

Bioorganic & Medicinal Chemistry Letters 13 (2003) 1325–1328

BIOORGANIC & MEDICINAL CHEMISTRY LETTERS

Synthesis and SAR of Aminoalkoxy-biaryl-4-carboxamides: Novel and Selective Histamine H₃ Receptor Antagonists

Ramin Faghih,* Wesley Dwight,[†] Jia Bao Pan, Gerard B. Fox, Kathy M. Krueger, Timothy A. Esbenshade, Jill M. McVey, Kennan Marsh, Youssef L. Bennani[‡] and Arthur A. Hancock

Neuroscience Research, Global Pharmaceutical Research and Development, Abbott Laboratories, Abbott Park, IL 60064-6123, USA

Received 8 November 2002; accepted 13 January 2003

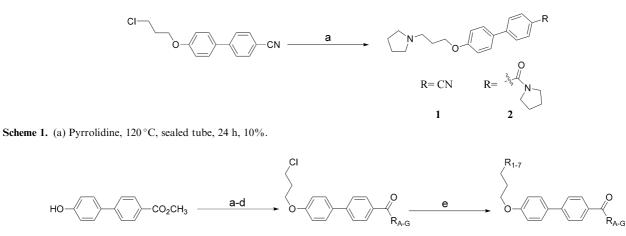
Abstract—Novel 4'-[(NR1R2-1-yl)]-propoxy-biaryl-4-carboxamides were designed and synthesized. All compounds were tested for affinity at histamine H₃receptors. Most compounds were highly potent and selective for human and rat H₃ receptors and selected examples such as A-349821 showed functional antagonism of H₃ receptors in vitro and in a mouse dipsogenia model. \bigcirc 2003 Published by Elsevier Science Ltd.

Histamine mediates its action both in the CNS and the periphery through 4 distinct receptors (H₁-H₄) known to date.¹ Histamine H₁ and H₂ receptor blockers are important medicines in clinical use today. The H₃receptor, primarily located in the CNS, is a presynaptic receptor, which modulates the production and release of histamine. Blockade of this receptor leads to increased levels of histamine and other neurotransmitters throughout the brain via effects on pre- and postsynaptic H₃ heteroreceptors.² The wide distribution of H₃ receptors in the mammalian CNS indicates the physiological role of this receptor. Therefore the therapeutic potential as a novel drug development target in indications associated with neurological disorders such as attention-deficit hyperactivity disorder (ADHD), Alzheimer's disease (AD), Parkinson disease and epilepsy as well as metabolic disorders such as obesity have been proposed.³

We describe herein chemical, radioligand binding, in vitro and in vivo pharmacological data on a novel nonimidazole H₃-receptor antagonist series,⁴ typified by A-349821. This series of compounds is characterized by high, but approximately equal, affinity for both the human and rat receptor, in contrast to several previous series from our own laboratories^{4b} as well as to previously described imidazole-based H₃ antagonists such as GT-2331⁵ (p K_i of 8.67±0.05 and 9.71±0.11 at human cloned⁷ and rat cortical H₃ receptors⁸) and ciproxifan⁶ (p K_i of 7.22±0.05 and 9.22±0.04).

During our efforts to develop a selective H₃-blocker, we investigated the chemistry of several biaryl systems.^{4a} By treatment of chloropropyloxy-biarylnitrile with pyrrolidine in a sealed-tube for 24 h at 120 °C we obtained both the displacement product (1) and a small amount (~10%) of the corresponding carboxamide 2 as a minor component (Scheme 1). Affinity measurements at the H₃-receptor revealed carboxamide 2 with pK_i of 8.95 ± 0.06 and 8.18 ± 0.02 at human cloned and rat cortical H₃ receptors. Additional screening revealed excellent selectivity vis-à-vis other histaminergic receptors with $pK_i \leq 5.72$ at human H₁ and H₂ receptors.

Solution-phase parallel synthesis and a matrix approach were employed to prepare analogues of 2 quickly. Given this lead molecule consists of, both amide and amine functionalities, variation of each of these elements allowed a practical, systematic strategy toward the rapid delineation of the SAR of this biphenyl-amide series (Scheme 2).

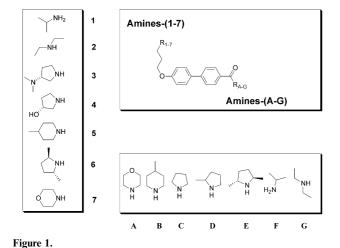

Thus, commercially available methyl-4'-hydroxy[1,1'biphenyl]-4-carboxylate (Scheme 2) was treated with 1-bromo-3-chloropropane in the presence of K_2CO_3 in

^{*}Corresponding author. Fax: +1-847-937-4143; e-mail: ramin.fagih@ abbott.com

[†]Present address: Neurocrine Biosciences, San Diego, CA, USA.

[‡]Present address: Athersys Inc., Cleveland, OH, USA.

⁰⁹⁶⁰⁻⁸⁹⁴X/03/\$ - see front matter \odot 2003 Published by Elsevier Science Ltd. doi:10.1016/S0960-894X(03)00118-5



Scheme 2. (a) Cl-(CH₂)₃-Br, K₂CO₃, 2-butanone, reflux, 24 h, 100%; (b) LiOH, THF/H₂O (3:1), rt, 98%; (c) SOCl₂, 90 °C, 4 h, 99%; (d) amines (A-G) Hunig's base, CH₂Cl₂, 0 °C, 70–92%; (e) amines (1–7), K₂CO₃, KI, 2-butanone, reflux, 72 h, 60–88%.

refluxing 2-butanone for 24 h. The resulting *O*-alkyl chloride was further treated, without purification, with lithium hydroxide to give the desired acid in 98% yield after silica-gel chromatoghraphy-filtration. Thionyl chloride treatment of the biaryl carboxylic acid provided the biphenyl-acyl chloride ready for parallel synthesis (Scheme 2). A group of 49 biphenyl-*O*-propylamine amides were prepared in a matrix-parallel fashion using the above set of 7×7 amines (Fig. 1).

The resulting products were purified using high throughput-HPLC-MS techniques, and assayed in a binding experiment using human cloned H₃ and rat cortex H₃ receptors. Data from Table 1 indicate a fairly well defined pharmacophore. While the lead **2** had good affinity for human and rat H₃R, several other substitutions altering various physicochemical properties of the molecule showed better binding (i.e., morpholine amide: **A6**; 4-methylpiperidine amide **B6** or N,N- diethylamide **G6**).

Overall, the amide portion can tolerate wide structural alterations but the basic site seems to be more restrictive, favoring small substituted pyrrolidines such as (R,R)-dimethylpyrrolidine. From the above studies we selected A-349821 (i.e., A6) based on its high affinity and selectivity for human and rat H₃ receptors. Com-

pound A6 (A-349821) demonstrated excellent selectivity towards other histaminergic receptors with pK_i of 5.63 ± 0.036 at human H₁ and pK_i of 5.00 at human H₂ and H₄¹¹ receptors. A-349821 was tested at a number of biogenic amine receptors and transporters including different subtypes (Table 2).

A-349821 demonstrated low affinity at all of these sites. Since A-349821 fulfilled our requirement of in-vitro potency and selectivity, it was further evaluated in models of in-vitro functional activity. In vitro functional antagonism was demonstrated in assays in which inhibition of forskolin-stimulated cyclic AMP formation could be inhibited by (*R*)- α -methylhistamine, and reversed by H₃ antagonists.⁸ At cloned human and rat H₃ receptors, compound A6 blocked the H₃ agonist with pA₂ values of 8.67±0.25 and 8.71±0.20, consistent with similar affinities for these two receptors in radioligand binding assays. A-349821 was tested for H₃ receptor antagonist activity in an assay with K⁺-evoked depolarization-induced release of [³H]-histamine from

Table 1. Binding affinities^a (pK_i) at human cloned and rat cortical H_3 receptors

Compd ^b	hH_3	$rH_{3} \\$	Compd	$hH_{3} \\$	$rH_{3} \\$	Compd	hH_3	rH_3
A1	7.49	6.89	C4	8.19	7.48	E7	7.43	6.94
A2	8.62	8.05	C5	8.44	7.99	F1 ^c	ND	ND
A3	8.26	7.56	C6	9.16	8.29	F2	8.21	7.79
A4	8.21	7.49	C7	7.39	6.75	F3	8.22	7.69
A5	8.14	8.06	D1	8.01	7.37	F4	8.09	7.54
A6	9.31	8.78	D2	8.67	8.14	F5	8.68	8.42
A7	7.74	7.28	D3	8.19	7.67	F6	9.07	8.55
B1	6.74	6.32	D4	8.08	7.59	F7	7.41	6.87
B2	8.46	8.08	D5	8.43	8.55	G1	6.96	6.39
B3	8.41	7.53	D6	9.11	8.99	G2 ^c	ND	ND
B4	8.16	7.51	D7	7.61	6.95	G3	8.16	7.55
B5	7.97	7.68	E1	6.64	6.66	G4	8.09	7.37
B6	9.22	8.53	E2	8.29	7.86	G5	8.32	8.04
B7	7.63	7.15	E3	8.36	7.76	G6	9.11	8.69
C1 ^c	ND	ND	E4	7.95	7.24	G7	7.79	7.01
C2	8.52	7.89	E5	8.33	8.44	1	8.14	7.38
C3	8.54	7.73	E6	9.01	8.38	2	8.95	8.18

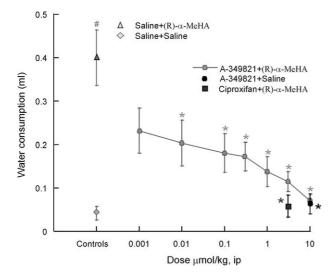
^aValues were estimated from at least three separate competition experiments (SEM < 0.08).

^bSatisfactory ¹H NMR, MS spectra were obtained for all new compounds. Compounds were tested as TFA salts.

Table 2. Binding affinities^a (pK_i) at human biogenic amine receptors and transporters

Compd	hD _{4.2}	hM_1	hM_2	hM_3	$h\alpha_2 C_{10}$	UPTK-NE	UPTK- 5HT	UPTK-DA
A-349821 ^b	5.01	5.79	6.03	5.78	5.79	5.01	5.45	5.31

^aValues were estimated from at least three separate competition experiments (SEM \leq 0.14). ^bCompound was tested as L-tartaric acid salt.


Compound was tested as E-tartane acid sait.

rat synaptosomes⁹ with pK_b of 9.23 ± 0.16 . The compound also blocked (*R*)- α -methylhistamine-induced inhibition of electrical field-stimulation induced twitch responses in the isolated guinea pig ileum with a pA_2 value of 9.47 ± 0.56 .

To demonstrate functional antagonism at the H₃ receptor in vivo, we employed a previously characterized mouse dipsogenia model in which pronounced drinking, elicited acutely in response to the H₃ receptor agonist (*R*)- α -methylhistamine, can be attenuated by preadministration of H₃ receptor blockers¹⁰ (Fig. 2).

A-349821, administered 5 min prior to (R)- α -methylhistamine, dose-dependently attenuated agonist-induced dipsogenia over a dose range 0.001–10 µmoles/kg, ip A-349821 had no effect on basal drinking response when administered 5 min prior to vehicle instead of (R)- α -methylhistamine.

On the basis of its excellent characteristics, A-349821 was evaluated for oral bioavailability in both monkey and dog. After a 2.5 mg/kg oral dose, A-349821 showed an excellent bioavailability of 78% in monkey. The compound was characterized by low plasma clearance (CLp = 1.0 L/h kg), an apparent elimination half-life of 5.3 h and a volume of distribution (V_{β}) = 7.5 L/kg. The peak plasma concentration after 5 h was 0.17 mcg/mL. A-349821 pharmacokinetics following a 2.5 mg/kg oral dose in dog was characterized by low clearance values (CLp = 0.6 L/h kg) with an apparent elimination half-life of 2.6 h. Peak blood concentrations averaged 0.31 mcg/mL after oral dosing, with 33.0% bioavailability. A-349821 was further advanced to in vivo studies (to be described elsewhere).

In summary, we have discovered highly potent ligands for both human and rat H_3 receptors, with several exemplary compounds showing some of the highest affinity for human H_3 receptors reported to date.¹² The high potency of some of these compounds (e.g., **A6** or **A**-349821) for human receptors, coupled with other favorable physiological and pharmacodynamic properties make these compounds prime candidates for clinical studies in various CNS disorders.

References and Notes

1. (a) Leurs, R.; Watanabe, T.; Timmerman, H. *Trends Pharmacol. Sci.* **2001**, *22*, 337. (b) Hough, L. B. *Mol. Pharmacol.* **2001**, *59*, 415.

2. (a) Arrang, J.-M.; Garbarg, M.; Schwartz, J.-C. *Nature* (London) **1983**, 302, 832. (b) Arrang, J.-M.; Garbarg, M.; Lancelot, J.-C.; Lecomte, J.-M.; Pollard, H.; Robba, M.; Schunack, W.; Schwartz, J.-C. *Nature* (London) **1987**, 327, 117. (c) *The Histamine* H₃Receptor A Target for New Drugs; Leurs, R., Timmerman, H., Eds. Pharmacochemistry Library Volume 30; Elsevier: Amsterdam, 1998. (d) Leurs, R.; Blandina, P.; Tedford, C.; Timmerman, H. *Trends Pharmacol. Sci.* **1998**, 19, 177. (e) Lovenberg, T. W.; Pyati, J.; Chang, H.; Wilson, S. J.; Erlander, M. G. J. Pharmacol. Exp. Ther. **2000**, 293, 771. (f) Leurs, R.; Hoffmann, M.; Wieland, K.; Timmerman, H. *Trends Pharmacol. Sci.* **2000**, 21, 11.

3. (a) Bush, E. N.; Shapiro, R.; Nuss, M.; Knourek-Segel, V.; Wilcox, D.; Droz, B.; Faghih, R.; Bennani, Y.; Esbenshade, T.; Jacobson, P. B.; Hancock, A. A. *Abstracts, American Diabetes Association*, **2002** 1715-P. (b) Krueger, K. M.; Kang, C.-H.; Miller, T.; Witte, D.; Faghih, R.; Bennani, Y. L.; Esbenshade, T. A.; Hancock, A. *Pharmacologist* **2002**, *44* (Suppl 1), A196. (c) Hancock, A.; Fox, G.; Bush, E.; Shapiro, R.; Nuss, M.; Knourek-Segel, V.; Wilcox, D.; Droz, B.; Jacobson, P.; Bennani, Y. L.; Esbenshade, T.; Faghih, R. *Pharmacologist* **2002**, *44* (Suppl 1), A157. (d) Tozer, M. J.; Kalindjian, S. B. *Expert Opin. Ther. Pat* **2000**, *10*, 1045.

4. (a) Faghih, R.; Dwight, W.; Vasudevan, A.; Dinges, J.; Conner, S. E.; Esbenshade, T.; Bennani, Y. L.; Hancock, A. A. *Bioorg. Med. Chem. Lett.* **2002**, *12*, 3077. (b) Faghih, R.; Dwight, W.; Black, L.; Liu, H.; Gentles, R.; Phelan, K.; Esbenshade, T. A.; Ireland, L.; Miller, T. A.; Kang, C.-H.; Krueger, K. M.; Fox, G. B.; Hancock, A. A.; Bennani, Y. L. *Bioorg. Med. Chem. Lett.* **2002**, *12*, 2035. (c) Ting, P. C.; Lee, J. F.; Albanese, M. M.; Tom, W. C.; Solomon, D. M.; Aslanian, R.; Shih, N.-Y.; West, R. *Bioorg. Med. Chem. Lett.* **2002**, *12*, 2643. (d) Shah, C.; McAtee, L.; Breitenbucher, G.; Rudolph, D.; Li, X.; Lovenberg, T. W.; Mazur, C.; Wilson, S. J.; Carruthers, N. I. *Bioorg. Med. Chem. Lett.* **2002**, *12*, 3309.

5. Halpern, M. T. Curr. Opin. Cent. Peripher. Nerv. Syst. Invest. Drugs 1999, 1, 524.

6. Kathmann, M.; Schlicker, E.; Marr, I.; Werthwein, S.; Stark, H.; Schunack, W. *Naunyn-Schmiedeberg's Arch. Pharmacol.* **1998**, *358*, 623.

7. Lovenberg, T. W.; Roland, B. L.; Wilson, S. J.; Jiang, X.; Jayashree, P.; Huvar, A.; Jackson, M. R.; Erlander, M. G. *Mol. Pharmacol.* **1999**, *55*, 1101.

8. Hancock, A. A.; Esbenshade, T. A. In *Current Protocols in Pharmacology* Enna, S., Williams, M., Ferkany, J., Kenakin, T., Porsolt, R., Sullivan, J. Eds.; John Wiley & Sons: 2000; Vol. 1.19, p 1.

9. Garbarg, M.; Arrang, J.-M.; Rouleau, A.; Ligneau, X.; Tuong, M. D.; Schwartz, J.-C.; Ganellin, C. R. J. Pharmacol. *Exp. Ther.* **1992**, *263*, 304.

10. Fox, G. B.; Pan, J. B.; Esbenshade, T. A.; Bitner, R. S.; Nikkel, A. L.; Miller, T.; Kang, C.-H.; Bennani, Y. L.; Black, L. A.; Faghih, R.; Hancock, A. A.; Decker, M. W. *Pharmacol. Biochem. Behav.* **2002**, *72*, 741. 11. (a) Oda, T.; Morikawa, N.; Saito, Y.; Masuho, Y.; Matsumoto, S. J. Biol. Chem. **2000**, 275, 36781. (b) Nguyen, T.; Shapiro, D. A.; George, S. R.; Setola, V.; Lee, D. K.; Cheng, R.; Rauser, L.; Lee, S. P.; Lynch, K. R.; Roth, B. L.; O'Dowd, B. F. Mol. Pharmacol. **2001**, 59, 427. (c) Liu, C.; Ma, X.-J.; Jiang, X.; Wilson, S. J.; Hofstra, C. L.; Blevitt, J.; Pyati, J.; Li, X.; Chai, W.; Carruthers, N.; Lovenberg, T. W. Mol. Pharmacol. **2001**, 59, 420.

12. Apelt, J.; Ligneau, X.; Pertz, H. H.; Arrang, J.-M.; Ganellin, R. C.; Schwartz, J.-C.; Schunack, W.; Stark, H. J. *Med. Chem.* **2002**, *45*, 1128.