ F ₄ N ₅ ·2C ₆ H ₃ N ₃ O ₇	434 (17), 109 (100)
3,4-F ₂ C ₆	-		2	29	158	C ₂₉ H ₂₈ ClF ₂ N ₅ O	535 (1)	82	134	C ₂₂ H ₂₄ ClF ₂ N ₅ ·2C ₆ H ₃ N ₃ O ₇	432 (38), 109 (100)
3,4-F ₂ C ₆			2	30	123	C ₂₉ H ₂₈ ClF ₂ N ₅ O	535 (4)	83	164	C ₂₂ H ₂₄ ClF ₂ N ₅ ·2C ₆ H ₃ N ₃ O ₇ ·H ₂ O	432 (26), 109 (100)
4-CIC ₆ H			2	31	148	C ₂₉ H ₂₉ Cl ₂ N ₅ O	533 (2)	84	173	$C_{22}H_{25}Cl_2N_5 \cdot 2C_6H_3N_3O_7 \cdot H_2O$	430 (18), 109 (100)
3-CIC ₆ H			2	34	128	C ₂₉ H ₂₉ Cl ₂ N ₅ O	533 (3)	87		$C_{22}H_{25}Cl_2N_5 \cdot 2C_6H_3N_3O_7$	430 (25), 109 (100)
3-CIC ₆ H		1 ₂ C ₆ H ₃	2	35	135 ⁱ	C ₂₉ H ₂₈ Cl ₃ N ₅ O	567 (2)	88	182	C ₂₂ H ₂₄ Cl ₃ N ₅ ·2C ₆ H ₃ N ₃ O ₇ ·H ₂ O	464 (17), 109 (100)
4-FC ₆ H₄		₅ H ₄ CH ₂	1	36	_h	$(C_{29}H_{29}F_2N_5O)$	501 (2)	89		$C_{22}H_{25}F_2N_5\cdot 2C_6H_3N_3O_7\cdot 1/2H_2O$	398 (21), 109 (100)
4-FC ₆ H ₄		₅ H ₄ CH ₂	1	37	յի	$(C_{29}H_{29}F_2N_5O)$	501 (4)	90	166	C ₂₂ H ₂₅ F ₂ N ₅ ·2C ₆ H ₃ N ₃ O ₇	398 (71), 109 (100)
4-FC ₆ H ₄		C ₆ H ₄ CH ₂	1	38	ւհ	(C ₂₉ H ₂₉ CIFN ₅ O)	517 (2)	91	176	C22H25CIFN5·2C6H3N3O7	414 (35), 109 (100)
4-CIC ₆ Η	4 3-FC	_s H ₄ CH ₂	1	39	125j	C ₂₉ H ₂₉ ClFN ₅ O	517 (<1)	92	169-75	$C_{22}H_{25}CIFN_5 \cdot 2C_6H_3N_3O_7 \cdot H_2O$	414 (22), 109 (100)
I-CIC ₆ H	4 4-CIC	C ₆ H ₄ CH ₂	1	40	Ն	$(C_{29}H_{29}Cl_2N_5O)$	533 (3)	93	192	C ₂₂ H ₂₅ Cl ₂ N ₅ ·2C ₆ H ₃ N ₃ O ₇	430 (47), 109 (100)
c-Hex	н		2	42	147	C ₂₃ H ₃₃ N ₅ O	395 (10)	95	141	C ₁₆ H ₂₉ N ₅ ·2C ₆ H ₃ N ₃ O ₇	[291 (1), 44 (100)]
-Hex	н		3	43	138	C ₂₄ H ₃₅ N ₅ O	409 (88)	96	169	C ₁₇ H ₃₁ N ₅ ·2C ₆ H ₃ N ₃ O ₇ ·1/ ₂ H ₂ O	[305 (47), 224 (100
-Hex	Me		2	44	126	C ₂₄ H ₃₅ N ₅ O	409 (19)	97	138	C ₁₇ H ₃₁ N ₅ ·2C ₆ H ₃ N ₃ O ₇	306 (40), 109 (100)
-Hex	c-He	(2	45	177	C ₂₉ H ₄₃ N ₅ O	477 (21)	98	169	$C_{22}H_{39}N_5 \cdot 2C_6H_3N_3O_7 \cdot 1/_2H_2O$	[373 (2), 83 (100)]
R ¹ √	, , , , , , , , , , , , , , , , , , ,	N NH		Ben	zoylgu	anidines 46 - 53: Z = COP	h	Gua	nidines	99 - 106: Z = H	
R ²	k⁴ nz				Мрª	Molecular formulab	EI-MS (m/z)°		Mp ^d	Molecular formulab	FAB-MS / [EI-MS]
R1	R ²	R ³	R4	No.	(°C)	Anal (C, H, N)	(% rel. int.)	No.	(°C)	Anal (C, H, N)	(m/z)° (% rel. int.)
ካ	н	н	Me	46	110°	C ₂₄ H ₂₉ N ₅ O	403 (5)	99	147	C ₁₇ H ₂₅ N ₅ ·2C ₆ H ₃ N ₃ O ₇ ·H ₂ O	300 (56), 109 (100)
-Hex	н	Н	Me	47	_հ	(C24H35N5O)	409 (13)	100	104	C ₁₇ H ₃₁ N ₅ ·2C ₆ H ₃ N ₃ O ₇	306 (<1), 109 (100)
-Hex	c-Hex	н	Me	48	_h	(C ₃₀ H ₄₅ N ₅ O)	491 (12)		171	$C_{23}H_{41}N_5 \cdot 2C_6H_3N_3O_7$	[387 (<1), 44 (100)]
-Hex	c-Hex	Me	н	49	130 ^f	C ₂₈ H ₂₉ N ₅ O	491 (2)		183	$C_{23}H_{41}N_5 \cdot 2C_6H_3N_3O_7$	[387 (3), 306 (100)]
'n	Ph	н	Me	50	ı,	C ₃₀ H ₃₃ N ₅ O	479 (4)		122	$C_{23}H_{29}N_5 \cdot 2C_6H_3N_3O_7$	[375 (57), 114 (100
'n	Ph	Me	н	51	140	C ₃₀ H ₃₃ N ₅ O	479 (3)	104		C ₂₃ H ₂₉ N ₅ ·2C ₆ H ₃ N ₃ O ₇	[375 (43), 167 (100
-FC ₆ H ₄		н	Me	52	81j	$C_{30}H_{31}F_2N_5O^{-1}/_2H_2O$	516 ^k (3)		117	$C_{23}H_{27}F_2N_5 \cdot 2C_6H_3N_3O_7 \cdot H_2O$	[411 (6), 203 (100)]
	4-FC ₆ H₄	Me	н	53	185	$C_{30}H_{31}F_2N_5O$	515 (7)		158	$C_{23}H_{27}F_2N_5 \cdot 2C_6H_3N_3O_7$	[411 (27), 203 (100)

Table I. Structures and analytical data of the new benzoylguanidines and corresponding guanidines.

^aRecrystallized from MeCN unless otherwise indicated. ^bAll compounds analyzed for C, H, N, except formulas in parentheses. ^cM⁺, base peak: m/z = 105. ^dAll picrates recrystallized from EtOH – H₂O. ^e[M + H]⁺ (FAB) or M⁺ (EI, in square brackets) and base peak. ^fFrom EtOAc. ^gFrom MeCN – Et₂O. ^hHygroscopic amorphous solids. ⁱFrom EtOAc – Et₂O. ^jFrom CH₂Cl₂. ^kFAB-MS: [M + H]⁺.

R ² Compd. histamin impromic 54 55 56	R ¹ e dine ^c	R ²	n	i. a .	pD ₂ ± 0.1	рК _В ± 0.2	77			2	1.0	7.55	6.35
histamin impromi arpromic 54 55	e dine ^c line ^d Me		n	1.0	± 0.1								
impromi arpromic 54 55	dine ^c line ^d Me			10		- 0.2	78	ک	ŗ ŗ-{	2	1.0	7.60	7.20
arpromic 54 55	line ^d Me			1.0	6.0	-		F					
54 55	Me			1.0	7.7ª	5.5 ^d	79	$\langle \rangle$	a -{{`}-	2	1.0	7.10	6.75
55				1.0	8.0	7.65		F.	cı.				
	Ph	Me	2	0.9	6.20	4.60	80			2	1.0	6.85	6.70
56		Н	1	0.8	5.80	5.55		F	F	-			
	Ph	Н	2	1.0	6.70	6.15	81			2	1.0	7.35	6.50
57	Ph	Н	3	1.0	6.70	6.10	01			2	1.0	1.55	0.00
58	Ph	Н	4	0.9	6.00	6.75		۲ ا					
59	Ph	Me	2	1.0	7.50	5.60	82	₣≺৻_╱⊢	ci – 🌔 🏲	2	1.0	7.10	6.40
60	Ph	Et	2	1.0	7.30	6.15		۶ <u> </u>	cı				
61	4-FPh	Me	2	1.0	7.35	6.00	83	F -{{¯}}-	$\langle \rangle$	2	1.0	7.10	6.45
62	4-FPh	Et	2	1.0	7.20	6.50		9	<u> </u>				
63	Ph	Ph	1	0.8	6.20	6.15	84	ci -	ci -{	2	0.8	6.40	6.30
64	Ph	Ph	2	1.0	7.15°	7.05 ^f	04		L.	~	0.0	0.40	0.50
65 ^d	ج ج	-{\]}-	2	1.0	7.75	7.45	85	ci -	ci A	2	0.8	6.30	6.25
66	\bigcirc		2	1.0	7.35	6.45	86	ci –	а а – 了–	2	0.8	6.20	5.00
67	√_ F		2	1.0	7.30	7.00	87	с С		2	1.0	6.80	6.35
68 ^d	() - a	-	2	1.0	7.10	7.00	88	°	а а — 💭 –	2	0.8	5.00	6.80
69	\bigcirc		2	0.9	6.30	5.55	89	F - 💭 -	F -	1	0.8	6.20	6.30
70 ^d	() - (i	a -{∑}-	2	1.0	7.45	6.70	90	F	\sim	1	0. 9	6.35	5.80
71	F		2	1.0	7.75	7.35	91	F -	а -{>>-	1	0.9	6.20	5.60
72	F -{		2	1.0	7.45	7.45	92	ci - 🏹-		1	0.9	6.20	6.25
73	ř - 💭 - F	F 	2	1.0	7.55	6.40	93	ci –	a -{>	1	0.9	5.90	5.30
74	F-{		2	1.0	6.65	6.70	94 ^d	F - 💭 -	\bigcirc	2	0.8	6.15	6.85
		a M					95	c-Hex	Н	2	1.0	6.80	6.00
75	₣╶৻ੑ	$\langle \rangle$	2	1.0	7.55	6.60	96	c-Hex	Н	3	1.0	6.40	6.30
		a					97	c-Hex	Me	2	0.9	7.50	5.50
76	F-{	$\langle \rangle$	2	0.8	6.40	6.80	98	c-Hex	c-Hex	2	1.0	6.50	5.45

Table II. H_2 agonistic and H_1 antagonistic activity of phenyl and cyclohexylalkylguanidines **54–98** in guinea pig atrium and ileum.

^aia (intrinsic activity) related to histamine = 1. $pD_2 \pm 0.1$ (SEM), mean values of 3–6 independent experiments. ^b $pK_B \pm 0.2$ (SEM), mean of 4–8 independent experiments. ^cLit [1]: atrium: 48.1 x histamine, ileum: $pA_2 = 5.47$. ^dLit [6]. ^eLit [11] $pD_2 = 7.7$. ^fLit [11] $pA_2 = 6.3$.

F	R ³		N^	NH	Atr	iumª	Ileum ^b
	R ² R ⁴	NH	•		i. a.	pD ₂	pK _B
Compd.	R ¹	R ²	R ³	R ⁴		± 0.1	± 0.2
99	Ph	н	н	Me	1.0	6.30	5.80
100	c-Hex	н	Н	Me	1.0	6.30	6.50
101 [°]	c-Hex	c-Hex	Н	Me	0.7	4.90	6.10
102	c-Hex	c-Hex	Me	Н	0.9	6.40	6.25
103	Ph	Ph	Н	Me	0.8	7.35	6.65
104	Ph	Ph	Me	H	1.0	7.40	6.30
105	4-FPh	4-FPh	Н	Me	1.0	6.20	6.20
106	4-FPh	4-FPh	Me	Н	1.0	7.20	6.40

Table III. H_2 agonistic and H_1 antagonistic activity of α and β -methyl-branched phenyl and cyclohexylalkylguanidines 99–106.

^{a,b}See footnotes to table II.

achieving about 50% of the maximal response. The higher potency of 65 vs 64 gives further evidence for the activity-enhancing effect of fluorine substitution as also found in the arpromidine series. The rank order of potency in the Langendorff heart arpromidine > 65 > impromidine > 64 > 56 is quite similar to that in the isolated guinea pig atrium. However, in the perfused heart the positive chronotropic response is significantly lower for arpromidine, 56 and 65 than for impromidine and 64, indicating a more favourable inotropism/chronotropism ratio for the fluorinated diarylalkylguanidines and 56. This tendency is more pronounced in vivo in guinea pigs, as demonstrated for some fluorinated apromidine analogues that were surprisingly found to be about 100 times more potent as inotropes than impromidine and tending to decrease heart rate under conditions revealing impromidine mainly as a positive chronotropic agent [44].

Conclusion

The pyridine ring in arpromidine may be replaced by phenyl resulting in H_2 agonists achieving maximally about half the potency of the chemical lead. However, the structure-activity relationships found in arpromidine-like compounds may not be completely transferred to the diphenylalkylguanidine series, *eg* concerning the optimal substitution pattern. As demonstrated by some cyclohexyl analogues, aromatic rings are not required at all in the affinity-conferring portion to produce relatively high H_2 -agonist potency. However, phenyl rings may be useful for combined H_2 agonistic/ H_1 antagonistic activity.

Experimental protocols

Chemical synthesis

Melting points (uncorrected) were determined on a Büchi apparatus. Elemental analyses, indicated by elemental symbols. were within $\pm 0.4\%$ of the theoretical values and were performed at the analytical department of the Institute of Pharmacy, Freie Universität Berlin. The structures were confirmed by ¹H NMR (Bruker WP 60 (60 MHz) or Bruker WM 250 (250 MHz), TMS as internal standard) and by mass spectroscopy (EI: Finnigan MAT CH7A (170°C, 70 eV) or MAT 711 (200°C, 80 eV); FAB: Finnigan MAT CH5DF (+FAB, xenon, DMSO/glycerol)). ¹H NMR data are given only exemplarily in Experimental protocols because of the structural resemblance of compounds synthetized according to general procedures. Chromatographic separations in a preparative scale were carried out on a Chromatotron 7924T (Harrison Research) using glass rotors with 4-mm layers of silica gel 60 PF₂₅₄ containing gypsum (Merck). Short-path distillations were performed with a Kugelrohr apparatus (Büchi GKR 50).

Benzoylguanidines 1-53

A mixture of the respective primary amine base (5 mmol) and diphenyl benzoylcarbonimidate (5 mmol) was stirred in CH_2Cl_2 (20 ml) for 15 min at ambient temperature and subsequently evaporated. The residue was dissolved in pyridine (30 ml), 5.5 mmol of 3-(imidazol-4-yl)propanamine was added and the solution refluxed for 1–2 h (TLC control). After evaporation *in vacuo*, the remaining oil was dissolved in 5% HCl and

Table IV. Effects of guanidines 56, 64 and 65 versus impromidine on isolated perfused guinea pig hearts.

Compound	$\frac{\Delta LV}{dp/dt_{max}a}$	Relative potency ^b	Δ Heart rate ^a	∆ Coronary flow ^a
Impromidine	100	100	100	100
Arpromidine ^c	97 ± 3.6	146	57 ± 8	143 ± 17.5
56	82 ± 3.9	30	59 ± 6.3	95 ± 16.9
64	52 ± 3.0	77	93 ± 6.4	165 ± 20.4
65	94 ± 2.7	132	47 ± 9.1	111 ± 6.8

^aMean \pm SEM (n = 6) calculated from the net increase in LV dp/dt_{max}, heart rate, and coronary flow *versus* impromidine = 100% in the corresponding control group (n = 6). ^bRelative potency calculated from molar ED₅₀ ratios, relative to impromidine = 100%. ^cLit [6, 10].

extracted with Et_2O to remove phenol. The aqueous layer was basified with ammonia and extracted with CH_2Cl_2 . The crude benzoylguanidines were purified chromatographically (Chromatotron; $CHCl_3 - MeOH$, 99:1 – 95:5, ammonia atmosphere) and recrystallized from MeCN or as indicated in table I. Yield 50–60%.

For analytical data of new compounds, see table I. The benzoylguanidines required as starting material for the preparation of guanidines **64**, **65**, **68**, **70**, **71**, **75**, **85**, **86**, **94** (see table II) have been described elsewhere [18, 6]. ¹H NMR (CDCl₃) of **14**: $\delta = 1.87$ (m, 2H), 2.38 (q, J = 7 Hz, 2H), 2.64 (t, J = 6.5 Hz, 2H), 3.0–3.85 (br, 4H), 4.01 (t, J = 7.5 Hz, 1H), 6.73 (s, 1H), 6.9–7.5 (m, 12H), 8.12 (d, J = 7 Hz, 2H), 10.45 (br, 1H).

Guanidines 54-106

The benzoylguanidines 1–53 (1–2 mmol) were heated under reflux in 20% HCl (45 ml) for 5–10 h. After dilution with water benzoic acid was removed by extraction with Et₂O and the aqueous layer was evaporated to dryness *in vacuo*. The guanidines were obtained in 95–100% yield as chromatographically pure amorphous hygroscopic dihydrochlorides. For analytical purposes the compounds were converted into dipicrates by addition of a saturated aqueous solution of picric acid. Recrystallization from EtOH–H₂O.

For analytical data of new compounds, see table I. The guanidines **64**, **65**, **68**, **70**, **71**, **75**, **85**, **86**, **94** listed in table II have been described elsewhere [6, 18]. ¹H NMR (DMSO-d₆) of **67**•2HCI: $\delta = 1.83$ (m, 2H), 2.26 (m, 2H), 2.71 (t, J = 7.5 Hz, 2H, Im-CH₂), 3.02 (m, 2H, CH₂NH), 3.17 (m, 2H, CH₂NH), 4.20 (t, J = 8 Hz, 1H), 7.2–7.55 (m, 11H; 9H ar, C=NH₂+), 8.00 (br s, 2H, CH₂-NH), 9.05 (s, 1H, Im-2-H), 14.6 (br, 2H, imidazolium-NH).

3-Cyclohexylpropanamine 109 and 5-phenylpentanamine 110 A mixture of K-phthalimide (25 mmol) and the equimolar amount of 3-cyclohexylpropylchloride [19] or 5-phenylpentylchloride [20] in DMF (50 ml) was heated under reflux for 3 h. The chilled solution was poured onto 50 g of crushed ice and extracted with Et₂O. N-(3-Cyclohexylpropyl)phthalimide (107) and N-(5-phenylpentyl)phthalimide (108) crystallized from cold MeOH (5°C). 107: Yield 85%, mp 51°C. MS: m/z (rel int, %) = 271 (M⁺, 100). Anal C₁₇H₂₁NO₂ (C, H, N). 108: Yield 85%, mp 35°C. Anal C₁₉H₁₉NO₂ (C, H, N). Phthalimides 107 or 108 (20 mmol) and 1 ml of hydrazine

Phthalimides **107** or **108** (20 mmol) and 1 ml of hydrazine hydrate were refluxed in EtOH (10 ml) for 20 min. Insoluble material was filtered off and washed with EtOH. The filtrate was evaporated affording the oily bases of amines **109** and **110** that were distilled *in vacuo* (**109**: Yield 94%, bp_{1.2} = 60–62°C [21]. **110**: Yield 95%, bp₁₀ = 135–136°C [22]) and characterized as picrates. **109** picrate: mp = 164°C (from EtOH), Anal C₉H₁₉N•C₆H₃N₃O₇ (C, H, N). **110** picrate: mp 154°C (from EtOH), Anal C₁₁H₁₇N•C₆H₃N₃O₇ (C, H, N).

3,3-Disubstituted methyl 2-cyanopropanoates 116-135

A mixture of methyl cyanoacetate (0.2 mol), the equimolar amount of the requisite halogenated benzaldehyde, β -alanine (4 mmol), acetic acid (40 mmol) and 50 ml of toluene was heated under reflux using a water trap. The methyl 2-cyano-3-(R¹)-2-propenoates **111–115** (mixtures of Z/E-isomers) precipitating on concentration of the solution were filtered off, triturated with water and recrystallized from toluene (**111–114**) or acetone (**115**). Yield: 90–95%. The following 3-substituted methyl 2-cyanopropenoates were obtained: 3-(3-Fluorophenyl)-~, **111**: mp = 101°C (Lit [23] mp = 103°C). 3-(3,4-Difluorophenyl)-~, **112**: mp = 107°C. Anal C₁₁H₇F₂NO₂ (C, H, N). 3-(4-Chlorophenyl)-~, **113**: mp = 125°C (Lit [24] mp = 125°C). 3-(3-Chlorophenyl)-~, **114** [25]: mp = 111°C. Anal $C_{11}H_8CINO_2$ (C, H, N). 3-(3,4-Dichlorophenyl)-~, **115**: mp = 144°C (Lit [26] mp = 145°C).

A solution of Grignard reagent, freshly prepared from the respective bromobenzene (20 mmol) and 0.49 g of Mg in Et₂O (30 ml), was dropped with vigorous stirring into a solution of 111-115 (15 mmol) in 30 ml of absolute benzene. The mixture was refluxed for 1 h and subsequently poured onto crushed ice. The precipitate formed was dissolved by addition of 5% HCl, the organic layer separated, the aqueous solution extracted with Et₂O; the etheric solutions were combined, washed with aqueous NaHCO3 and water and dried over Na2SO4. Evaporation yielded 60-70% of the 3,3-disubstituted methyl 2cyanopropanoates 116-135 as oils that were directly employed for further reaction. Exemplarily, methyl 2-cyano-3,3-bis(3-fluorophenyl)propanoate **116** and methyl 2-cyano-3,3-bis(3chlorophenyl)propanoate 117 were crystallized from EtOH. **116**: Yield 68%, mp = 78°C. MS: m/z (rel int, %) = 301 (M⁺, 14), 203 (100). ¹H NMR (DMSO–d₆): δ = 3.62 (s, 3H), 4.86 (d, J = 10.5 Hz, 1H), 5.41 (d, J = 10.5 Hz, 1H), 7.05–7.15 (m, 2H), 7.25-7.45 (m, 6H). Anal C₁₇H₁₃F₂NO₂ (C, H, N). 117: Yield 65%, mp = 94°C. MS: m/z (rel int, %) = 333 (M⁺, 8), 235 (100). Anal C₁₇H₁₃Cl₂NO₂ (C, H, N).

3,3-Disubstituted 2-carbamoylpropanoic acids 136–148

The corresponding esters 116-135 (10 mmol) were refluxed for 15 min in a mixture of MeOH (5 ml) and 5% NaOH (10 ml). MeOH was removed in vacuo and the residue washed with ether, acidified with 5% HCl and extracted with Et₂O. After concentration of the organic layer the products crystallized from Et₂O-petroleum ether. Recrystallization from Et₂O or MeCN. The following 3,3-disubstituted 2-carbamoylpropanoic acids were obtained: 3-(3-Fluorophenyl)-3-phenyl-~, 136: hygroscopic, MS: m/z (rel int, %) = 287 (M⁺, 7), 243 (85), 185 (100). ¹H NMR (DMSO-d₆): $\delta = 4.40$ (d, J = 12 Hz, 1H), 4.66 (d, J = 12 Hz, 1H), 7.05–7.55 (m, 9H), 12.5 (br, 1H, COOH). 3,3-Bis(3-fluorophenyl)-~, 137: not isolated. 3-(3,4-Difluorophenyl)-3-phenyl-~, **138**: mp = 152° C (MeCN). Anal C₁₆H₁₃F₂NO₃•1/2H₂O (C, H, N). 3-(3,4-Diffuorophenyl)-3-(4-fluorophenyl)-~, **139**: mp = 186° C (MeCN). Anal C₁₆H₁₂F₃NO₃•1/2H₂O (C, H, N). 3-(3,4-Dichlorophenyl)-3-(4-fluorophenyl)-~, **140**: mp = 186° C (MeCN). Anal C₁₆H₁₂F₃NO₃•1/2H₂O (C, H, N). 3-(3,4-Dichlorophenyl)-3-(4-fluorop fluorophenyl)-~, **140**: mp = 136°C (Et₂O). Anal $C_{16}H_{12}Cl_2FNO_3$ (C, H, N). 3-(3,4-Difluorophenyl)-3-(3-fluorophenyl)-~, **141**: mp = 137°C (MeCN). Anal $C_{16}H_{12}F_3NO_3$ (C, H, N). 3-(4-Chlorophenyl)-3-(3-fluorophenyl)-~, **142**: mp = 143°C (MeCN). Anal $C_{16}H_{13}CIFNO_3$ (C, H, N). 3-(3-chlorophenyl)-3-(3-fluorophenyl)-~, **143**: mp = 142°C (MeCN). Anal $C_{16}H_{13}ClFNO_3$ (C, H, N). 3,3-Bis(3,4-difluorophenyl)-~, **144**: mp = 136°C (MeCN). Anal $C_{16}H_{11}F_4NO_3$ (C, H, N). 3-(4-Chlorophenyl)-3-(3,4-difluorophenyl)-~, 145: mp = 138° C (MeCN). Anal C₁₆H₁₂ClF₂NO₃ (C, H, N). 3-(3-Chlorophenyl)-3-(3,4-difluorophenyl)-~, **146**: mp = 140°C (MeCN). $C_{16}H_{12}CIF_2NO_3$ (C, H, N). 3,3-Bis(3-chlorophenyl)-~, **147**: mp = 144°C (Et₂O). Anal $C_{16}H_{13}Cl_2NO_3$ (C, H, N). 3-(3-Chlorophenyl)-~, **147**: Chlorophenyl)-3-(3,4-dichlorophenyl)-~, 148: mp = 125°C (Et_2O) . $C_{16}H_{12}Cl_3NO_3$ (C, H, N).

3,3-Disubstituted 2-cyanopropanoic acids 149–155

The respective methyl 2-cyanopropanoates **116–135** (10 mmol) were refluxed for 15 min in 10 ml of 5% aqueous NaOH. The mixture was washed with ether, acidified with 5% HCl and extracted with Et₂O. After evaporation of the organic layer the products crystallized from CHCl₃–Et₂O. Recrystallization from Et₂O or MeCN. The following 3,3-disubstituted 2-cyanopropanoic acids were obtained: 3-(3-Chlorophenyl)-3-phenyl-~, **149**: mp = 158°C (Et₂O). MS: m/z (rel int, %) = 285

(M⁺, 17), 241 (20), 201 (100). ¹H NMR (DMSO-d₆): δ = 4.38 (d, *J* = 12.5 Hz, 1H), 4.61 (d, *J* = 12.5 Hz, 1H), 7.01 (d, *J* = 10 Hz, 1H), 7.05–7.4 (m, 6H), 7.53 (d, *J* = 8.5 Hz, 1H), 12.55 (br, 1H, COOH). Anal C₁₆H₁₂CINO₂ (C, H, N). 3-(3-Fluorophenyl)-3-(4-fluorophenyl)-~, **150**: mp = 151°C (Et₂O). Anal C₁₆H₁₁F₂NO₂ (C, H, N). 3-(4-Chlorophenyl)-3-(4-fluorophenyl)-~, **151**: mp = 168°C (Et₂O). Anal C₁₆H₁₁CIFNO₂ (C, H, N). 3-(3-Chlorophenyl)-3-(4-fluorophenyl)-~, **152**: mp = 156°C (MeCN). C₁₆H₁₁CIFNO₂·H₂O (C, H, N). 3,3-Bis(4-chlorophenyl)-~, **153**: mp = 177°C (Et₂O). Anal C₁₆H₁₁Cl₂NO₂ (C, H, N). 3-(3-Chlorophenyl)-3-(4-chlorophenyl)-~, **154**: mp = 162°C (Et₂O). Anal C₁₆H₁₁Cl₂NO₂ (C, H, N). 3-(3-Chlorophenyl)-~, **155**: mp = 162°C (Et₂O). Anal C₁₆H₁₀Cl₃NO₂ (C, H, N).

3,3-Diphenylpropanamines 156–175

Method A. Carboxamides 136–148 (8 mmol) in 20 ml of tetraline were heated for 15 min at 160–165°C (139: 180°C). The cold solution was dropped with stirring into a suspension of LiAlH₄ (8.8 mmol) in Et₂O (20 ml) and subsequently refluxed on a water bath for 60 min. The mixture was cooled with ice and 4 ml of water, 4 ml of 5% aqueous NaOH and 16 ml of water were consecutively added. The precipitate was removed by filtration, the organic layer separated and the solvent removed *in vacuo*. The residue was distilled (short-path distillation, bath temperature_{0.5} 200–220°C) affording the amines as colorless or slightly yellow oils.

Method B. Nitriles 149–155 (8 mmol) in 20 ml tetraline were heated at 160–165°C (151, 152: 175–180°C) for 30 min. Reduction and hydrolysis was carried out as described for Method A using 4.4 mmol of LiAlH₄ and 2 ml of water, 2 ml of 5% NaOH and 4 ml of water, respectively. The following 3,3-disubstituted propanamines were obtained in 75–85% yield and characterized as picrates or hydrochlorides.

Method A. 3-(3-Fluorophenyl)-3-phenylpropanamine, **156** [26]: mp (picrate) = 171°C (MeOH). MS: *m/z*(rel int, %) = 229 (M⁺, 66), 212 (100), 186 (33), 185 (30). ¹H NMR (DMSO-d₆): δ = 2.30 (q, *J* = 8 Hz, 2H, CHCH₂CH₂), 2.69 (t, *J* = 8 Hz, 2H, CH₂N), 4.12 (t, *J* = 8 Hz, 1H, CH), 7.0–7.1 (m, 1H), 7.15 – 7.25 (m, 3H), 7.3–7.4 (m, 5H), 7.7 (br, 3H, NH₃⁺). 8.62 (s, 2H, picrate). Anal C₁₅H₁₆FN•C₆H₃N₃O₇ (C, H, N). 3-(3,4-Difluorophenyl)-3-phenyl-~, **157**: mp = 156°C (EtOH). Anal C₁₅H₁₅F₂N•C₆H₃N₃O₇ (C, H, N). 3-(3,4-Difluorophenyl)-3-(4fluorophenyl)-~, **158**: mp = 186 (MeOH – H₂O). Anal C₁₅H₁₄F₃N•C₆H₃N₃O₇ (C, H, N). 3-(3,4-Difluorophenyl)-3-(4fluorophenyl)-~, **159**: mp = 186°C (EtOH). Anal C₁₅H₁₄F₃N•C₆H₃N₃O₇ (C, H, N). 3,3-Bis(3-fluorophenyl)-~, **160**: mp = 186°C (MeOH–H₂O). C₁₅H₁₅F₂N•C₆H₃N₃O₇ (C, H, N). 3-(3,4-Difluorophenyl)-3-(3-fluorophenyl)-~, **161**: mp = 184°C (MeOH – H₂O). C₁₅H₁₄F₃N•C₆H₃N₃O₇ (C, H, N). 3-(4-Chlorophenyl)-3-(3-fluorophenyl)-~, **162** [26]: mp = 184°C (MeOH – H₂O). C₁₅H₁₅CIFN•C₆H₃N₃O₇ (C, H, N). 3,3-Bis(3,4-difluorophenyl)-~, **163**: mp = 171°C (MeOH – H₂O). Anal C₁₅H₁₅CIFN•C₆H₃N₃O₇ (C, H, N). 3,3-Bis(3,4-difluorophenyl)-~, **164**: mp = 194°C (EtOH). Anal C₁₅H₁₃F₄N• C₆H₃N₃O₇ (C, H, N). 3-(4-Chlorophenyl)-3-(3,4-difluorophenyl)-~, **165**: mp = 185°C (Et₂O). Anal C₁₅H₁₄CIF₂N•HCl (C, H, N). 3-(3-Chlorophenyl)-~, **167**: mp = 193°C (Et₂O). C₁₅H₁₅Cl₂N•C₆H₃N₃O₇ (C, H, N). 3-(3,4-Dichlorophenyl)-~, **166**: mp = 187°C (MeOH – H₂O). Anal C₁₅H₁₄Cl₂N•C₆H₃N₃O₇ (C, H, N). 3,3-Bis(3-chlorophenyl)-~, **167**: mp = 193°C (Et₂O). C₁₅H₁₅Cl₂N•C₆H₃N₃O₇ (C, H, N). 3-(3,4-Dichlorophenyl)-3-(3,4chlorophenyl)-~, **168**: mp = 208°C (EtOH – H₂O). Anal C₁₅H₁₄Cl₃N•C₆H₃N₃O₇ (C, H, N).

C₁₅H₁₄Cl₃N•C₆H₃N₃O₇ (C, H, N). *Method B.* 3-(3-Chlorophenyl)-3-phenylpropanamine **169**: mp = 155°C (EtOH). Anal C₁₅H₁₆ClN•C₆H₃N₃O₇ (C, H, N). 3-(3-Fluorophenyl)-3-(4-fluorophenyl)-~, **170**: mp = 165°C

2,3-Diphenylpropanenitriles 176-180

The requisite benzylcyanides (50 mmol) were added over a 1-h period to a suspension of sodium (50 mmol) in anhydrous Et₂O under N₂. The mixture was refluxed for 60–90 min to complete the formation of the sodium salt. The appropriate benzyl-chlorides (25 mmol), dissolved in Et₂O (20 ml), were dropped into the chilled mixture and subsequently heated under reflux for 2 h. To the cold mixture 20 ml of 1.2 M–HCl was added slowly and the product isolated by extraction with Et₂O. The organic layer was washed with a solution of NaHCO₃ and water, dried over Na₂SO₄ and evaporated *in vacuo*. The products were purified by short-path distillation *in vacuo* (bath temperature_{0.4-1.0} 200–230°C).

The following 2,3-disubstituted propanenitriles were obtained in 60–70% yield: 2,3-Bis(4-fluorophenyl)propanenitrile **176**: mp = 96°C (EtOAc). MS: m/z (rel int, %) = 243 (M⁺, 36), 109 (100). ¹H NMR (DMSO–d₆): δ = 3.17 (d, J = 8 Hz, 2H), 4.58 (t, J = 8 Hz, 1H), 7.1–7.3 (m, 6H), 7.4–7.45 (m, 2H). Anal C₁₅H₁₁F₂N (C, H, N). 2-(4-Fluorophenyl)-3-(3-fluorophenyl)-~, **177**: mp = 57°C (petroleum ether – Et₂O). Anal C₁₅H₁₁F₂N (C, H, N). 3-(4-Chlorophenyl)-2-(4-fluorophenyl)-~, **178**: mp = 90°C (petroleum ether – Et₂O). Anal C₁₅H₁₁ClFN (C, H, N). 2-(4-Chlorophenyl)-3-(4-fluorophenyl)-~, **179**: mp = 99°C (petroleum ether – Et₂O) (Lit [27] mp = 100°C). 2,3-Bis(4chlorophenyl)-~, **180**: Bp_{0.4} = 225°C bath temp (Lit [28] mp = 90–92.5°C).

Alkenenitriles 183–189

Method A. Benzophenone or 4,4'-difluorobenzophenone (50 mmol) in 70 ml of toluene were dropped with stirring to a mixture of propanenitrile (55 mmol) and NaNH₂ (50 mmol) in 30 ml of anhydrous toluene. The solution was refluxed for 2 h and subsequently poured onto crushed ice. The hydroxynitriles were isolated by extraction with Et₂O and were recrystallized from toluene. 3-Hydroxy-2-methyl-3,3-diphenylpropanenitrile **181**: Yield 55%, mp = 123°C (Lit [29] mp = 125°C). 3-Hydroxy-2-methyl-3,3-bis(4-fluorophenyl)propanenitrile **182**: Yield 51%, mp = 133°C. Anal C₁₆H₁₃F₂NO (C, H, N). Hydroxynitriles **181**, **182** (20 mmol) were refluxed with 98% formic acid (150 ml) for 30 min and subsequently poured into 150 ml of ice-water. The products were extracted with cyclohexane and crystallized from *n*-hexane. 2-Methyl-3,3-diphenyl-propenenitrile **183**: Yield 90%, mp = 63°C (Lit [29] mp = 59–61°C). 3,3-Bis(4-fluorophenyl)-2-methylpropenenitrile **184**: Yield 91%, mp = 75°C. Anal C₁₆H₁₁F₂N (C, H, N).

Method B. Diethyl cyanomethanephosphonate (7.2 ml) was added to NaOEt (40 mmol) in EtOH (40 ml). Subsequently, a solution of 40 mmol of the respective ketone in EtOH (20 ml) was added dropwise and stirred for 5 h at ambient temperature. The solvent was removed *in vacuo*, water (50 ml) was added and the alkenenitriles were isolated by extraction with Et₂O and purified by short-path distillation *in vacuo*. The following alkenenitriles were directly employed for further reaction: 3-Phenyl-2-butenenitrile **185**: bp_{0.05} = 120°C bath temp (Lit [30] bp₄ = 111–131). MS: m/z (rel int, %) = 157 (M⁺, 100). 3-Phenyl-2-pentenenitrile **186**: bp₁ = 190°C bath temp (Lit [31] bp₁₃ = 147°C). MS: m/z (rel int, %) = 157 (M⁺, 100). 3-(4-Fluorophenyl)-2-butenenitrile **187** [32]: bp_{0.8} = 130°C bath temp mp = 53°C (hexane – EtOAc). MS: m/z (rel int, %) = 161 (M⁺, 100). 3-(4-Fluorophenyl)-2-pentenenitrile **188**: bp_{0.8} = 170°C bath temp MS: m/z (rel int, %) = 175 (M⁺, 100). 3,3-Bis(4-fluorophenyl)propenenitrile **189**: mp = 80°C (*c*-hexane) (Lit [33] mp = 79–81°C).

Alkenamines 190–196

Alkenenitriles **183–189** were treated with LiAlH₄ and isolated as described below for the amines **197–201** affording 75–85% yield of the following alkenamines as mixtures of Z/E isomers that were directly employed as hydrochlorides for the synthesis of amines **202–208**: 2-Methyl-3,3-diphenyl-2-propen-1-amine **190**: mp (picrate) = 174°C (EtOH – H₂O) (Lit [29] **190**: HCl: mp = 233–235°C). MS: m/z (rel int, %) = 223 (M⁺, 63), 208 (100). Anal C₁₆H₁₇N•C₆H₃N₃O₇ (C, H, N). 3,3-Bis(4-fluorophenyl)-2-methyl-2-propen-1-amine **191**: mp = 245°C (EtOH – Et₂O). Anal C₁₆H₁₅F₂N•HCl (C, H, N). 3-Phenyl-2-buten-1-amine **192**: mp = 214°C (Me₂CO – Et₂O). C₁₀H₁₃N•HCl (C, H, N). 3-Phenyl-2-penten-1-amine **193**: mp = 178–179°C (Me₂CO). Anal C₁₁H₁₅N•HCl. 3-(4-Fluorophenyl)-2-buten-1-amine **194**: mp = 209°C (Me₂CO). Anal C₁₀H₁₂FN•HCl (C, H, N). 3-(4-Fluorophenyl)-2-penten-1-amine **195**: mp = 193°C (Et₂O). C₁₁H₁₄FN•HCl (C, H, N). 3,3-Bis(4-fluorophenyl)-2-propen-1-amine **196**: MS: m/z (rel int, %) = 245 (M⁺, 25), 230 (95), 203 (100).

2,3-Diphenylpropanamines 197-201

Nitriles **176–180** (20 mmol) were dissolved in Et_2O (20 mmol), added to a suspension of LiAlH₄ (11 mmol) in anhydrous Et_2O (30 ml) and refluxed for 30 min. The mixture was hydrolysed by slow consecutive addition of 4 ml of water, 4 ml of 5% NaOH and 16 ml of water. Insoluble material was filtered off, the organic layer was separated, dried over Na₂SO₄ and evaporated. The remaining oil was purified by short-path distillation *in vacuo*.

The following amines were obtained in 80–90% yield and characterized as hydrochlorides or picrates: 2,3-Bis(4-fluorophenyl)propanamine **197**: mp (hydrochloride) = 155°C (EtOH). MS: *mlz* (rel int, %) = 247 (M⁺, 27), 109 (100). ¹H NMR (DMSO-d₆): δ = 2.78 (m, 1H), 3.05–3.15 (m, 3H), 3.26 (m, 1H), 7.0–7.15 (m, 6H), 7.25–7.35 (m, 2H). 8.15 (br s, 3H, NH₃⁺). Anal C₁₅H₁₅F₂N•HCl (C, H, N). 2-(4-Fluorophenyl)-3-(3-fluorophenyl)propanamine, **198**: bp_{0.05} = 170–190°C bath temp; mp (picrate) = 206°C (MeOH). Anal C₁₅H₁₅F₂N•C₆H₃N₃O₇ (C, H, N). 3-(4-Chlorophenyl)-2-(4-fluorophenyl)propanamine **199**: bp_{0.05} = 175°C bath temp; mp (hydrochloride) = 211°C (MeOH). Anal C₁₅H₁₅CIFN•HCl. 2-(4-Chlorophenyl)-3-(4-fluorophenyl)propanamine **200**: bp_{0.1} = 160°C bath temp (Lit [27] bp₆ = 176–178°C); mp (picrate) = 176°C (MeOH – H₂O). Anal C₁₅H₁₅CIFN•C₆H₃N₃O₇ (C, H, N). 2,3-Bis(4-chlorophenyl)propanamine **201**: mp (hydrochloride) = 176°C (H₂O) (base, Lit [27] bp₆ = 188–190°C). Anal C₁₅H₁₅Cl₂N•HCl (C, H, N).

Primary amines 202-208

Alkenamines 190–196-HCl (5.5 mmol) were hydrogenated over 10% Pd-C catalyst (200 mg) at 8 bar in EtOH (50 ml) (190: 48 h; 191–196: 24 h). The catalyst was filtered off, and the crude alkanamine hydrochlorides were quantitatively crystallized by addition of Et₂O.

The following amines were obtained and characterized as hydrochlorides or picrates: 2-Methyl-3,3-diphenylpropanamine **202**: mp (picrate) = 180° C (Lit [29] **202**·HCl: mp = 248-

250°C). MS: *m*/*z* (rel int, %) = 225 (M⁺, 72) 208 (100). ¹H NMR (CD₃OD) of **202**·HCl: δ = 0.98 (d, *J* = 6.5 Hz, 3H), 2.64–2.88 (m, 3H), 3.67 (d, *J* = 11 Hz, 1H), 7.15–7.2 (m, 2H), 7.25–7.4 (m, 8H). Anal C₁₆H₁₉N·C₆H₃N₃O₇·1/2H₂O (C, H, N). 3,3-Bis(4-fluorophenyl)-2-methylpropanamine **203**: mp = 248°C (Me₂CO). Anal C₁₆H₁₇F₂N·HCl (C, H, N). 3-Phenylbutanamine **204**: Picrate, mp = 136°C (EtOH – H₂O) (Lit [34] base, bp₁₁ = 98°C). Anal C₁₀H₁₅N·C₆H₃N₃O₇ (C, H, N). 3-Phenylpentanamine **205**: mp (hydrochloride) = 120°C (Et₂O) (Lit [35] mp = 125–127°C). 3-(4-Fluorophenyl)butanamine **206**: bp_{0.1} = 120°C bath temp; mp (hydrochloride) = 151°C (Et₂O). Anal C₁₀H₁₄FN·HCl (C, H, N). 3-(4-Fluorophenyl)pentanamine **207**: mp = 140°C (Me₂CO). Anal C₁₁H₁₆FN·HCl (C, H, N). 3,3-Bis(4-fluorophenyl)propanamine **208**: mp = 137°C (Lit [33] mp (hydrochloride) = 138–139°C).

4,4-Bis(4-fluorophenyl)-2-butanone 210

Ethyl acetoacetate (50 mmol) was dropped with stirring into a suspension of sodium (1.15 g) in anhydrous THF (50 ml). Bis(fluorophenyl)methylchloride (55 mmol) was added dropwise and the mixture stirred for 8 h. The solvent was removed *in vacuo* and the residue dissolved in ice-cold water. Ethyl 2,2-[bis(4-fluorophenyl)methyl]-3-oxopentanoate **209** was extracted with Et₂O, distilled *in vacuo* (bp₃ = 120–130°C) and crystallized from MeOH. Yield 85%, mp = 83°C. MS: *m/z* (rel int, %) = 332 (M⁺, < 1), 314 (100). Anal C₁₉H₁₈F₂O₃ (C, H).

The β -ketoester **209** (40 mmol) was treated with 5% aqueous NaOH (60 ml) at ambient temperature for 1 h and subsequently refluxed for 2 h. Ketone **210** was extracted with Et₂O, distilled *in vacuo* (short-path distillation, bp_{0.4} = 220°C bath temp), and crystallized from cyclohexane-petroleum ether. Yield 70%, mp = 49°C. MS: *m*/z (rel int, %), = 260 (M⁺, 23), 203 (100). ¹H NMR (CDCl₃): δ = 2.09 (s, 3H), 3.13 (d, J = 7.5 Hz, 2H), 4.57 (t, J = 7.5 Hz, 1H), 6.9–7.05 (m, 4H), 7.1–7.2 (m, 4H). Anal C₁₆H₁₄F₂O (C, H).

4,4-Diphenyl-2-butanamines 211, 212 [36, 37]

4,4-Diphenyl-2-butanone [38] or **210** (50 mmol) and ammonium formate (0.2 mol) were heated at 180°C using a water trap. The mixture was chilled and triturated with water. The insoluble residue was refluxed for 60 min with conc HCl. After dilution with water, the aqueous solution was basified with NaOH, the amines were extracted with Et₂O and subsequently purified by short-path distillation *in vacuo* as above. **211**: Yield 60%, mp (hydrochloride) = 168°C (Lit [36] mp = 175°C). **212**: Yield 53%, mp (picrate) = 205°C (EtOH), Anal $C_{16}H_{17}F_2N\cdot C_6H_3N_3O_7$ (C, H, N).

Cyclohexyl- and dicyclohexylalkanamines 213-218

The respective phenyl- or diphenylalkanamine hydrochlorides (10 mmol) were dissolved in EtOH (50 ml) and hydrogenated for 20 h at 50 bar over 300 mg of 5% Rh-C catalyst. The catalyst was removed by filtration, the solvent was evaporated affording the hydrochlorides of the following amines in quantitative yield: 4-Cyclohexyl-2-butanamine **213**: mp = 134°C (Et₂O). MS: m/z (rel int, %) = 155 (M⁺, < 1), 44 (100). ¹H NMR (DMSO-d₆): $\delta = 0.87$ (m, 2H), 0.95–1.3 (m, 6H), 1.19 (d, J = 6 Hz, 3H), 1.41 (m, 1H), 1.65 (m, 6H), 3.06 (m, 1H, CH-N), 8.17 (br, 3H, NH₃⁺). Anal C₁₀H₂₁N·HCl (C, H, N). 3-Cyclohexyl-1-butanamine **214**: mp = 130°C (Et₂O). Anal C₁₀H₂₁N·HCl (C, H, N). 4-Cyclohexyl-1-butanamine **215**: mp = 165°C (Et₂O) (Lit [21] base bp₁ = 73°C). Anal C₁₀H₂₁N·HCl (C, H, N). 3,3-Dicyclohexyl-1-propanamine **216** [39]: mp = 171°C (Et₂O). Anal C₁₅H₂₉N·HCl (C, H, N). 4,4-Dicyclohexyl-2-butanamine **217**: mp = 188°C (Et₂O). Anal C₁₆H₃₁N·HCl (C, H, N). 3,3-Dicyclohexyl-2-methyl-1-propanamine **218**: mp = 201°C (Me₂CO). Anal C₁₆H₃₁N·HCl (C, H, N).

Pharmacological evaluation

H_2 agonism on the isolated spontaneously beating guinea pig right atrium [40]

Male guinea pigs (350–500 g) were sacrificed by a blow to the head and exsanguinated. The right atrium was rapidly removed, cleared of connective tissue, attached to a tissue holder in a 20ml organ bath (32.5°C) containing McEvans solution [40] and aerated with carbogen. The pD_2 values and intrinsic activites were determined from isometrically recorded cumulative concentration-response curves [41] as described [42] using histamine as the reference agonist ($0.1-10 \,\mu$ M). Agonists were used as dihydrochlorides. The maximum effect of the agonist under study was completely abolished by 10-30 μ M of cimetidine. H₂ receptor selectivity was verified by experiments in the presence of $1 \,\mu M$ of metoprolol.

H_1 antagonistic activity on the isolated guinea pig ileum

The H_1 antagonistic activity was determined from isotonically recorded (preload 0.5 g) cumulative concentration-response curves as described in [42], using 20-ml organ baths containing Tyrode solution aerated with carbogen at 37°C. The guanidines were tested as hydrohalides at concentrations of 0.3-30 μ M versus histamine after 10 min of incubation. Apparent $pK_{\rm B}$ $(-\log K_{\rm B})$ values were calculated from the rightward shift of the histamine curve in the presence and absence of antagonist [41].

Contractility measurements on isolated perfused guinea pig hearts

Female guinea pigs weighing 300-450 g were sacrificed by a blow to the head. The hearts were rapidly excised and perfused according to the Langendorff technique with a modified Henseleit solution oxygenated with carbogen as described [43, 44]. The substances to be tested were injected as a bolus $(15 \ \mu l)$ directly into the perfusion stream about 3 cm above the orifice of the coronary arteries. Coronary perfusion pressure as well as intraventricular pressure of the left and right ventricle were monitored as described in [44].

Acknowledgment

We gratefully acknowledge the expert technical assistance of Mrs M Ewald-Feldt who performed the pharmacological tests. This study was supported by a grant from the Verband der Chemischen Industrie, Fonds der Chemischen Industrie.

References

- Durant GJ, Duncan WAM, Ganellin CR, Parsons ME, Blakemore RC, Rasmussen AC (1978) Nature (Lond) 276, 403-405
- Durant GJ, Ganellin CR, Hills DW, Miles PD, Par-sons ME, Pepper ES (1985) *J Med Chem* 28, 1414–1422 Baumann G, Permanetter B, Wirtzfeld A (1984) 2
- 3 Pharmacol Ther 24, 165–177
- Buschauer A, Baumann G (1991) Agents Actions 33 suppl, 231-256 4
- suppl, 231–256 Van der Goot H, Bast A, Timmerman H (1991) In: Histamine and Histamine Antagonists (Uvnäs B, ed) Handbook of Experimental Pharmacology. Springer, Berlin, vol 97, 573–748 Buschauer A (1989) J Med Chem 32, 1963–1970 Buschauer A, Schickaneder H, Schunack W, Elz S, Szelenyi I, Baumann G, Ahrens KH (1986) EP 0199845; Chem Abstr 106, 84609y (1987) Felix SB, Buschauer A, Baumann G, (1991) Agents 5

- Felix SB, Buschauer A, Baumann G (1991) Agents Actions 33 suppl, 257–269 8

- Mörsdorf P, Engler H, Schickaneder H, Buschauer A, Schunack W, Baumann G (1990) Drugs Fut 15, 919–933 9
- 10 Baumann G, Buschauer A, Permanetter B, Schunack W (1988) Inn Med 15 suppl, 30-38
- Sterk GJ, Koper J, van der Goot H, Timmerman H (1987) Eur J Med Chem 22, 491–498 11
- Buschauer A (1987) Arch Pharm (Weinheim) 320, 12 377-378
- Elz S, Schunack W (1987) Z Naturforsch 42B, 238-242 13
- 14 Buschauer A, Lachenmayr F, Schunack W (1991) Pharmazie 46, 840-845
- 15 Gantz I, Schäffer M, Del Valle J, Logsdon C, Campbell V, Uhler M, Yamada T (1991) Proc Natl Acad Sci USA 88, 429-433
- Buschauer A (1988) Arch Pharm (Weinheim) 321, 415-418 16
- 17 Elz S, Schunack W (1988) Arzneim-Forsch/Drug Res 38, 327-332
- Meindl W, Friese-Kimmel A, Lachenmayr F, Bus-18 chauer A, Schunack W (1990) Arch Pharm (Weinheim) 323, 267–272
- Rossander S, Marvel C (1928) J Am Chem Soc 50, 19 1491-1496
- Conant J, Kirner W (1924) J Am Chem Soc 46, 232-252 20
- 21 Skinner C, Gardner P, Shive W (1957) J Am Chem Soc 79, 2843-2846
- 22 Skinner C, Shive W, Ham R, Fitzgerald D, Eakin R (1956) J Am Chem Soc 78, 5097–5100
- Lange J, Rump S, Galecka E (1977) Pharmazie 32, 82-84 23
- 24 Da Rocha Pitta I, Luu Duc C, Boucherle A, Pillon D (1974) Eur J Med Chem 9, 347-349
- 25 Silver R, Kerr K, Frandsen P, Kelly S, Holmes H (1967) Can J Chem 45, 1001-1006
- Leditschke H, Rolly H, Schmidt-Ruppin H (1958) US 2 843 594; Chem Abstr 53, 16162f (1958) 26
- Schorr M, Leditschke H, Fussgänger R, Bauer F (1961) DOS 1103936; Chem Abstr 56, 3409g (1962) 27
- Jack D, Spickett R, Ganellin CR (1964) GB 959704; Chem Abstr 61, 4290b (1964) 28
- Blank B, Zuccarello W, Cohen S, Frischmuth G, Scarica-ciottoli D (1969) *J Med Chem* 12, 271–276 29
- 30 Vinograd L, Vulfson N (1959) Zhur Obschei Khim 29, 1147-1149; Chem Abstr 54, 1394e (1960)
- 31 Charles G (1963) Bull Soc Chim Fr 1559-1565
- Boyle F (1984) EP 122693; Chem Abstr 102, 149273y 32 (1985)
- 33 Ibanez-Paniello A (1973) An Quim 69, 1035-1045; Chem Abstr 80, 120422n (1974)
- 34 Fort A, Leary R (1960) J Am Chem Soc 82, 2494-2498
- Testa É, Fontanella L, Aresi V (1964) Liebigs Ann Chem 673, 60–70 35
- 36 Yutaka K, Kyo F (1958) Yakugaku Zasshi 78, 551-553; Chem Abstr 52, 17196d (1958)
- Zenno H, Saito Y, Nakaguchi O (1975) Jpn Kokai 37 7582043; Chem Abstr 83, 205923p (1975)
- 38 Burckhalter J, Johnson S (1951) J Am Chem Soc 73, 4830-4832
- 39 Atwal K, Reilly B, Ruby E, Turk C, Aberg G, Bergey J, Moreland S, Powell J (1987) J Med Chem 30, 627–635 Black JW, Duncan WAM, Durant GJ, Ganellin CR,
- 40 Parsons ME (1972) Nature (Lond) 236, 385-390
- Van Rossum JM (1963) Arch Int Pharmacodyn Ther 143, 41 299-330
- 42 Lennartz HG, Hepp M, Schunack W (1978) Eur J Med Chem 13, 229-234
- Schrader J, Baumann G, Gerlach E (1977) Pflügers Arch 43 372, 29-35
- 44 Baumann G, Felix SB, Heidecke CD, Rieß G, Loher U, Ludwig L, Blömer H (1984) Agents Actions 15, 216-228