Bioorganic & Medicinal Chemistry 21 (2013) 4885-4892

Contents lists available at SciVerse ScienceDirect

Bioorganic & Medicinal Chemistry

journal homepage: www.elsevier.com/locate/bmc

Synthesis of polysubstituted benzofuran derivatives as novel inhibitors of parasitic growth

Marion Thévenin^a, Sylviane Thoret^a, Philippe Grellier^b, Joëlle Dubois^{a,*}

^a CNRS, Institut de Chimie des Substances Naturelles, UPR2301, Centre de Recherche de Gif, Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France ^b Muséum National d'Histoire Naturelle, UMR 7245 CNRS, Département RDDM, CP52, 57 rue Cuvier, 75005 Paris, France

ARTICLE INFO

Article history: Received 25 April 2013 Revised 25 June 2013 Accepted 1 July 2013 Available online 12 July 2013

Keywords: Benzofurans Sonogashira coupling reaction Antiparasitic T. brucei P. falciparum

ABSTRACT

A series of polysubstituted benzofuran derivatives was easily and rapidly prepared using a tandem Sonogashira coupling/cyclization reaction. Subsequent acylation afforded a small library of 39 new compounds that were assayed in cellulo on *Plasmodium falciparum* and *Trypanosoma brucei* parasites. Some of them exhibited good inhibitory activity on *T. brucei* proliferation.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

According to WHO reports, *Plasmodium falciparum* is the major cause of malaria in humans, with 200–300 million individuals affected annually, causing 200–250 thousand deaths,¹ while *Trypanosoma brucei*, responsible for the African sleeping sickness, concerns 30 thousand persons and is lethal in absence of any treatment.² Currently resistance phenomena to established therapeutics against these diseases has dramatically developed. Hence new efficient antiparasitic agents are deeply needed.

In the course of our search for new active molecules, we synthesized intermediate benzofuran derivatives that displayed good antiparasitic activity. Benzofuran containing molecules have already been described to possess many biological properties as antiinflammatory,^{3,4} antivasoconstriction,⁵ antimicrobial⁶ or antifungal.^{7,8} However, to the best of our knowledge, few authors studied their potential antiparasitic activity.^{9–13} From the chemical standpoint, many syntheses of molecules possessing a benzofuran motif have been developed. Recently rapid metal-catalyzed methods yielding benzofurans from phenols were described.^{14–17} As well, Singh and Wirth published an efficient metal-free cyclization of *o*-hydroxystilbenes to benzofurans catalyzed by hypervalent iodine.¹⁸ Nevertheless 2,3-, 2,4- and 2,3,4-trisubstituted benzofurans herein reported have rarely been studied. For all these reasons we decided to create a library of polysubstituted benzofuran derivatives to evaluate their antiproliferative effects on *P. falciparum* and on *T. brucei*.

Thus we synthesized benzofuran derivatives substituted at position 2 by an aryl or cyclopropyl group. These compounds were either *C*-acylated at position 3 (**A** and **B**, Fig. 1) or *O*-acylated at position 4 (**C**, Fig. 1), the acyl substituent R_2 being an aryl moiety bearing various substituents. In order to increase the molecular diversity in the *C*-acylated series, R_3 at position 4 is either a hydrogen atom (**A** series), a hydroxyl group or a methoxy substituent (**B** series).

Herein, we describe an easy and rapid synthesis of polysubstituted benzofuran derivatives along with their biological evaluation on *P. falciparum* and *T. brucei* proliferation.

Figure 1. General structures of benzofuran derivatives.

^{*} Corresponding author. Tel.: +33 1 69 82 30 58; fax: +33 1 69 07 72 47. *E-mail address:* joelle.dubois@cnrs.fr (J. Dubois).

^{0968-0896/\$ -} see front matter @ 2013 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.bmc.2013.07.002

2. Chemistry

2.1. Tandem Sonogashira coupling/cyclization reaction

2-Substituted benzofurans **1–3** and **11–14** were synthesized via a tandem Sonogashira coupling/cyclization reaction from the commercially available 2-iodophenol (Scheme 1) and from the prepared 2-iodoresorcinol (Scheme 2), respectively. The substituent R₁ (aryl or cyclopropyl) was brought about by acetylene derivatives. Though this same Sonogashira coupling reaction has already been reported with 2-iodoresorcinol,¹⁹ it was only obtained with hexyl or phenyl R₁ substituent in 50% and 60% yield, respectively. Therefore we tried to optimize this coupling reaction. Our major aim was to avoid the Glaser coupling affording the dimer products from terminal alkynes.^{20–22} Thus we found that a perfectly degassed solvent by using the freeze-pump-thaw method could minimize this homocoupling reaction.

These conditions combined with the use of 3 equiv of alkynes allowed to significantly increase the reaction yield up to 77% for benzofuran-4-ol 11 (Scheme 2). Afterwards they were applied for the formation of all 2-substituted derivatives. Thus synthesis of benzofurans 1–3 (Scheme 1) was performed with moderate to high vield (50-88%) as well as benzofuran-4-ols 11-13 (Scheme 2) (70-77%). Only compound **14** possessing a xylyl group (Scheme 2) was obtained in low vield (12%). Formation of benzofurans required diluted conditions in order to minimize homocoupling reaction. Therefore, faced with a scale-up issue for derivatives 1-3, we decided to use conditions described by Alami's group²³ allowing the cyclization into benzofurans from 2-iodoanisole in two steps (Scheme 3). Thus through this method, multigram scale reactions have been carried out giving 5- to 10-fold greater amounts of desired product. Moreover, formation of benzofuran 1 substituted by a 4-methoxyphenyl group was performed in quantitative yield, whereas a 50% yield was obtained using Sonogashira coupling reaction. On the contrary, much better yields were observed with the tandem reaction for the synthesis of compounds 2 and 3 with 88% and 70% yields, respectively, compared to 65% and 16% obtained in two steps, respectively.

2.2. Friedel-Crafts acylation

A standard Friedel–Crafts acylation using tin(IV) chloride was then carried out to form compounds **4–9** (**A** series), **19–25** and **26–31** (**B** series) bearing a hydrogen atom, a hydroxyl group and a methoxy substituent at position 4 of benzofuran motif, respectively (Scheme 2 and Table 1). The acyl chlorides used in this reaction were generally commercially available except di- and trisubstituted derivatives that were prepared just before the acylation reaction from the corresponding acid and thionyl chloride. Few derivatives of the **A** series were prepared because they early

Scheme 1. Reagents and conditions: (a) $PdCl_2(PPh_3)_2$ (5 mol %), Cul (10 mol %), Et₃N (10 equiv), MeCN, 60 °C, overnight, **1**: 50%, **2**: 88%, **3**: 70%; (b) R_2 -COCl (1.2 equiv), SnCl₄ (1.2 equiv), DCM, rt, 1–5 h, 13–86% (see Table 1).

displayed low antiparasitic activity (see Table 3). Acylation yields for **A** series (Table 1) were low with *p*-nitro- and trisubstituted benzoyl chlorides (compounds **5**, **6** and **9**) and the 2-cyclopropyl-3-(*p*-nitrobenzoyl)benzofuran could not be obtained under these conditions. However, moderate to excellent yields were reached with benzoyl chloride (compounds **4**, **7** and **8**).

In order to avoid esterification of the 4-OH group in the **B** series, protection of benzofuran-4-ols 11-14 was first carried out (Scheme 2). Hence introduction of a benzyl or a methyl group was performed yielding derivatives 15-18 with excellent yields (81–92%). Under acylation conditions, the benzyl protecting group was hydrolyzed affording the direct formation of 2,3,4-trisubstituted analogues 19-25 (Scheme 2 and Table 1). It should be noticed that only traces of 2-phenyl-3-acylbenzofurans were obtained in **B** series. Indeed, acylation of 2-phenyl derivatives was unsuccessful probably because many positions of the 2-phenyl ring were also acvlated underFriedel-Crafts conditions. leading to a complex mixture where the expected derivative was generally formed as a minor product. Likewise, all reactions performed with p-nitrobenzoyl chloride failed leading to many side products. On the other hand, acylation of compound **18** ($R_1 = p$ -methoxyphenyl, $R_3 = Me$) afforded benzofurans **26–31** (Table 1) in better yields (up to 41%). Only acylation with disubstituted benzoyl chloride was less efficient (27% yield). The *p*-methoxyphenyl group was the only R₁ substituent used in this series because of our preliminary biological results (see Table 4).

Though our first goal was to obtain rapidly a small library of polysubstituted benzofurans, we tried to optimize the acylation reaction. Thus we found that using titanium(IV) chloride or aluminium(III) chloride instead of tin(IV) chloride as Lewis acid significantly increased the yield reaction. Indeed 82% yield was obtained instead of 67% for the optimized acylation performed to get compound **26** (Table 1).

2.3. O-Acylation

Further O-acyl benzofuran derivatives **32–51** (**C** series) were prepared from compounds **11–14** bearing a free hydroxyl group, according to Scheme 2. Obtained yields (Table 2) were moderate (39–54%) for 2-phenyl-benzofuran derivatives **45–50**. Only acylation with *p*-chlorobenzoyl chloride afforded expected compound **49** in good yield (71%). This reaction proved to be more efficient on 2-*p*-methoxyphenyl-benzofuran leading to compounds **32–38** in good yield but the best results were obtained on 2-cyclopropylbenzofuran leading to compounds **39–44** in good to excellent yields (69–96%) except with 2-ethoxynaphthaloyl chloride. This reaction led to a modest yield only with the trisubstituted benzoyl chloride that was synthesized just before acylation (11% for compound **34**, Table 3).

3. Biology

All these benzofuran derivatives were assayed on the intraerythrocytic stages of *P. falciparum*,^{24–26} responsible for malaria and the bloodstream forms of *T. brucei gambiense*, the pathogenic agent of African sleeping sickness.^{27–29} Results are summarized in Tables 3–5.

None of the 2,3-disubstituted benzofurans of the **A** series (Table 3) were active against *P. falciparum*. Their activity against *T. brucei* was moderate when R₂ was a phenyl group (compounds **4**, **7** and **8**) and compounds bearing a *p*-nitrobenzoyl moiety at position 3 (compounds **4** and **9**) were inactive. Only compound **6** where R₂ was a trisubstituted phenyl (IC₅₀ = 6.7 μ M) displayed a better activity.

Like 2,3-disubstituted benzofurans, **B** series derivatives (Table 4) displayed no activity against *P. falciparum*. On the other hand, better results were obtained on *T. brucei*. Almost all derivatives displayed

Scheme 2. Reagents and conditions: (a) PdCl₂(PPh₃)₂ (5 mol %), Cul (10 mol %), Et₃N (10 equiv), MeCN, 60 °C, overnight, **11**: 77%, **12**: 73%, **13**: 76%, **14**: 12%; (b) BnBr (2 equiv), K₂CO₃ (2 equiv), acetone, reflux, 4–10 h, 81–86%; (c) Mel (2 equiv), K₂CO₃ (2 equiv), DMF, rt, 19 h, 92%; (d) R₂-COCl (1.2 equiv), SnCl₄ or TiCl₄ (1.2 equiv), DCM, rt, 1–5 h, 6–83% (see Table 1); (e) R₂-COCl (1.2 equiv), Et₃N (1.2 equiv), DCM, 0 °C to rt, 2–5 h, 27–96% (see Table 2).

Scheme 3. Reagents and conditions: (a) $PdCl_2(PPh_3)_2$ (2 mol %), Cul (1 mol %), Et₃N, rt, overnight; (b) PTSA·H₂O, EtOH, MW (130 °C, 1 h) or sealed tube, 130 °C, 24 h, 1: 100%, **2**: 65%, **3**: 16% (in two steps).

Table 1C-Acylation results in the A and B series

Compd	R ₁	R ₂	R ₃	Yields (%)
4	š-∕⊂_≻OMe	Phenyl		86
5		4-Nitro phenyl		27
6		2-Hydroxy-4,6-dimethoxyphenyl		17
7	\$-<	Phenyl	1	53
8	3-	Phenyl		83
9		4-Nitro phenyl		13
19	š-∕_>OMe	Phenyl	Н	17
20		4-Methoxyphenyl	Н	26
21		1-Naphthyl	Н	25
22		2-Ethoxy-1-naphthyl	Н	12
23	ş-<	4-Methoxyphenyl	H	6
24		1-Naphthyl	H	35
25		2-Ethoxy-1-naphthyl	H	28
26 27 28 29 30 31	Ş-∕Ç_>-OMe	Phenyl 4-Methoxyphenyl 1-Naphthyl 4-Chlorophenyl 3-Methoxy-4-O-pivaloyl- phenyl 2,4,6-Trimethoxyphenyl	Me Me Me Me Me	67 (82) ^a 67 55 41 27 67

^a Yield obtained under optimized conditions (TiCl₄ 1.2 equiv, DCM, rt, 1 h).

IC₅₀ value below 10 μM and only compound **31** was found inactive. The presence of a 2,4,6-trisubstituted phenyl group at position 3 seemed to be detrimental to the inhibitory activity contrary to what was observed in the **A** series. 4-Hydroxybenzofuran derivatives (**19**– **21**) were slightly more active than their corresponding methoxy analogues (**26–28**). Replacement of the methoxyphenyl group at position 2 by a cyclopropyl ring did not modify much the inhibitory activity (compare **20–22** to **23–25**) suggesting that this position is not crucial for activity. Finally compound **22** was found to be the most active derivative of this series on *T. brucei* proliferation (IC₅₀ = 1.5 μM). By comparison with the **A** series, 4-position substitution seemed to be beneficial for trypanocidal activities.

Contrary to A and B series derivatives, some 4-0-acylated benzofurans in the C series (33, 34 and 51) (Table 5) demonstrated some activity against P. falciparum. Two of them (33 and 34) bearing a *p*-methoxyphenyl group at position 2 and at least one methoxy substituent in *para* position of the aroyl group displayed IC_{50} values of 11.2 and 7.9 uM, respectively. The most potent antimalarial compound of the series was the benzofuran derivative 51 showing an IC₅₀ of 6.0 µM. Therefore the 2-xylyl group seemed to significantly improve the antiplasmodial activity. Better inhibitory activities against T. brucei were obtained in the C series $(1.4 < IC_{50} < 20 \mu M)$ except for compound **34** bearing a trisubstituted phenyl moiety at position 4. As observed in the B series, trisubstituted R₂ group seemed to abolish trypanocidal activity. Generally the R₁ substituent had little influence on the activity. However, for the O-benzoylbenzofurans 32, 39, 45 and 51 (Table 5), we observed that inhibition increased with the steric hindrance of the 2-substituent, *m*-xylyl compound **51** being more active than p-methoxyphenyl 32, phenyl 45 and cyclopropyl 39, successively. Furthermore, when R₂ was a 4-chlorophenyl or 4-nitrophenyl group lower IC₅₀ values were obtained with the cyclopropyl derivatives.

Table 2

O-Acylation results in the C series

Compd	R ₁	R ₂	Yields (%)
32	ŝ-∕Ç}-OMe	Phenyl	77
33		4-Methoxyphenyl	68
34		2-Hydroxy-4.6-dimethoxyphenyl	11
35		1-Naphthyl	60
36		2-Ethoxy-1-naphthyl	54
37		4-Chlorophenyl	70
38		4-Nitrophenyl	62
39	3-<<	Phenyl	96
40		4-Methoxyphenyl	88
41		1-Naphthyl	69
42		2-Ethoxy-1-naphthyl	19
43		4-Chlorophenyl	86
44		4-Nitrophenyl	78
45	\$- { }	Phenyl	49
46		4-Methoxyphenyl	45
47		1-Naphthyl	48
48		2-Ethoxy-1-naphthyl	39
49		4-Chlorophenyl	71
50		4-Nitrophenyl	48
51	\$-	Phenyl	56

Table 3 Inhibitory activity of 3-acyl-2-substituted benzofuran derivatives 4-9 (A series)

4. Conclusion

To conclude, we have reported the easy and rapid synthesis of a novel series of 39 polysubstituted benzofuran derivatives. Indeed 2 and 3 steps were only necessary to obtain 4-O-acyl and 3-C-acyl benzofurans, respectively, via a tandem Sonogashira coupling/ cyclization reaction. All these compounds were then assayed for their antiparasitic effects. Most of them displayed good inhibitory activities on *T. brucei* proliferation possessing IC₅₀ values below 10 μ M. The most potent trypanocidal inhibitors of this novel class with micromolar IC₅₀ values include one 3-C-acyl-2-substituted benzofurans. The

0' 📚				
Compd	R ₁	R ₂	IC ₅₀ (µM)	IC ₅₀ (µM)
			<i>P. f</i>	Т. Ь
4	4-Methoxy phenyl	Phenyl	>50	21.2 ± 0.9
5	4-Methoxy phenyl	4-Nitro phenyl	>50	>50
6	4-Methoxy phenyl	2-Hydroxy-4,6-dimethoxyphenyl	>25	6.7 ± 0.5
7	Cyclopropyl	Phenyl	>50	20.9 ± 2.0
8	Phenyl	Phenyl	>50	15.5 ± 1.9
9	Phenyl	4-Nitro phenyl	>50	>50

Table 4

Inhibitory activity of 2,3,4-trisubstituted benzofuran derivatives 19-31 (B series)

Compd	R ₁	R ₂	R ₃	IC ₅₀ (μM)	IC ₅₀ (μM)
				P. falciparum	T. brucei
19	4-Methoxyphenyl	Phenyl	Н	>25	6.5 ± 0.6
20	4-Methoxyphenyl	4-Methoxyphenyl	Н	>25	7.7
21	4-Methoxyphenyl	1-Naphthyl	Н	>50	4.2 ± 0.5
22	4-Methoxyphenyl	2-Ethoxy-1-naphthyl	Н	>25	1.5 ± 0.2
23	Cyclopropyl	4-Methoxyphenyl	Н	>50	3.7 ± 0.7
24	Cyclopropyl	1-Naphthyl	Н	>50	4.6 ± 0.1
25	Cyclopropyl	2-Ethoxy-1-naphthyl	Н	>25	2.0 ± 0.2
26	4-Methoxyphenyl	Phenyl	Me	>50	11.8 ± 2.6
27	4-Methoxyphenyl	4-Methoxyphenyl	Me	>25	8.3 ± 1.3
28	4-Methoxyphenyl	1-Naphthyl	Me	>50	12.4 ± 1.8
29	4-Methoxyphenyl	4-Chlorophenyl	Me	>50	5.5 ± 1.2
30	4-Methoxyphenyl	3-Methoxy-4-O-pivaloyl-phenyl	Me	>50	8.4 ± 1.2
31	4-Methoxyphenyl	2,4,6-Trimethoxyphenyl	Me	>50	>50
Chloroquine				0.072 ± 0.0074	
Pentamidine					0.011 ± 0.0017

Table 5

Inhibitory activity of 4-O-acyl benzofuran derivatives 32-51 (C series)

Compd	R ₁	R ₂	IC ₅₀ (μM)	$IC_{50}\left(\mu M\right)$
			P. falciparum	T. brucei
32	4-Methoxyphenyl	Phenyl	>25	3.2 ± 0.3
33	4-Methoxyphenyl	4-Methoxyphenyl	11.2 ± 0.1	1.8 ± 0.1
34	4-Methoxyphenyl	2-Hydroxy-4,6-dimethoxyphenyl	7.9 ± 0.3	>50
35	4-Methoxyphenyl	1-Naphthyl	>50	14.9 ± 6.2
36	4-Methoxyphenyl	2-Ethoxy-1-naphthyl	>50	7.7 ± 1.0
37	4-Methoxyphenyl	4-chlorophenyl	>25	1.5 ± 0.2
38	4-Methoxyphenyl	4-Nitrophenyl	>50	1.7 ± 0.1
39	Cyclopropyl	Phenyl	>50	14.7 ± 1.0
40	Cyclopropyl	4-Methoxyphenyl	>50	2.7 ± 0.2
41	Cyclopropyl	1-Naphthyl	>50	12.6 ± 0.8
42	Cyclopropyl	2-Ethoxy-1-naphthyl	>25	6.4 ± 0.4
43	Cyclopropyl	4-Chlorophenyl	>50	7.1 ± 0.4
44	Cyclopropyl	4-Nitrophenyl	>50	12.2 ± 1.0
45	Phenyl	Phenyl	>25	14.0
46	Phenyl	4-Methoxyphenyl	>25	1.7 ± 0.1
47	Phenyl	1-Naphthyl	>25	21.3 ± 0.7
48	Phenyl	2-Ethoxy-1-naphthyl	>50	6.7 ± 0.2
49	Phenyl	4-Chlorophenyl	>25	1.6 ± 0.0
50	Phenyl	4-Nitrophenyl	>25	1.8 ± 0.1
51	m-Xylyl	Phenyl	6.0 ± 0.9	2.0 ± 0.1

highest activities were found when there is a 4-methoxyphenyl group at position 2, though modification at this position is possible, and with a *p*-substituted acyl group. On the other hand, benzofuran derivative **51** substituted by a xylyl group was found to be the most potent compound on *P. falciparum* with $IC_{50} = 6.0 \mu M$. Accordingly these promising results are paving the way for further investigations on neglected antiparasitic activity of polysubstituted benzofuran derivatives. For instance we envision to add amidine or guanidine substituents that proved beneficial for antiparasitic activities as reported by Tidwell's group.¹⁰

5. Experimental section

5.1. General experimental procedures

All commercial reagents were used without any further purification. Analytical thin-layer chromatography was carried out on precoated silica gel aluminium plates (SDS TLC plates, silica gel 60F₂₅₄). Column chromatography was performed prepacked Redisep columns. Preparative TLC (PLC) was performed on Merck TLC with silica gel 60F₂₅₄. NMR spectra, including ¹H, ¹³C (HMQC and HMBC) experiments, were recorded on a Brucker Avance 300 (300 MHz) and Avance 500 (500 MHz) spectrometers. Chemical shifts (δ) are given in ppm relative to CDCl₃ (7.26 ppm; 77.2 ppm), CD₃OD (3.34 ppm; 49.9 ppm), acetone-*d*₆ (2.05 ppm; 30.5 ppm) or DMSO- d_6 (2.50 ppm; 39.5 ppm). Splitting patterns are designed as: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet and combinations thereof. Coupling constants J are reported in hertz (Hz). IR spectra were recorded on a Perkin-Elmer Spectrum BX. Mass spectra were recorded on Thermoquest AQA Navigator with a TOF detection (ESI-HRMS) and on MALDI (matrix: DCTB). UHPLC analyses were realized on Waters Acquity UPLC. Melting points were measured on Büchi b-450 and are uncorrected.

The purity of all target compounds was measured using reversed-phase UHPLC (HSS C-18, 2.1×50 mm column): compounds were eluted with 95:5 A/B for 0.5 min then with a gradient of 5–

100% B/A for 3.5 min followed by 0:100 isocratic for 1 min at a flow rate of 0.6 mL/min, where solvent A was 0.1% formic acid in H_2O and solvent B was 0.1% formic acid in CH_3CN . Purity was determined on TAC (total absorbance current from 200 to 400 nM).

5.2. Preparation of 2-substituted benzofurans 1–3 and 2-substituted benzofuran-4-ols (11–14)

To a well-degazed MeCN (90 mL) via a 3 cycles of freeze-pumpthaw, phenol derivative (1 mmol), $PdCl_2(PPh_3)_2$ (5 mol %), degazed Et₃N (10 mmol), terminal alkyne (3 mmol) and CuI (10 mol %) were successively added under argon. The reaction mixture was allowed to stir overnight at 60 °C. The resulting solution was concentrated under reduced pressure and the residue obtained was dissolved in HCl 1 N solution and CH_2Cl_2 . The aqueous layer was extracted with CH_2Cl_2 (3 × 10 mL). The combined organic layers were washed with a saturated aq. NaCl solution, dried over anhydrous MgSO₄ and concentrated under vacuum. The crude product was then purified by flash chromatography on silica gel.

5.2.1. 2-(4-Methoxyphenyl)benzofuran (1)

Flash chromatography using as eluent: gradient heptane to heptane/AcOEt 9:1 (v/v) in 25 min. The product was obtained as a white amorphous solid (50%): ¹H NMR (CDCl₃) δ 7.83 (d, 2H, *J* = 9.0 Hz), 7.60–7.52 (m, 2H), 7.29–7.24 (m, 2H), 7.00 (d, 2H, *J* = 8.7 Hz), 6.91 (s, 1H), 3.88 (s, 3H); ¹³C NMR (CDCl₃) δ 160.3, 156.4, 155.0, 129.8, 126.7, 124.7, 124.1, 123.2, 120.9, 114.6, 111.3, 100.0, 55.7; MS (ESI⁺, MeOH+CH₂Cl₂) *m*/*z* 224.8 [M+H]⁺.

5.2.2. 2-Cyclopropylbenzofuran (2)

Flash chromatography using as eluent: isocratic heptane. The product was obtained as a colorless oil (88%): ¹H NMR (Acetone- d_6) δ 7.49–7.46 (m, 1H), 7.40–7.37 (m, 1H), 7.20 (td, 1H, *J* = 7.2, 1.8 Hz), 7.16 (td, 1H, *J* = 7.2, 1.8 Hz), 6.48 (s, 1H), 2.15–2.04 (m, 1H), 1.05–0.90 (m, 4H); ¹³C NMR (CDCl₃) δ 161.5, 155.2, 130.1, 123.8, 123.4, 120.9, 111.2, 101.0, 100.9, 9.81, 7.62; MS (MALDI) *m*/*z* 158.06 [M]⁺; HRMS calcd for C₁₁H₁₀O⁺ [M]⁺ 158.0732, found

158.0723; IR (neat, cm^{-1}) 1604, 1455, 1176, 1043, 1025; UPLC method (H₂O/MeCN): rt, 4.62 min, 100%.

5.2.3. 2-Phenylbenzofuran (3)

Flash chromatography using as eluent: isocratic heptane. The product was obtained as a white amorphous solid (70%): ¹H NMR (Acetone- d_6) δ 7.94 (d, 2H, J = 7.5 Hz), 7.64 (dd, 1H, J = 7.5, 1.5 Hz), 7.57 (dd, 1H, J = 7.5, 1.5 Hz), 7.50 (td, 2H, J = 7.5 Hz), 7.40 (td, 1H, J = 8.1, 1.5 Hz), 7.31 (td, 1H, J = 7.5, 1.5 Hz), 7.29 (s, 1H), 7.25 (td, 1H, J = 7.5, 1.5 Hz); ¹³C NMR (Acetone- d_6) δ 156.7, 155.7, 131.3, 130.2, 129.8, 129.6, 125.6, 125.4, 124.0, 122.0, 111.9, 102.5; MS (MALDI) m/z 195.1 [M]⁺; HRMS calcd for C₁₄H₁₀O₃⁺ 194.0732, found 194.0729; IR (neat, cm⁻¹) 1456, 1259, 1170, 1020; mp: 120–121 °C; UPLC method (H₂O/MeCN): rt, 5.16 min, 100%.

5.2.4. 2-(4-Methoxyphenyl)benzofuran-4-ol (11)

Flash chromatography using as eluent: gradient toluene to toluene/EtOAc 95:5 (v/v) in 25 min. The product was obtained as a brown amorphous solid (77%): ¹H NMR (CDCl₃) δ 7.78 (d, 2H, J = 9.0 Hz), 7.12–7.07 (m, 2H), 6.98 (d, 2H, J = 9.0 Hz), 6.95 (s, 1H), 6.62 (dd, 1H, J = 6.3, 2.1 Hz), 5.20 (s, 1H), 3.86 (s, 3H); ¹³C NMR (CDCl₃) δ 160.0, 156.4, 155.2, 149.0, 126.4, 124.5, 123.4, 114.4, 112.1, 108.1, 104.4, 96.5, 55.5; MS (ESI, MeOH+CH₂Cl₂) m/z 241.1 [M+H]⁺; HRMS calcd for C₁₅H₁₁O₃⁻ 239.0708, found 239.0704; IR (neat, cm⁻¹) 3452, 1177, 1076 cm⁻¹; mp: 159–160 °C; UPLC method (H₂O/MeCN): rt, 4.13 min, 95%.

5.2.5. 2-Cyclopropylbenzofuran-4-ol (12)

Flash chromatography using as eluent: gradient heptane to heptane/EtOAc 8:2 (v/v) in 25 min. The product was obtained as a brown oil (73%): ¹H NMR (CDCl₃) δ 7.03 (t, 1H, *J* = 8.0 Hz), 6.99 (d, 1H, *J* = 8.0 Hz), 6.57 (d, 1H, *J* = 8.0 Hz), 6,40 (s, 1H), 4.93 (s, 1H), 2.03–1.99 (m, 1H), 1.00–0.92 (m, 4H); ¹³C NMR (CDCl₃) δ 159.6, 156.0, 148.3, 123.7, 118.1, 107.9, 104.1, 96.9, 9.39, 7.35; MS (MALDI) *m*/*z* 174.0 [M]⁺; HRMS calcd for C₁₁H₁₀O₂⁺ [M]⁺ 174.0681, found 174.0681; IR (neat, cm⁻¹) 2963, 1258, 1013, 794; UPLC method (H₂O/MeCN): rt, 3.58 min, 100%.

5.2.6. 2-Phenylbenzofuran-4-ol (13)

Flash chromatography using as eluent: gradient heptane to heptane/EtOAc 8:2 (v/v) in 25 min. The product was obtained as a beige amorphous solid (76%): ¹H NMR (CDCl₃) δ 7.86 (d, 2H, *J* = 7.5 Hz), 7.45 (t, 2H, *J* = 7.5 Hz), 7.35 (t, 1H, *J* = 7.5 Hz), 7.15 (d, 1H, *J* = 7.0 Hz), 7.14 (t, 1H, *J* = 7.0 Hz), 7.10 (s, 1H), 6.64 (d, 1H, *J* = 7.0 Hz), 5.06 (s, 1H); ¹³C NMR (CDCl₃) δ 157.0, 155.3, 149.2, 130.5, 128.9, 128.6, 125.1, 125.0, 118.6, 108.1, 104.6, 98.1; MS (MAL-DI) *m*/*z* 210.05 [M]⁺ HRMS calcd for C₁₄H₁₀O₂⁺ [M]⁺ 210.0680, found 210.0680; IR (neat, cm⁻¹) 3272, 1603, 1251, 1028; mp: 163–164 °C; UPLC method (H₂O/MeCN): rt, 4.17 min, 100%.

5.2.7. 2-(3,5-Dimethylphenyl)benzofuran-4-ol (14)

Flash chromatography using as eluent: gradient heptane to heptane/EtOAc 8:2 (v/v) in 25 min. The product was obtained as a brown oil (12%): ¹H NMR (CDCl₃) δ 7.49 (s, 2H), 7.15 (t, 1H, *J* = 8.0 Hz), 7.12 (d, 1H, *J* = 8.0 Hz), 7.07 (s, 1H), 7.00 (s, 1H), 6.64 (dd, 1H, *J* = 8.0, 1.5 Hz), 5.22 (s, 1H), 2.39 (s, 6H); ¹³C NMR (CDCl₃) δ 156.5, 155.4, 149.1, 138.5, 130.5, 130.3, 124.9, 122.8, 118.7, 108.1, 104.5, 97.9, 21.5; MS (MALDI) *m*/*z* 238.08 [M]⁺ HRMS calcd for C₁₆H₁₄O₂⁺ [M]+. 238.0994, found 238.0980; IR (neat, cm⁻¹) 3260, 1605, 1254, 1084, 1031.

5.3. Benzylation of benzofuran-4-ol 11-14

To a solution of benzofuran-4-ol (1 mmol) in acetone (3 mmol), K_2CO_3 (2 mmol) and BnBr (2 mmol) were successively added at

room temperature. The reaction mixture was then refluxed until the reaction was complete. The cooled resulting solution was diluted with water and extracted three times with EtOAc. The combined organic layers were washed two times with a saturated aq. NaCl solution, dried over anhydrous MgSO₄ and concentrated under vacuum. The crude product was then purified by flash chromatography on silica gel.

5.3.1. 4-(Benzyloxy)-2-(4-methoxyphenyl)benzofuran (15)

Flash chromatography using as eluent: gradient heptane to heptane/EtOAc 9:1 (v/v) in 25 min. The product was obtained as a white amorphous solid (93%). ¹H NMR (CDCl₃) δ 7.79 (d, 2H, *J* = 9 0 Hz), 7.52–7.35 (m, 5H), 7.17 (d, 2H, *J* = 4,0 Hz), 7.05 (s, 1H), 6.98 (d, 2H, *J* = 9.0 Hz), 6.73 (t, 1H, *J* = 4.0 Hz), 5.23 (s, 2H), 3.86 (s, 3H); ¹³C NMR (CDCl₃) δ 159.8, 155.9, 154.8, 152.5, 137.2, 128.6, 128.0, 127.5, 126.3, 124.4, 123.4, 120.1, 114.3, 104.8, 104.6, 97.4, 70.3, 55.4; MS (ESI, MeOH+CH₂Cl₂) *m/z* 401.1 [M+H]⁺; HRMS calcd for C₂₂H₁₉O₃⁺ [M+H]⁺ 331.1334, found 331; 1320; IR (neat, cm⁻¹) 1610, 1244, 1072, 1021; mp: 113–114 °C; UPLC method (H₂O/MeCN): rt, 5.84 min, 100%.

5.3.2. 4-(Benzyloxy)-2-cyclopropylbenzofuran (16)

Flash chromatography using as eluent: isocratic heptane. The product was obtained as a colorless oil (81%): ¹H NMR (CDCl₃) δ 7.49–7.31 (m, 5H), 7.09 (t, 1H, *J* = 8.1 Hz), 7.03 (d, 1H, *J* = 8.1 Hz), 6.68 (d, 1H, *J* = 8.1 Hz), 6.49 (s, 1H), 5.18 (s, 2H), 2.06–1.97 (m, 1H), 1.01–0.90 (m, 4H); ¹³C NMR (CDCl₃) δ 159.4, 155.8, 152.0, 137.4, 128.7, 128.0, 127.5, 123.6, 119.6, 104.9, 104.5, 97.9, 70.4, 9.36, 7.30; MS (ESI, MeOH+CH₂Cl₂) *m*/*z* 265.1 [M+H]⁺; HRMS calcd for C₁₈H₁₇O₂⁺ [M+H]⁺ 265.1228, found 265.1211; IR (neat, cm⁻¹) 1594, 1277, 1071, 1054; UPLC method (H₂O/MeCN): rt, 5.49 min, 96%.

5.3.3. 4-(Benzyloxy)-2-phenylbenzofuran (17)

Flash chromatography using as eluent: gradient heptane to heptane/EtOAc 95:5 (v/v) in 25 min. The product was obtained as a white amorphous solid (86%): ¹H NMR (CDCl₃) δ 7.89 (d, 2H, J = 7.5 Hz), 7.54 (d, 2H, J = 7.2 Hz), 7.49–7.19 (m, 6H), 7.23–7.19 (m, 2H), 7.21 (s, 1H), 6.76 (dd, 1H, J = 8.7, 3.3 Hz), 5.25 (s, 2H); ¹³C NMR (CDCl₃) δ 156.2, 154.7, 152.6, 137.1, 130.6, 128.8, 128.6, 128.3, 128.0, 127.5, 125.0, 124.8, 120.0, 104.8, 104.8, 99.1, 70.3; MS (ESI, MeCN+CH₂Cl₂) m/z 301.1 [M+H]⁺; HRMS calcd for C₂₁H₁₇O₂⁺ [M+H]⁺ 301.1228, found 301.1235; IR (neat, cm⁻¹) 1601, 1245, 1070, 1025; mp: 96–97 °C; UPLC method (H₂O/MeCN): rt, 5.92 min, 100%.

5.4. Methylation of benzofuran 11

To a solution of benzofuran **11** (1 mmol) in anhydrous DMF (3 mL), K_2CO_3 (2 mmol) and methyl iodide (2 mmol) (stirring 20 min beforehand) at room temperature. The reaction mixture was allowed to stir under argon at room temperature overnight. The resulting solution was diluted with water and extracted three times with EtOAc. The combined organic layers were washed three times with a saturated aq. NaCl solution, dried over anhydrous MgSO₄ and concentrated under vacuum. The crude product was then purified by flash chromatography on silica gel using an eluent gradient heptane to heptane/EtOAc 9:1 (v/v) in 25 min.

5.4.1. 4-Methoxy-2-(4-methoxyphenyl)benzofuran (18)

The product was obtained as a white amorphous solid (92%): ¹H (CDCl₃) NMR δ 7.78 (d, 2H, *J* = 8.5 Hz), 7.20–7.13 (m, 2H), 6.99 (s, 1H), 6.98 (d, 2H, *J* = 8.5 Hz), 6.66 (d, 1H, *J* = 7.5 Hz), 3.96 (s, 3H), 3.86 (s, 3H); ¹³C NMR (CDCl₃) δ 159.9, 156.0, 154.9, 153.4, 126.4, 124.5, 123.6, 119.9, 114.4, 104.5, 103.5, 97.3, 55.8, 55.5; MS (ESI, MeCN+CH₂-Cl₂) *m*/*z* 255.1 [M+H]⁺; HRMS calcd for C₁₆H₁₅O₃⁺ [M+H]⁺ 255.1021,

found 255,0947; IR (neat, cm⁻¹) 1607, 1248, 1095, 1021; mp: 99– 100 °C; UPLC method (H₂O/MeCN): rt, 5.08 min, 100%.

5.5. Friedel-Crafts acylation of benzofurans 1-3, 15-17 and 18

To a solution of benzofuran (1 mmol) and acyl chloride (1.2 mmol) in anhydrous CH_2Cl_2 (2 mL), $SnCl_4$ or $AlCl_3$ (1.2 mmol) was added under argon. The mixture was then stirred at room temperature under argon until the reaction was complete (30 min–3 h). The reaction was quenched by addition of crushed ice and the mixture was stirred for one more hour. The resulting solution was diluted with water and extracted three times with CH_2Cl_2 . The combined organic layers were dried over anhydrous MgSO₄ and concentrated under vacuum. The crude product was then purified by flash chromatography on silica gel.

5.5.1. (2-(4-Methoxyphenyl)benzofuran-3yl)(phenyl)methanone (4)

Flash chromatography using as eluent: heptane/EtOAc 95:5; second flash chromatography using as eluent: toluene. The product was obtained as a yellow oil (86%):¹H NMR (Acetone- d_6) δ 7.83 (d, 2H, *J* = 8.7 Hz), 7.65 (d, 3H, *J* = 8.7 Hz), 7.55 (t, 1H, *J* = 8.7 Hz), 7.54 (d, 1H, *J* = 8.7 Hz), 7.43–7.37 (m, 3H), 7.29 (td, 1H, *J* = 8.7, 0.9 Hz), 6.90 (d, 2H, *J* = 8.7 Hz), 3.80 (s, 3H); ¹³C NMR (Acetone- d_6) δ 192.4, 162.0, 158.8, 154.5, 139.1, 133.9, 130.9, 130.4, 129.5, 129.4, 126.0, 124.7, 122.7, 121.9, 115.7, 114.8, 112.0, 55.8; MS (MALDI) *m*/*z* 328.1 [M]⁺ HRMS calcd for C₂₂H₁₆O₃⁺ [M]⁺ 328.1099, found 328.1089; IR (neat, cm⁻¹) 1724, 1608, 1253, 1176, 1027; UPLC method (H₂O/MeCN): rt, 5.30 min, 100%.

5.5.2. (2-(4-Methoxyphenyl)benzofuran-3-yl)(4-nitrophenyl) methanone (5)

Flash chromatography using as eluent: heptane/EtOAc 95:5 (v/v) in 25 min. The product was obtained as a white amorphous solid (27%): ¹H NMR (Acetone- d_6) δ 8.18 (d, 2H, J = 9.0 Hz), 7.98 (d, 2H, J = 9.0 Hz), 7.73 (d, 1H, J = 8.1 Hz), 7.67 (d, 1H, J = 8.1 Hz), 7.59 (d, 2H, J = 9.0 Hz), 7.73 (d, 1H, J = 8.1 Hz), 7.67 (d, 1H, J = 8.1 Hz), 7.59 (d, 2H, J = 9.0 Hz), 7.44 (td, 1H, J = 8.1, 1.2 Hz), 7.35 (td, 1H, J = 8.1, 1.2 Hz), 6.88 (d, 2H, J = 9.0 Hz), 3.78 (s, 3H); ¹³C NMR (Acetone- d_6) δ 190.9, 162.4, 161.2, 154.7, 150.8, 144.4, 131.7, 131.5, 128.9, 126.4, 125.1, 124.2, 122.3, 122.2, 115.4, 114.8, 112.1, 55.8; MS (MALDI) m/z 373.1 [M]⁺ HRMS calcd for C₂₂H₁₅NO₅⁺ [M]⁺ 373.0950, found 373.0945; IR (neat, cm⁻¹) 1638, 1602, 1518, 1342, 1249, 1071, 1033; mp: 155–156 °C; UPLC method (H₂O/MeCN): rt, 5.23 min, 100%.

5.5.3. (2-Cyclopropylbenzofuran-3-yl)(phenyl)methanone (6)

Flash chromatography using as eluent: heptane/EtOAc 95:5 (v/v) in 25 min. The product was obtained as a white amorphous solid (53%): ¹H NMR (Acetone- d_6) δ 7.87 (d, 2H, J = 8.1 Hz), 7.67 (td, 1H, J = 8.1, 1.2 Hz), 7.56 (td, 2H, J = 8.1, 1.2 Hz), 7.47 (dd, 2H, J = 7.5, 1.2 Hz), 7.29 (td, 1H, J = 7.5, 1.2 Hz), 7.23 (td, 1H, J = 7.5, 1.2 Hz), 2.27–2.18 (m, 1H), 1.27–1.21 (m, 2H), 1.12–1.05 (m, 2H); ¹³C NMR (Acetone- d_6) δ 191.9, 166.5, 153.8, 140.8, 133.3, 129.8, 129.4, 128.4, 125.2, 124.5, 121.7, 117.1, 111.6, 11.0, 9.89; MS (ESI, MeOH+CH₂Cl₂) m/z 263.1 [M+H]⁺; HRMS calcd for C₁₈H₁₅O₂⁺ [M+H]⁺ 263.1072, found 263,1076; IR (neat, cm⁻¹) 1630, 1567, 1270, 1049, 1027; mp: 111–114 °C; UPLC method (H₂O/MeCN): rt, 5.06 min, 93%.

5.5.4. Phenyl(2-phenylbenzofuran-3-yl)methanone (7)

Flash chromatography using as eluent: heptane/EtOAc 95:5 (v/ v) in 25 min.The product was obtained as a white amorphous solid (83%): ¹H NMR (Acetone- d_6) δ 7.83 (d, 2H, *J* = 8.7 Hz), 7.70–7.67 (m, 3H), 7.55 (td, 2H, *J* = 8.7, 1.5 Hz), 7.44 (td, 1H, *J* = 8.7, 1.5 Hz), 7.42– 7.29 (m, 6H); ¹³C NMR (Acetone- d_6) δ 192.4, 158.2, 154.7, 138.9, 134.0, 130.7, 130.4, 129.4, 129.3, 129.2, 126.5, 124.8, 122.1, 117.0, 112.1; MS (ESI, MeOH+CH₂Cl₂) *m*/*z* 299.1 [M+H]⁺; HRMS calcd for $C_{21}H_{15}O_2^+$ [M+H]⁺ 299.1072, found 299,1062; IR (neat, cm⁻¹) 1650, 1578, 1243, 1060; mp: 94–96 °C; UPLC method (H₂O/MeCN): rt, 5.34 min, 100%.

5.5.5. (4-Nitrophenyl)(2-phenylbenzofuran-3-yl)methanone (8)

Flash chromatography using as eluent: heptane/EtOAc 95:5 (v/v) in 25 min; second flash chromatography using as eluent: isocratic toluene. The product was obtained as a yellow amorphous solid (13%): ¹H NMR (Acetone- d_6) δ 8.17 (d, 2H, J = 8.7 Hz), 8.00 (d, 2H, J = 8.7 Hz), 7.77 (d, 1H, J = 8.1 Hz), 7.72 (d, 1H, J = 8.1 Hz), 7.64 (dd, 2H, J = 9.0, 1.5 Hz), 7.49 (td, 1H, J = 8.1, 1.2 Hz), 7.39 (td, 1H, J = 8.1, 1.2 Hz), 7.34 (m, 3H); ¹³C NMR (Acetone- d_6) δ 190.9, 160.8, 155.0, 150.9, 144.2, 131.5, 131.2, 130.0, 129.8, 129.3, 128.7, 128.0, 126.8, 125.2, 124.2, 122.4, 112.2; MS (MALDI) m/z 343.1 [M]⁺ HRMS calcd for C₂₁H₁₃NO₄⁺ [M]⁺ 343.0845, found 343.0845; IR (neat, cm⁻¹) 1640, 1603, 1521, 1346, 1070; mp: 134–135 °C; UPLC method (H₂O/MeCN): rt, 5.26 min, 100%.

5.5.6. (2-hydroxy-4,6-dimethoxyphenyl)(2-(4-methoxyphenyl) benzofuran-3-yl)methanone (9)

Flash chromatography using as eluent: heptane/EtOAc 8:2 (v/v) in 25 min. The product was obtained as a yellow oil (17%): ¹H NMR (CDCl₃) δ 13.1 (s, 1H), 7.76 (d, 2H, *J* = 8.5 Hz), 7.52 (d, 1H, *J* = 7.5 Hz), 7.40 (d, 1H, *J* = 7.5 Hz), 7.29 (t, 1H, *J* = 7.5 Hz), 7.21 (t, 1H, *J* = 7.5 Hz), 6.92 (d, 2H, *J* = 8.5 Hz), 6.19 (d, 1H, *J* = 2.5 Hz), 5.76 (d, 1H, *J* = 2.5 Hz), 3.87 (s, 3H), 3.85 (s, 3H), 3.18 (s, 3H); ¹³C NMR (CDCl₃) δ 193.2, 167.2, 162.7, 160.9, 155.7, 153.6, 129.4, 128.6, 124.6, 123.6, 122.9, 120.4, 118.6, 114.3, 111.3, 107.5, 93.8, 91.5, 56.0, 55.7; MS (ESI, MeOH+CH₂Cl₂) *m/z* 427.1 [M+Na]⁺; HRMS calcd for C₂₄H₂₀O₆Na⁺ [M+Na]⁺ 427.1158, found 427.1168; IR (neat, cm⁻¹) 1676, 1626, 1576, 1248, 1177, 1151, 1020, 827; UPLC meth-od (H₂O/MeCN): rt, 5.59 min, 94%.

5.5.7. (4-Hydroxy-2-(4-methoxyphenyl)benzofuran-3-yl) (phenyl)methanone (19)

Flash chromatography using as eluent: isocratic toluene. The product was obtained as a yellow oil (17%): ¹H NMR (Acetone- d_6) δ 9.56 (s, 1H), 7.70 (d, 2H, *J* = 8.0 Hz), 7.42 (t, 1H, *J* = 8.0 Hz), 7.41 (d, 2H, *J* = 8.5 Hz), 7.30 (t, 1H, *J* = 8.5 Hz), 7.25 (t, 1H, *J* = 8.0 Hz), 7.12 (d, 1H, *J* = 8.5 Hz), 6.79 (d, 2H, *J* = 8.5 Hz), 6.76 (d, 1H, *J* = 8.5 Hz), 3.77 (s, 3H); ¹³C NMR (Acetone- d_6) δ 196.6, 162.1, 159.5, 156.2, 153.0, 139.0, 133.4, 132.1, 130.6, 128.9, 128.1, 122.7, 116.3, 114.6, 110.8, 103,1, 55.8; MS (ESI, MeCN+CH₂Cl₂) *m*/*z* 345.1 [M+H]⁺; HRMS calcd for C₂₂H₁₇O₄⁺ [M+H]⁺ 345.1127, found 345.1141; IR (neat, cm⁻¹) 3060, 1736, 1592, 1277, 1034; UPLC method (H₂O/MeCN): rt, 5.12 min, 92%.

5.5.8. (4-Methoxy-2-(4-methoxyphenyl)benzofuran-3-yl) (phenyl)methanone (26)

Flash chromatography using as eluent: isocratic toluene. The product was obtained as a pale yellow amorphous solid (82%): ¹H NMR (Acetone- d_6) δ 7.89 (d, 2H, J = 7.5 Hz), 7.71 (d, 2H, J = 9.0 Hz), 7.62 (t, 1H, J = 7.5 Hz), 7.49 (t, 2H, J = 7.5 Hz), 7.32 (t, 1H, J = 8.0 Hz), 7.25 (d, 1H, J = 8.0 Hz), 6.98 (d, 2H, J = 9.0 Hz), 6,76 (d, 1H, J = 8.0 Hz), 3.82 (s, 3H), 3.54 (s, 3H); ¹³C NMR (Acetone- d_6) δ 193.5, 161.6, 155.3, 154.4, 139.4, 134.1, 132.1, 130.0, 129.4, 129.0, 128.1, 127.0, 123.0, 119.4, 115.1, 105.5, 105.0, 55.9, 55.7; MS (ESI, MeCN+CH₂Cl₂) m/z 359.1 [M+H]⁺; HRMS calcd for C₂₃H₁₉O4⁺ [M+H]⁺ 359.1283, found 359,1308; IR (neat, cm⁻¹) 1669, 1598, 1246, 1090, 1020; mp: 161–164 °C; UPLC method (H₂O/MeCN): rt, 5.23 min, 100%.

5.6. Preparation of 4-O-acyl benzofurans 32-51

To a solution of 2-substituted benzofuran-4-ol (1 mmol) and Et_3N (1.2 mmol) in CH_2Cl_2 (2 mL), chloride acid (1.2 mmol) was

added at 0 °C under argon. The mixture was allowed to stir 1-3 h until the reaction was complete.

5.6.1. 2-(4-Methoxyphenyl)benzofuran-4-yl benzoate (32)

Flash chromatography using as eluent: gradient heptane to heptane/EtOAc 8:2 (v/v) in 25 min. The product was obtained as a white amorphous solid (77%): ¹H NMR (Acetone- d_6) δ 8.27 (d, 2H, J = 8.1 Hz), 7.90 (d, 2H, J = 9.0 Hz), 7.78 (t, 1H, J = 8.1 Hz), 7.65 (t, 2H, J = 8.1 Hz), 7.52 (d, 1H, J = 8.1 Hz), 7.37 (t, 1H, J = 8.1 Hz), 7.52 (d, 1H, J = 8.1 Hz), 7.19 (s, 1H), 7.05 (d, 2H, J = 9.0 Hz), 3.86 (s, 3H); ¹³C NMR (Acetone- d_6) δ 165.1, 161.5, 157.2, 156.7, 144.7, 134.7, 130.9, 130.4, 129.7, 127.4, 125.0, 124.5, 123.4, 116.7, 115.3, 109.6, 98.0, 55.7; MS (ESI, MeCN+CH₂Cl₂) m/z 345.1 $[M+H]^+$; HRMS calcd for $C_{22}H_{16}O_4^+$ $[M+H]^+$ 345,1127, found 345,1134; IR (neat, cm⁻¹) 1731, 1614, 1250, 1025; mp: 121-123 °C; UPLC method (H₂O/MeCN): rt, 5.59 min, 100%.

5.7. Biological assays

5.7.1. Assay for in vitro inhibition of P. falciparum growth

The chloroquine-resistant strain FcB1/Colombia of P. falciparum was maintained in vitro on human erythrocytes in RPMI 1640 medium supplemented by 8% (v/v) heat-inactivated human serum, at 37 °C, under an atmosphere of 3% CO₂, 6% O₂, and 91% N₂. In vitro drug susceptibility assays was measured by [³H]-hypoxanthine incorporation as described.²⁴⁻²⁶ Drugs were prepared in DMSO at a 10 mM concentration. Compounds were serially diluted two-fold with 100 µL culture medium in 96-well plates. Asynchronous parasite cultures (100 µL, 1% parasitaemia and 1% final hematocrite) were then added to each well and incubated for 24 h at 37 °C prior to the addition of 0.5 μ Ci of [³H]-hypoxanthine (GE Healthcare, France, 1-5 Ci mmol/mL) per well. After a further incubation of 24 h, plates were frozen and thawed. Cell lysates were then collected onto glass-fiber filters and counted in a liquid scintillation spectrometer. The growth inhibition for each drug concentration was determined by comparison of the radioactivity incorporated in the treated culture with that in the control culture maintained on the same plate. The concentration causing 50% growth inhibition (IC₅₀) was obtained from the drug concentration-response curve and the results were expressed as the mean values ± standard deviations determined from several independent experiments. Chloroquine was used as antimalarial drug control.

5.7.2. Assay for in vitro inhibition of T. brucei gambiense growth

Bloodstream forms of T. brucei gambiense strain Feo were cultured in HMI9 medium supplemented with 10% FCS at 37 °C under an atmosphere of 5% $CO_2^{28,29}$ In all experiments, log-phage cell cultures were harvested by centrifugation at 3000g and immediately used. Drug assays were based on the conversion of a redoxsensitive dye (resazurin) to a fluorescent product by viable cells.³⁰ Drug stock solutions were prepared in pure DMSO. T. b. gambiense bloodstream forms $(3 \times 10^4 \text{ cells/ml})$ were cultured as described above in 96-well plates (200 µL per well) either in the absence or in the presence of different concentrations of inhibitors and with a final DMSO concentration that did not exceeded 1%. After a 72-h incubation, resazurin solution was added in each well at the final concentration of 45 µM. Fluorescence was measured at 530 nm excitation and 590 nm emission wavelengths after a further 4-h incubation. Each inhibitor concentration was tested in triplicate and the experiment repeated twice. The percentage of inhibition of parasite growth rate was calculated by comparing the fluorescence of parasites maintained in the presence of drug to that of in the absence of drug. DMSO was used as a control. IC₅₀s were

determined from the dose-response curves with drug concentrations ranging from 100 μ M to 50 nM. IC₅₀ value is the mean +/the standard deviation of three independent experiments. Pentamidine was used as antitrypanosomal drug control.

Acknowledgments

The authors thank O. Thoison and her co-workers for UHPLC analyses, V. Guérineau for MALDI analyses, ICSN and CNRS for financial support.

Supplementary data

Supplementary data (procedures for the preparation of starting materials, spectral and analysis results for the other compounds) associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.bmc.2013.07.002.

References and notes

- 1. Murray, C. J. L.; Rosenfeld, L. C.; Lim, S. S.; Andrews, K. G.; Foreman, K. J.; Haring, D.; Fullman, N.; Naghavi, M.; Lozano, R.; Lopez, A. D. Lancet 2012, 379, 413.
- Simarro, P. P.; Jannin, J.; Cattand, P. PLoS Med 2008, 5, 174. e55.
- El-Diwani, H.; Nakkady, S.; El-Shabrawy, O.; Gohar, A. K.; Hishmat, O. Arch. 3. Pharm. Res. 1988, 11, 41.
- 4. Ragab, F. A. E.-F.; Eid, N. M.; Hassan, G. S.; Nissan, Y. M. Chem. Pharm. Bull. 2012, 60, 110.
- 5 Kaltenbronn, J. S.; Quin Iii, J.; Reisdorph, B. R.; Klutchko, S.; Reynolds, E. E.; Welch, K. M.; Flynn, M. A.; Doherty, A. M. Eur. J. Med. Chem. 1997, 32, 425
- 6. Abdel-Wahab, B. F.; Abdel-Aziz, H. A.; Ahmed, E. M. Eur. J. Med. Chem. 2009, 44, 2632.
- Masubuchi, M.; Ebiike, H.; Kawasaki, K.-i.; Sogabe, S.; Morikami, K.; Shiratori, 7. Y.; Tsujii, S.; Fujii, T.; Sakata, K.; Hayase, M.; Shindoh, H.; Aoki, Y.; Ohtsuka, T.; Shimma, N. Bioorg. Med. Chem. 2003, 11, 4463.
- Ryu, C.-K.; Song, A. L.; Lee, J. Y.; Hong, J. A.; Yoon, J. H.; Kim, A. Bioorg. Med. Chem. Lett. 2010, 20, 6777.
- Ismail, E.; Tawfik, A. A.; El-Ebrashi, N. M. Arzneim. -Forsch. 1977, 27, 1393.
- 10. (a) Bakunova, S. M.; Bakunov, S. A.; Wenzler, T.; Barszcz, T.; Werbovetz, K. A.; Brun, R.; Hall, J. E.; Tidwell, R. R. J. Med. Chem. 2007, 50, 5807; (b) Bakunov, S. A.; Bakunova, S. M.; Wenzler, T.; Barszcz, T.; Werbovetz, K. A.; Brun, R.; Tidwell, R. R. J. Med. Chem. 2008, 51, 6927; (c) Bakunov, S. A.; Bakunova, S. M.; Bridges, A. S.; Wenzler, T.; Barszcz, T.; Werbovetz, K. A.; Brun, R.; Tidwell, R. R. J. Med. Chem. 2009, 52, 5763.
- 11. Gibson, P. S.; Lauret, C.; Patent WO 2008/102232 A1, 2008.
- Benaim, G.; Hernandez-Rodriguez, V.; Mujica-Gonzalez, S.; Plaza-Rojas, L.; Silva, M. L.; Parra-Gimenez, N.; Garcia-Marchan, Y.; Paniz-Mondolfi, A.; Uzcanga, G. Antimicrob. Agents Chemother. 2012, 56, 3720.
- 13. Yu, Z.; Brannigan, J. A.; Moss, D. K.; Brzozowski, A. M.; Wilkinson, A. J.; Holder, A. A.; Tate, E. W.; Leatherbarrow, R. J. J. Med. Chem. 2012, 55, 8879.
- 14. Wang, S.; Li, P.; Yu, L.; Wang, L. Org. Lett. 2011, 13, 5968.
- 15. Arcadi, A.; Blesi, F.; Cacchi, S.; Fabrizi, G.; Goggiamani, A. Tetrahedron Lett. 2011, 52, 5149.
- 16. Chen, W.; Li, P.; Miao, T.; Meng, L.-G.; Wang, L. Org. Biomol. Chem. 2013, 11, 420. 17. Arcadi, A.; Blesi, F.; Cacchi, S.; Fabrizi, G.; Goggiamani, A.; Marinelli, F. Tetrahedron 2013, 69, 1857.
- 18. Singh, F. V.; Wirth, T. Synthesis 2012, 44, 1171.
- 19 Kitamura, T.; Otsubo, K. J. Org. Chem. 2012, 77, 2978.
- 20. Glaser, C. Ber. Dtsch. Chem. Ges. 1869, 2, 422.
- Glaser, C. Ann. Chem. Pharm. 1870, 154, 137. 21.
- Johansson Seechurn, C. C. C.; Kitching, M. O.; Colacot, T. J.; Snieckus, V. Angew. 22. Chem., Int. Ed. 2012, 51, 5062.
- 23. Jacubert, M.; Hamze, A.; Provot, O.; Peyrat, J.-F.; Brion, J.-D.; Alami, M. Tetrahedron Lett. 2009, 50, 3588.
- 24. Guillon, J.; Grellier, P.; Labaied, M.; Sonnet, P.; Léger, J.-M.; Déprez-Poulain, R.; Forfar-Bares, I.; Dallemagne, P.; Lemaître, N.; Péhourcq, F.; Rochette, J.; Sergheraert, C.; Jarry, C. J. Med. Chem. 2004, 47, 1997.
- Desjardins, R. E.; Canfield, C. J.; Haynes, J. D.; Chulay, J. D. Antimicrob. Agents Chemother. **1979**, 16, 710. 25.
- 26. Bosc, D.; Lethu, S.; Mouray, E.; Grellier, P.; Dubois, J. MedChemComm 2012, 3, 1512.
- 27. O'Brien, I.; Wilson, I.; Orton, T.; Pognan, F. Eur, J. Biochem, 2000, 267, 5421.
- 28. Hirumi, H.; Hirumi, K. Parasitol. Today **1994**, 10, 80.
- Bosc, D.; Mouray, E.; Grellier, P.; Cojean, S.; Loiseau, P. M.; Dubois, J. 29. MedChemComm 2013 4 1034
- 30. Räz, B.; Iten, M.; Grether-Bühler, Y.; Kaminsky, R.; Brun, R. Acta Tropica 1997, 68.139.