Tetrahedron: Asymmetry 22 (2011) 775-779

Contents lists available at ScienceDirect

Tetrahedron: Asymmetry

journal homepage: www.elsevier.com/locate/tetasy

Asymmetric synthesis of the dopamine D1 agonist, dihydrexidine

Saumen Hajra*, Sukanta Bar

Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721 302, India

ARTICLE INFO

ABSTRACT

Article history: Received 21 March 2011 Accepted 8 April 2011 Available online 10 May 2011 A concise asymmetric synthesis of first, high affinity domaine D1 full agonist, dihydrexidine has been accomplished via catalytic enantioselective aziridination and subsequent one-pot Friedel–Crafts cyclization of an in situ generated tethered aziridine with high diastereo- and enantioselectivities. © 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Hexahydrobenzophenanthridine is an important structural subunit of various natural products and pharmaceuticals.^{1,2} For example dihydrexidine **1** has been designed and developed as the first high affinity full efficacy agonist for dopamine D1 receptor.^{2a,3} This is in clinical trial for the potential treatment of Parkinson's disease and the cognitive deficits of schizophrenia.⁴ More importantly, this compound has been found to exhibit a high level of enantiospecificity in their interaction with the D1 receptor. Hence, the development of an efficient and concise method for the asymmetric synthesis of dihydrexidine 1 is highly in demand. There are several methods for the racemic^{2a,5} synthesis of dihydrexidine, however, there are only three asymmetric syntheses of 1, which are known in the literature.^{6,7} A general chiral-pool approach for the asymmetric synthesis of hexahydrobenzophenanthridines was developed by Ehrlich et al. based on the Friedel-Crafts acylation of veratrole from costly *N*-(trifluoroacetyl)-D-aspartic acid anhydride.⁶ Tomioka et al. developed an elegant and impressive general method for the asymmetric synthesis of dihydrexidine via the enantioselective 1,4conjugate addition of an aryllithium to nitroalkenes at -90 °C using more than a stoichiometric amount of a chiral ligand, followed by reduction of the nitro group and cylization.⁷ It was found that trans-2-amino-1-aryltetralins 2 is the advanced intermediate for the synthesis of dihydrexidine. A convenient strategy for this synthesis is an intramolecular Friedel-Crafts type cyclization of the tethered chiral aziridine 3 (Scheme 1).⁸ Herein, we report a asymmetric synthesis of (+)-dihydrexidine 1 via catalytic enantioselective aziridination and subsequent one-pot Friedel-Crafts type cyclization with high diastereo- and enantioselectivity.

2. Results and discussion

To commence the synthesis, styrene **4** was prepared from a Wittig reaction of aldehyde **5** as a mixture of diastereomers

Tetrahedron

Scheme 1. Retrosynthesis of dihydrexidine.

(*E:Z* = 78:22) in good yield. Aldehyde **5** was synthesized from the corresponding dihydrocinnamyl alcohol using a literature procedure⁹ (Scheme 2).

It was found that copper(II) triflate was an efficient dual catalvst for the aziridination¹⁰ of alkenes as well as for the Friedel-Crafts cyclization of tethered and in situ generated aziridine, while [N-(p-nitrobenzenesulfonyl)imino]-phenyliodinane, PhIN-SO₂(4-NO₂C₆H₄) [PhINNs] was a successful nitrenoid source for this purpose.^{8a} Therefore, catalytic enantioselective aziridination and Friedel-Crafts cyclization of styrene 4 was investigated in the presence of different bis-oxazoline (Box) ligands mostly derived from L-amino acids (Table 1). The reaction of **4** (5.0 equiv) with PhINNs (1.0 equiv) was carried out in the presence of bis(oxazoline)-copper complexes derived from 0.1 equiv of Cu(OTf)₂ and 0.12 equiv of Box ligand **6a** in dichloromethane (DCM) at rt. Within 1.5 h cyclization was observed to proceed rapidly to exclusively afford *trans*-2-amino-1-phenyltetralin $\hat{2}$ (dr >99:1) with 42% ee in 46% yield (Table 1, entry 1). Under the similar reaction conditions, other Box-Cu(OTf)₂ catalysts **6b–h** were investigated. With the sterically demanding *tert*-butyl Box ligand **6b**, there was no appreciable improvement in ee (47%), but provided a slightly lower yield (39%) (entry 2).

^{*} Corresponding author. Tel.: +91 3222 283340; fax: +91 3222 255303. *E-mail address*: shajra@chem.iitkgp.ernet.in (S. Hajra).

^{0957-4166/\$ -} see front matter \odot 2011 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetasy.2011.04.008

Scheme 2. Synthesis of alkene 4.

Table 1

Screening of catalysts for the asymmetric aziridination and Friedel-Crafts cyclization

^a Isolated yield after column chromatography.

^b Diastereomeric ratio was measured from the ¹H NMR analysis of the crude reaction mixture.

^c Enantiomeric excess was determined by chiral HPLC.

^d The other enantiomer was formed predominantly.

Improved enantioselectivity (ee 56%) was observed with benzyl substituted Box-ligand **6c** (entry 3). Similar selectivity was also obtained with Box-ligand **6d**, derived from indanol amine (entry 4). The Box-ligand **6e**, derived from phenylglycine, provided very good enantioselectivity and yield (87% ee and 75% yield) (entry 5). However, changing to the unsubstituted Box-ligand **6f**, caused both the yield and the ee to drop to 19% and 11%, respectively (entry 6). The corresponding *gem*-dibenzyl ligand **6g** showed little improvement in yield to ee (entry 7). Ligands containing an additional binding site, such as Py-Box **6h** derived from phenylglycine, also reduced the yield as well as the ee (entry 8). Among all the bisoxazoline-Cu catalysts, **6e** with a *gem*-dimethyl derived from

phenylglycine, was found to be the best and gave the *trans-N*-no-syl-2-amino-1-phenyltetralin **2**' in 75% yield with 87% ee (entry 5). The absolute stereochemistry of aminotetralin **2**' was assigned by analogy with the literature report.^{11,8b,8c} It is worth noting that the *E:Z* mixture of styrene (78:22) on aziridination and subsequent Friedel–Crafts cyclization provided exclusively *trans*-2-amino-1-phenyltetralin **2**' (dr >99:1) and the corresponding *cis*-cyclized product was not detected. This is due to the dual chemoselectivity of the aziridination and Friedel–Crafts reactions.^{8a,8b}

To commence the synthesis of active dihydrexidine, the reaction of styrene **4** was carried out under the same conditions in the presence of Cu(OTf)₂ (0.1 equiv) and (*R*)-Box-ligand **6e**' derived from D-phenyl glycine and it gave provided the desired *trans-N*-no-syl-2-amino-1-phenyltetralin **2** in 75% yield with 87% ee (Scheme 3). Recrystallization of compound **2** from methanol at 5 °C crystallized out the minor enantiomer and enhanced the ee of the mother liquor to >99%ee with 70% recovery yield. The specific rotation of pure compound **2** was found to be $[\alpha]_D^{28} = -52.0$ (*c* 1.0, CHCl₃).

Denosylation of compound **2** with 4-methoxythiophenol and K_2CO_3 in CH₃CN/DMSO (49:1) afforded aminotetralin **7**. Pictet–Spengler cyclization of aminotetralin **7** under conventional conditions was unsuccessful in giving hexahydrobenzophenanthridine compound **8**.^{7a} Therefore, an attempt was made to synthesize compound **9** from compound **2** using CH₂(OMe)₂ and BF₃–Et₂O. However, it afforded a non-separable mixture (1:1) of the desired compound **9** and double alkylation product **10** (Scheme 4).

However, when the sodium salt of compound **2**, generated by the reaction of NaH, was reacted with MOMCl at 0 °C and within 1 h, compound **9** was obtained in excellent yield (Scheme 5). The Pictet–Spengler type cyclization of compound **9** using TMSOTF (1.1 equiv) at -50 °C in DCM led to the formation of the desired *N*-nosyl hexahydrobenphenanthridine **11** in 55% yield after 4 h.

The deprotection of the *N*-nosyl group of compound **11** upon treatment with 4-methoxythiophenol and K₂CO₃ in a mixed solvent of CH₃CN/DMSO (49:1) at rt gave *O*-methyldihydrexidine **8** in 92% yield after 2.5 h. The specific rotation of compound **8** { $[\alpha]_D^{28} = -217.9 \ (c \ 1.1, CHCl_3)$ } was comparable to the literature^{7b} data { $[\alpha]_D^{25} = -222 \ (c \ 1.1, CHCl_3)$ }. The BBr₃ mediated demethylation of compound **8** in DCM completed the synthesis of dihydrexidine as a hydrobromide salt, **1**·**HBr** in 95% yield. Finally, dihydrexidine hydrochloride **1**·**HCl** was obtained by successive treatment with NaHCO₃ and saturated HCl in dry ethanol. The specific rotation of dihydrexidine hydrochloride **1**·**HCl** { $[\alpha]_D^{28} = +79.9 \ (c \ 0.25, EtOH)$ was in good agreement with the literature^{2d} data { $[\alpha]_D^{25} = +83 \ (c \ 0.25, EtOH)$ }.

3. Conclusion

In conclusion, we have accomplished the concise asymmetric synthesis of (+)-dihydrexdine·HCl via a one-pot catalytic

Scheme 3. Synthesis of aminotetralin 2.

Scheme 4. Attempts towards the synthesis of compounds 8 and 9.

Scheme 5. Synthesis of dihydrexidine hydrochloride.

enantioselective aziridination and subsequent Friedel–Crafts cyclization with tethered and in situ generated aziridine with high diastereo- and enantioselectivity.

4. Experimental

4.1. General

All reactions were carried out using oven-dried glassware under an argon (Ar) atmosphere. Commercial grade reagents were used without further purification. Solvents were dried and distilled following the usual protocols. Flash chromatography was carried out using silica gel (230-400 mesh). TLC was performed on aluminumbacked plates coated with Silica Gel 60 with F₂₅₄ indicator. The ¹H NMR spectra were recorded at 200 and 400 MHz and ¹³C NMR spectrum were recorded at 50 and 100 MHz using CDCl₃ and CD₃OD. ¹H NMR chemical shifts are expressed in parts per million (δ) relative to CDCl₃ (δ = 7.26) and CD₃OD (δ = 3.31); ¹³C NMR chemical shifts are expressed in parts per million (δ) relative to the CDCl₃ resonance (δ = 77.0) and CD₃OD resonance (δ = 49.1). High resolution mass spectra (HRMS) were obtained under positive electron spray ionization (m/z values are given). HPLC analyses were done by Chiralpak AD-H column (0.46 cm \times 15 cm). Optical rotations were measured on a polarimeter.

4.1.1. 1,2-Dimethoxy-4-(4-phenyl-but-3-enyl)-benzene 4

To a stirred suspension of benzyl triphenylphosphonium bromide (16.7 g, 38.65 mmol) in dry THF (78 mL) under a nitrogen atmosphere, *n*-BuLi in hexane (24.2 mL, 1.6 M in hexane) was injected dropwise at -78 °C via a glass syringe. The temperature was slowly raised to -30 °C and at this temperature the stirring was continued for 20 min. The reaction mixture was re-cooled to -78 °C and 3-(3,4-dimethoxyphenyl)-propionaldehyde **5** (5.0 g, 25.0 mmol) in dry THF (25 mL) was slowly added. The reaction mixture was allowed to reach room temperature. The reaction was quenched with aqueous NH₄Cl solution and extracted with ether (three times). The combined organic layers were washed with brine, and dried over anhydrous Na₂SO₄. Flash column chromatography (EtOAc/hexane = 1:9) of the crude mass over silicagel yielded alkene **4** (5.9 g, 90%) as a *E/Z*-mixture (*E:Z* = 78:22). ¹H NMR (CDCl₃, 200 MHz): δ 7.37–7.15 (m, 5H), 6.86–6.70 (m, 3H), 6.44 (d, *J* = 11.0 Hz, 0.22H), 6.42 (d, *J* = 16.0 Hz, 0.78H), 6.30 (m, 0.78H), 5.70 (m, 0.22H), 3.86 (s, 4.68H), 3.85 (s, 0.66H), 3.84 (s, 0.66H), 2.80–2.60 (m, 2.44H), 2.58–2.46 (m, 1.56H). ESI-MS *m*/*z*: 268 (M⁺).

4.1.2. (1*S*,2*R*)-*N*-(6,7-Dimethoxy-1-phenyl-1,2,3,4-tetrahydronaphthalen-2-yl)-4-nitro-benzenesulfonamide 2

A 10 mL two-necked round bottomed flask was charged with (*R*)-bis-oxazoline ligand **6e**' (0.01 g, 0.03 mmol, 0.12 equiv) and $Cu(OTf)_2$ (0.009 g, 0.025 mmol, 0.1 equiv). Anhydrous DCM (1 mL) was injected and the resulting mixture was stirred for 30 min. To this solution, PhINNs (0.1 g, 0.24 mmol, 1.0 equiv), alkene **4** (0.29 g, 1.23 mmol, 5.0 equiv) and 0.2 g of powdered molecular sieves (4 Å) were added and the reaction mixture was allowed to stir at 25 °C under an argon atmosphere for 1.5 h. On dissolution of PhINNs, the reaction was quenched by diluting with ethyl acetate (10 mL) and filtering through a short plug of silica gel. The silica gel was washed with an additional 10 mL of ethyl acetate. The filtrate was concentrated by rotary evaporation under reduced pressure. The crude mass was subjected to purification by flash column chromatography using EtOAc/hexane (1:4) as an eluent,

which provided aminotetralin 2 (0.084 g, 75%). Mp 63–64 $^{\circ}$ C. ¹H NMR (CDCl₃, 200 MHz): δ 8.16 (d, I = 8.8 Hz, 2H), 7.74 (d, *I* = 8.8 Hz, 2H), 7.20–7.06 (m, 3H), 6.90–6.80 (m, 2H), 6.60 (s, 1H), 6.10 (s, 1H), 4.82 (d, I = 7.6 Hz, 1H), 3.85 (s, 3H), 3.78 (d, J = 7.8 Hz, 1H), 3.64 (m, 1H), 3.56 (s, 3H), 2.98–2.75 (m, 2H), 2.28-2.17 (m, 1H), 1.85-1.70 (m, 1H). ¹³C NMR (CDCl₃, 100 MHz): δ 149.6, 148.0, 147.6, 146.0, 142.8, 128.8 (2C), 128.4 (2C), 127.8 (2C), 127.5, 127.3, 127.0, 124.1 (2C), 112.8, 110.8, 57.1, 55.7, 55.7, 51.5, 27.6, 26.1. Before recrystallisation, HPLC analysis: (chiralcel AD-H, 10% i-PrOH/n-hexane, 1.0 mL/min, 220 nm, *t*_r (major) 23.3 min, *t*_r (minor) 34.0 min); 87% ee. After one recrystalisation from methanol at 5 °C, HPLC analysis: (chiralcel AD-H, 10% i-PrOH/n-hexane, 1.0 mL/min, 220 nm, tr (major) 23.1 min); ee \ge 99%. $[\alpha]_{D}^{28} = -52.0$ (*c* 1.00, CHCl₃). ESI-MS *m/z*: 469 (MH⁺). HRMS (EI) calcd for $C_{24}H_{24}N_2O_6S$, 491.1253 m/z(M+Na)⁺; found, 491.1251 *m/z*.

4.1.3. (1*S*,2*R*)-*N*-(6,7-Dimethoxy-1-phenyl-1,2,3,4-tetrahydronaphthalen-2-yl)-*N*-methoxymethyl-4-nitrobenzenesulfonamide 9

To a well stirred solution of 2 (0.1 g, 0.214 mmol) taken in THF (2 mL) at 0 °C, NaH (1.2 equiv) was added and allowed to stir for 30 min under an argon atmosphere. Next, MOMCl (2 equiv) was slowly added and stirred. After 1.5 h, the reaction was quenched with saturated NH₄Cl solution and extracted with ethyl acetate and dried over NaSO₄. The reaction mixture was subjected to column purification using 20% EtOAc in hexane as an eluent to obtain **9** (0.108 g, 98%) as a yellow solid. Mp 56–57 °C. ¹H NMR (CDCl₃, 200 MHz): δ 8.03 (d, J = 9.0 Hz, 2H), 7.62 (d, J = 9.0 Hz, 2H), 7.08– 6.90 (m, 3H), 6.88-6.86 (m, 2H), 6.55 (s, 1H), 5.99 (s, 1H), 5.04 (d, J = 11.0 Hz, 1H), 4.69 (d, J = 11.0 Hz, 1H), 4.23 (d, J = 10.2 Hz, 1H), 4.16-4.09 (m, 1H), 3.83 (s, 3H), 3.48 (s, 3H), 3.35 (s, 3H), 3.10-2.95 (m, 1H), 2.88-2.77 (m, 1H), 2.21-2.14 (m, 2H). ¹³C NMR (CDCl₃, 100 MHz): *δ* 149.7, 147.8, 147.6, 146.5, 143.8, 130.6, 129.4 (2C), 128.5 (2C), 128.4 (2C), 128.0, 126.8, 123.9 (2C), 113.3, 110.9, 76.6, 63.1, 56.03, 55.94, 55.90, 48.9, 30.4, 29.6. $[\alpha]_{D}^{28} = -36.0$ (c 1.00, CHCl₃). HRMS (EI) calcd for C₂₆H₂₈N₂O₇S, 535.1515 *m/z* (M+Na)⁺; found, 535.1511 *m/z*.

4.1.4. (6a*R*,12b*S*)-10,11-Dimethoxy-6-(4-nitrobenzenesulfonyl)-5,6,6a,7,8,12b-hexahydrobenzo[a]phenanthridine 11

To a well stirred solution of 9 (0.1 g, 0.195 mmol) taken in 4 ml DCM at -50 °C, 1.1 equiv of TMSOTf was added slowly and the reaction mixture was allowed to stir for 4 h. Upon completion, the reaction was quenched with saturated NaHCO₃ solution and extracted with EtOAc and dried over Na₂SO₄. The reaction mass was subjected to column purification using 15% EtOAc in hexane as an eluent to obtain 11 (0.052 g, 55%) as a yellow solid. Mp 88–89 °C. ¹H NMR (CDCl₃, 400 MHz): δ 8.03 (d, J = 8.8 Hz, 2H), 7.71 (d, J = 8.8 Hz, 2H), 7.28 (d, J = 4.4 Hz, 1H), 7.11 (t, J = 7.6 Hz, 1H), 6.91(t, J = 7.6 Hz, 1H), 6.85 (s, 1H), 6.77 (d, J = 7.2 Hz, 1H), 6.71 (s, 1H), 4.69 (d, J = 16.0 Hz, 1H), 4.53 (d, J = 16.0 Hz, 1H), 4.12 (d, J = 11.6 Hz, 1H), 3.89 (s, 3H), 3.78 (s, 3H), 3.20-3.14 (m, 1H), 3.06-2.99 (m, 1H), 2.90-2.81 (m, 1H), 2.10–2.01 (m, 2H). 13 C NMR (CDCl₃, 100 MHz): δ 149.7, 148.1, 146.9, 144.0, 138.5, 135.1, 129.7, 128.6 (2C), 127.8, 126.2, 125.8, 124.0, 123.8, 123.7 (2C), 112.6, 112.1, 61.6, 56.1, 55.9, 47.7, 43.9, 31.3, 29.4. $[\alpha]_D^{28} = +30.2$ (*c* 1.00, CHCl₃). HRMS (EI) calcd for $C_{25}H_{24}N_2O_6S$, 503.1253 m/z (M+Na)⁺; found, 503.1250 m/z.

4.1.5. (6aR,12bS)-10,11-Dimethoxy-5,6,6a,7,8,12bhexahydrobenzo[a]phenanthridine 8

To a well stirred solution of **11** (0.1 g, 0.208 mmol) taken in 2 mL CH₃CN/DMSO (49:1) at rt, 1.2 equiv of 4-methoxythiophenol and 1.2 equiv of K_2CO_3 were added and the reaction mixture was

allowed to stir for 3 h. Upon completion of the reaction, the solvent was evaporated under reduced pressure and the crude reaction mass was subjected to column purification by using 3% MeOH in DCM as an eluent to give **8** (0.056 g, 92%) as a white solid. Mp 156–157 °C. ¹H NMR (CDCl₃, 400 MHz): δ 7.46 (d, *J* = 7.2 Hz, 1H), 7.32–7.18 (m, 2H), 7.17 (d, *J* = 6.8 Hz, 1H), 6.73 (s, 1H), 6.61 (s, 1H), 4.07 (s, 2H), 3.88 (s, 3H), 3.86 (d, *J* = 9.0 Hz, 1H), 3.77 (s, 3H), 2.96–2.89 (m, 1H), 2.84–2.71 (m, 2H), 2.36 (br s, 1H), 2.25–2.17 (m, 1H), 1.78–1.72 (m, 1H). ¹³C NMR (CDCl₃, 100 MHz): δ 147.2, 146.7, 136.7, 136.3, 130.7, 129.9, 128.1, 126.9, 126.2 (2C), 111.9, 110.2, 58.6, 56.1, 56.0, 48.4, 44.3, 28.5, 27.4. [α]₂²⁶ = -217.9 (*c* 1.1, CHCl₃) {lit^{7b} [α]₂²⁶ = -222 (*c* 1.1, CHCl₃)}. ESI-MS *m/z*: 296 (M+H)⁺. HRMS (EI) calcd for C₁₉H₂₁NO₂, 296.1651 *m/z* (M+H)⁺; found, 296.1632 *m/z*.

4.1.6. (6aR,12bS)-10,11-Dihydroxy-5,6,6a,7,8,12bhexahydrobenzo[a]phenanthridine hydrobromide 1 HBr

To a well stirred solution of **8** (0.05 g, 0.169 mmol) taken in DCM (2 mL) at rt, 5 equiv BBr₃ (1 M solution in DCM) were slowly added and reaction mixture was allowed to stir for 12 h. Upon completion of the reaction, the mixture was quenched with MeOH (2 mL) and stirred for 30 min after which the solvent was evaporated to give a crude reaction mixture. Then the crude mass was scratched and washed with dry ether to get **1-HBr** (0.56 g, 95%) as a light yellow solid. Mp 185–186 °C. ¹H NMR (CD₃OD, 200 MHz): δ 7.54–7.38 (m, 4H), 6.81 (s, 1H), 6.67 (s, 1H), 4.45 (s, 2H), 4.22 (d, *J* = 11.4 Hz, 1H), 3.12–2.72 (m. 3H), 2.42–2.22 (m, 1H), 2.06–1.99 (m, 1H). ¹³C NMR (CD₃OD, 50 MHz): δ 145.7, 144.8, 137.7, 131.0, 129.7, 129.5, 129.0, 128.6, 128.1, 126.1, 116.9, 115.6, 59.4, 46.4, 42.4, 28.0, 27.1. [α]_D²⁸ = +37.0 (*c* 0.20, EtOH). ESI-MS *m/z*: 268 (MH⁺). HRMS (EI) calcd for C₁₇H₁₇NO₂, 268.1338 *m/z* (M+H)⁺; found, 268.1283 *m/z*.

4.1.7. (6aR,12bS)-10,11-Dihydroxy-5,6,6a,7,8,12bhexahydrobenzo[a]phenanthridine hydrochloride 1 HCl^{2d}

At first, **1·HBr** (0.05 g, 0.143 mmol) was dissolved in H₂O (5 mL) and the pH was adjusted to 9–10 with NaHCO₃ under an Ar atmosphere. The mixture was extracted with CHCl₃ and dried over Na₂SO₄ to give a pale yellow solid. A solution of this pale yellow solid in EtOH (1 mL) and EtOH–HCl (3 mL) was stirred at rt for 0.5 h and concentrated. The residue was dried azeotropically with benzene (3 mL) to afford dihydrexidine hydrochloride **1·HCl** (0.031 g, 72%) as a pale yellow solid. Mp >120 °C (dec). ¹H NMR (CD₃OD, 200 MHz): δ 7.49–7.34 (m, 4H), 6.76 (s, 1H), 6.62 (s, 1H), 4.40 (s, 2H), 4.16 (d, *J* = 11.0 Hz, 1H), 3.01–2.75 (m. 3H), 2.35–2.20 (m, 1H), 2.05–1.85 (m, 1H). ¹³C NMR (CD₃OD, 100 MHz): δ 145.5, 144.6, 137.5, 130.8, 129.5, 129.3, 128.8, 128.4, 128.0, 125.9, 116.7, 115.4, 59.2, 46.2, 42.2, 27.8, 26.9. [α]^{2B} = +79.9 (*c* 0.25, EtOH) {lit^{2d} [α]_D = +83 (*c* 0.25, EtOH)}. ESI-MS *m/z*: 268 (M+H)⁺. HRMS (EI) calcd for C₁₇H₁₇NO₂, 268.1338 *m/z* (M+H)⁺; found, 268.1283 *m/z*.

Acknowledgments

We thank DST, New Delhi for providing financial support. S.B. thanks CSIR, New Delhi, for his fellowship.

References

- (a) Peter, S.; Ruben, I.; Bjorn, K. CNS Drug Rev. 2004, 10, 230–242; (b) Giardina, W. J.; Williams, M. CNS Drug Rev. 2001, 7, 305–316.
- (a) Brewster, W. K.; Nichols, D. E.; Riggs, R. M.; Mottola, D. M.; Lovenberg, T. W.; Lewis, M. H.; Mailman, R. B. *J. Med. Chem.* **1990**, 33, 1756–1764; (b) Taylor, J. R.; Lawrence, M. S.; Redmont, D. E.; Elsworth, J. D.; Roth, R. H.; Nochols, D. E.; Mailman, R. B. *Eur. J. Pharmacol.* **1991**, *199*, 389–391; (c) Seiler, M. P.; Hagenbach, A.; Wüthrich, H.-J.; Marksteun, R. *J. Med. Chem.* **1991**, *34*, 303– 307; (d) Knoerzer, T. A.; Nichols, D. E.; Brewster, W. K.; Watts, V. J.; Mottola, D.; Mailman, R. B. *J. Med. Chem.* **1994**, *37*, 2453–2460; (e) Michaelides, M. R.; Hong, Y., Jr.; DiDomenico, S.; Asin, K. E.; Britton, D. R.; Lin, C. W.; Williams, M.; Shiosaki, K. *J. Med. Chem.* **1995**, *38*, 3445–3447.

- Huang, X.; Lawler, C. P.; Lewis, M. M.; Nichols, D. E.; Mailman, R. B. Int. Rev. Neurobiol. 2001, 48, 65–139.
- (a) George, M. S.; Molnar, C. E.; Grenesko, E. L.; Anderson, B.; Mu, Q.; Johnson, K.; Nahas, Z.; Knable, M.; Fernandes, P.; Juncos, J.; Huang, X.; Nichols, D. E.; Mailman, R. B. Schizophr. Res. 2007, 93, 42–50; (b) Goldman-Rakic, P. S.; Castner, S. A.; Svensson, T. H.; Siever, L. J.; Williams, G. V. Psychopharmacology (Berl.) 2004, 174, 3–16; (c) Mu, Q.; Johnson, K.; Morgan, P. S.; Grenesko, E. L.; Molnar, C. E.; Anderson, B.; Nahas, Z.; Kozel, F. A.; Kose, S.; Knable, M.; Fernandes, P.; Nichols, D. E.; Mailman, R. B.; George, M. S. Schizophr. Res. 2007, 94, 332–341; (d) Nichols, D. E.; Lewis, M. M. Med. Chem. Res. 2004, 13, 105–114.
- (a) Negash, K.; Nichols, D. E. Tetrahedron Lett. **1996**, 37, 6971–6972; (b) Cueva, J. P.; Nichols, D. E. Synthesis **2009**, 715–720.
 Ebelich P. P.; Michaelider, M. P.; McLauchlin, M. M.; Henie, C. US, 5650027.
- Ehrlich, P. P.; Michaelides, M. R.; McLaughlin, M. M.; Hsaio, C. US 5659037, 1997.
- (a) Asano, Y.; Yamashita, M.; Nagai, K.; Kuriyama, M.; Yamada, K.-I.; Tomioka, K. *Tetrahedron Lett.* **2001**, *42*, 8493–8495; (b) Yamashita, M.; Yamada, K.-I.; Tomioka, K. *Tetrahedron* **2004**, *60*, 4237–4242.
- (a) Hajra, S.; Maji, B.; Sinha, D.; Bar, S. Tetrahedron Lett. 2008, 49, 4057–4059;
 (b) Hajra, S.; Maji, B.; Mal, D. Adv. Synth. Catal. 2009, 351, 859–864;
 Corrigendum: Hajra, S.; Maji, B.; Mal, D. Adv. Synth. Catal. 2010, 352, 3112.
 doi:10.1002/adsc.201090036; (c) Hajra, S.; Bar, S. Chem. Commun. 2011, 47, 3981–3982.
- 9. Renaud, J.-L.; Aubert, C.; Malacria, M. Tetrahedron 1999, 55, 5113-5128.
- (a)Pearson, W. H., Lian, B. W., Bergmeier, S. C., Eds., 2nd ed.Comprehensive Heterocyclic Chemistry II; Padwa, A., Ed.; Pergamon: Oxford, 1996; Vol. 1A, pp 1–60; (b)Lokanatha Rai, K. M., Hassner, A., Eds., 2nd ed.Comprehensive Heterocyclic Chemistry II; Padwa, A., Ed.; Pergamon: Oxford, 1996; Vol. 1A, pp 61–96; For a recent review, see: (c) Hu, X. E. *Tetrahedron* 2004, 60, 2701– 2743; (d) McCoull, W.; Davis, F. A. *Synthesis* 2000, 1347–1365; (e) Atkinson, R. S. *Tetrahedron* 1999, 55, 1519–1559; (f) Tanner, D. *Angew. Chem., Int. Ed. Engl.* 1994, 33, 599–619; (g) Krake, H.; Bergmeier, S. C. *Tetrahedron* 2010, 66, 7337– 7360.
- Evans, D. A.; Fad, M. M.; Bilodeau, M. T. J. Am. Chem. Soc. 1994, 116, 2742– 2753.