

Bioorganic & Medicinal Chemistry Letters 10 (2000) 2119-2122

Design, Synthesis, and Discovery of 3-Piperazinyl-3,4dihydro-2(1*H*)-quinolinone Derivatives: A Novel Series of Mixed Dopamine D₂/D₄ Receptor Antagonists

He Zhao,* Andrew Thurkauf, Julia Braun, Robin Brodbeck and Andrzej Kieltyka

Neurogen Corporation, 35 Northeast Industrial Road, Branford, CT 06405, USA

Received 25 May 2000; accepted 14 July 2000

Abstract—3-Piperazinyl-3,4-dihydro-2(1*H*)-quinolinone derivatives (δ -lactams) were designed, synthesized, and identified as a new series of mixed dopamine D₂/D₄ receptor antagonists. To further the structure–activity relationship (SAR) study, 3-piperazinyl-indolin-2-ones (γ -lactams) and 3-piperazinyl-3*H*,4*H*,5*H*-benzo[*f*]azepin-2-ones (ε -lactams) were also prepared and examined. \bigcirc 2000 Elsevier Science Ltd. All rights reserved.

Introduction

Schizophrenia is a debilitating disease for which researchers believe that brain dopamine receptors are the primary targets for medical treatment.¹ Molecular biology studies have identified five dopamine receptor subtypes which can be classified into two classes, D₁-like $(D_1 \text{ and } D_5)^{2,3}$ and D_2 -like $(D_2, D_4, \text{ and } D_5)^{4-6}$ based on their ability to stimulate or inhibit adenylate cyclase, respectively. In the last several years, intense research effort has been focused on the D_4 receptor. These efforts led to the clinical trials of a number of D₄ selective antagonists^{7–18} including NGD94-1 (1),¹⁹ L-745,870 (2),²⁰ U-101387 (3),²¹ and CP-293019 (4)²² in Figure 1. However, these compounds have not proved to be efficacious as potential antipsychotic agents. For example, compound 2 was found to be ineffective in humans.² Many laboratories have also identified a number of D_2 selective agonists^{24,25} or antagonists,^{26,27} but none of them are efficacious in treating all schizophrenic patients.

Clozapine $(5)^{28}$ is the first marketed antipsychotic agent which binds with substantially greater affinity to dopamine D₄ than to D₂ receptor subtype. Although D₄ may play an important role in the actions of clozapine, the association with D₂ may be also required for effective antipsychotic action. Therefore, we set out a research program to obtain a compound that possessed a D₂/D₄ binding ratio similar to that of clozapine. Furthermore, it was also desirable to minimize α_1 binding in order to avert undesirable cardiovascular effects. In the course of our studies, we identified two series of compounds having a combination of D₂ and D₄ receptor affinities comparable to clozapine **5**. They are *trans*-1-[2-(phenylcyclopropyl)methyl]-4-aryl-piperazines (e.g., **6**)²⁹ and benzylpiperazinyl ethanoindoline derivatives (e.g., **7**).³⁰ In this paper, we describe a new series of mixed dopamine D₂/D₄ receptor antagonists, the 3-piperazinyl-3,4dihydro-2(1*H*)-quinolinones (e.g., **9**, Fig. 2), and demonstrate how they are genealogically related to the previously mentioned indoline derivatives.

Design and Synthesis

The indoline containing compound 7 was previously evaluated as a lead with potent D_4 binding activity and weak D_2 binding affinity.³⁰ Based on this lead compound, compound **8** was designed at first by removing one carbon from the indoline part of compound 7 and prepared starting from *N*-methylaniline.³¹ Biological screening showed that this compound had not only lost some activity for D_4 binding, but it was totally inactive at D_2 receptors.

We reasoned that this decreasing affinity resulted from the loss of conformational restriction present in 7. Molecular modeling studies indicated that the energetically most favorable presentation of the amide oxygen of 7 is directed away from the indoline phenyl, as shown in Figure 2. It seemed that an alternative conformational

^{*}Corresponding author. Tel.: +1-203-488-8201; fax: +1-203-483-7027; e-mail: hzhao@nrgn.com

⁰⁹⁶⁰⁻⁸⁹⁴X/00/\$ - see front matter \odot 2000 Elsevier Science Ltd. All rights reserved. P11: S0960-894X(00)00421-2

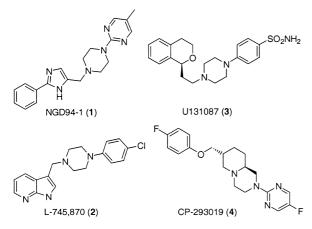
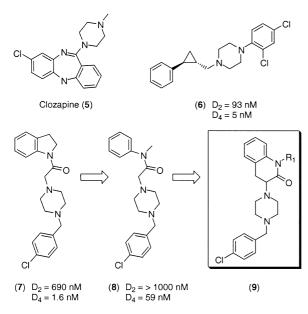
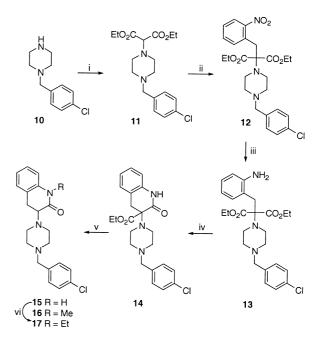



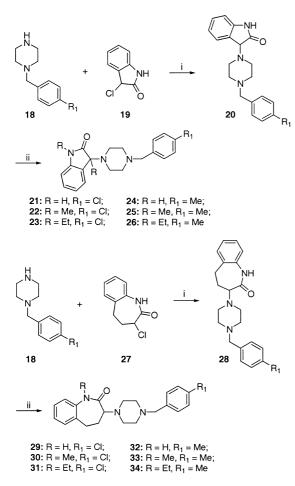
Figure 1.



restriction, which would hold the carbonyl in this orientation, might provide a more favorable receptor affinity profile. Consequently, compound 9 was designed by placing two carbons between the α position of the amide and the corresponding carbon of the phenyl ring to generate a new benzofused δ -lactam system.

Scheme 1 depicts the synthesis used to prepare these benzofused δ -lactams. Alkylation of 1-[(4-chlorophenyl)methyl] piperazine **10** with diethyl bromomalonate and potassium carbonate in acetonitrile provided compound **11**, which was then treated with freshly prepared sodium ethoxide and alkylated with 2-nitrobenzyl chloride to give compound **12**. Hydrogenation of **12** with 10% Pd/ C in ethyl acetate at atmospheric pressure generated the amine **13**, which could be cyclized to form the lactam **14**. Decarboxylation of **14** provided **15**, which was alkylated on the nitrogen with either iodomethane or iodoethane to provide compounds **16**³² and **17**, respectively.

In order to better understand the structure–activity relationships of the lactam system, 3-indolin-2-one derivatives (γ -lactams) and 3-piperazinyl-3*H*,4*H*,5*H*-


Scheme 1. Reagents and conditions: (i) diethyl bromomalonate, K_2CO_3 , CH_3CN , rt, 18 h, 98%; (ii) 2-nitrobenzyl chloride, NaOEt, EtOH, reflux, 15 h, 54%; (iii) H₂, 10% Pd/C, 1 atm, EtOAc, rt, 24 h, 91%; (iv) EtOH, reflux, 4 h, 85%; (v) 20% NaOH, MeOH, reflux, 18 h; then 6 N HCl, 82%; (vi) MeI or EtI, NaH, THF, argon, rt, 5 h, 85% or 78%, respectively.

benzo [f] azepin-2-ones (ε -lactams) were also synthesized by direct condensation of the substituted phenylpiperazines with the corresponding α -halogen lactams as shown in Scheme 2. For example, when the substituted piperazine 18 was stirred with 3-chloroindolin-2-one 19^{33} and potassium carbonate at room temperature for 15 h, compound **20** (γ -lactam) was prepared. Although many alkylation conditions were tried for the N-monosubstitution of compound 20, the disubstituted compounds $(21, 22^{34}-26)$ were always the major products. No disubstituted compound was observed when compound 28 (ɛ-lactam), prepared from 3-iodo-1H,3H, 4H,5H-benzo[f]azepin-2-one **27**,³⁵ was treated under the same reaction conditions. Only the monosubstituted compounds (29, 30³⁶-34) were produced. We were unable to prepare 3-bromo-1,3,4-trihydroquinolin-2one due to rapid dehydrohalogenation. Thus, the direct condensation strategy was not applicable to the synthesis of δ -lactam series.

Results and Discussion

Table 1 shows the binding data for the target compounds at D_2 , D_4 , and α_1 receptors. Affinities at D_2 and D_4 receptors were determined via standard competitive displacement assays using human D_2 and D_4 clones with $[^3H]YM$ 09151 as the competitive ligands. Affinity at the α_1 receptor was determined via standard competitive displacement assays using rat brain homogenate with $[^3H]$ prazosin as the competitive ligand.

Surprisingly, all five- and seven-member ring lactams are inactive to both D_2 and D_4 binding. Only the six-

Scheme 2. Reagents and conditions: (i) K_2CO_3 , CH_3CN , reflux, 15 h, 85–96%; (ii) MeI or EtI, NaH, THF, argon, rt, 5 h, 61–88%.

Table 1. Binding affinities

Compounds	$K_{\rm i}$ (nM)		
	D ₂	D_4	α_1
Clozapine	113	17	4
6	93	5	322
7	690	1.6	88
8	>1000	59	>10,000
15	1373	100	2003
16	133	4	2003
17	21	4	1265
21	>1000	>1000	>10,000
22	>1000	>1000	>10,000
23	>1000	7018	>10,000
24	>1000	>1000	>10,000
25	>1000	>1000	>10,000
26	>1000	>1000	>10,000
29	>1000	>1000	9591
30	7367	2469	2878
31	>1000	1511	2678
32	>1000	>1000	3120
33	>1000	4377	2038
34	>1000	2960	815

member ring lactams displayed appreciable affinities for dopamine receptors. Compound **15** shows moderate binding to the D_4 receptor, but weak affinity for D_2 . The methyl group of compound **16** improves both D_2 and D_4 binding by 10- and 25-fold, respectively, relative to the secondary lactam **15**. The affinity data of **16** for dopamine receptors are very close to those of clozapine. The *N*-ethyl compound **17** is 6-fold more potent than compound **16** for D_2 but equal for D_4 . As above, the current δ -lactams **16** and **17** have more potent D_2 and D_4 affinity binding and better α_1 profile than clozapine **5** and another two series (**6** and **7**), which we identified earlier.

Compounds were also assessed as to their functional activity both at the D₂ and D₄ receptors. D₂ functional activity was assessed via compound reversal of quinpirole inhibited, forskolin stimulated cAMP production from whole cells, while D₄ functional activity was assessed via inhibition of quinpirole stimulated GTP γ^{35} S binding from cell membranes. Functional assessment of compounds **16** and **17** at both the D₂ and D₄ receptors indicates no agonist properties up to 10 µM, while demonstrating functional K_i values of 4 nm and 1.5 nm, respectively, at the D₂ receptor, and 1 nm and 1.5 nm at the D₄ receptor.

In conclusion, the δ -lactams **16** and **17** thus displayed a D_2 and D_4 affinity ratio similar to that of clozapine while being free of the liabilities caused by high α_1 affinity. Further structure-activity relationship investigations of this series of mixed dopamine D_2/D_4 receptor antagonists are in progress.

References and Notes

- 1. Seeman, P.; Van Tol, H. M. M. Trends Pharmacol. Sci. 1994, 15, 264.
- 2. Dearry, J. R.; Gingrich, J. A.; Falardeau, R. T.; Fremeau, P.; Bates, M. D.; Caron, M. G. *Nature* **1990**, *347*, 72.
- 3. Sunahara, R. K.; Gua, H.-C.; O'Dowd, B. F.; Seeman, P.; Laurier, L. G.; George, S. R.; Torchia, J.; Van Tol, H. H.; Niznik, H. B. *Nature* **1991**, *350*, 614.
- 4. Bunzow, J. R.; Van Tol, H. H. M.; Grandy, D. K.; Albert, P.; Salon, J.; Christie, M.; Machida, C. A.; Neve, K. A.; Civelli, O. *Nature* **1988**, *336*, 783.
- 5. Sokoloff, P.; Giros, B.; Martres, M.-P.; Bouthenet, M.-L.; Schwartz, J.-C. *Nature* **1990**, *347*, 146.
- Van Tol, H. H. M.; Bunzov, J. R.; Guan, H.-C.; Sunahara, R. K.; Seeman, P.; Niznik, H. B.; Civelli, O. *Nature* 1991, *350*, 610.
- 7. Hadley, M. S. Med. Res. Rev. 1996, 16, 507.
- Kulagowski, J. J.; Patel, S. Curr. Pharm. Des. **1997**, *3*, 355.
 Liegeois, J. F.; Eyrolles, L.; Bruhwyler, J. Curr. Med. Chem. **1998**, *5*, 77.
- 10. Belliotti, T. R.; Brink, W. A.; Kesten, S. R.; Rubin, J. R.; Wustrow, D. J.; Zoski, K. T.; Whetzel, S. Z.; Corbin, A. E.; Pugsley, T. A.; Heffner, T. G.; Wise, L. D. *Bioorg. Med. Chem. Lett.* **1998**, *8*, 1499.
- 11. Arlt, M.; Bottcher, H.; Riethmuller, A.; Schneider, G.; Bartoszyk, G. D.; Greiner, H.; Seyfried, C. A. *Bioorg. Med. Chem. Lett.* **1998**, *8*, 2033.
- 12. Moore, K. W.; Bonner, K.; Jones, E. A.; Emms, F.; Leeson, P. D.; Marwood, R.; Patel, S.; Patel, S.; Rowley, M.; Thomas, S.; Carling, R. W. *Bioorg. Med. Chem. Lett.* **1999**, *9*, 1285.
- 13. Haubmann, C.; Hubner, H.; Gmeiner, P. Bioorg. Med. Chem. Lett. 1999, 9, 1969.
- 14. Haubmann, C.; Hubner, H.; Gmeiner, P. Bioorg. Med. Chem. Lett. 1999, 9, 3143.

15. Carling, R. W.; Moore, K. W.; Moyes, C. R.; Jones, E.

A.; Bonner, K.; Emms, F.; Marwood, R.; Patel, S.; Patel, S.; Pletcher, A. E.; Beer, M.; Sohal, B.; Pike, A.; Leeson, P. D. J. *Med. Chem.* **1999**, *42*, 2706.

16. Kesten, S. R.; Heffner, T. G.; Johnson, S. J.; Pugsley, T. A.; Wright, J. L.; Wise, L. D. J. Med. Chem. **1999**, 42, 3718.

17. Belliotti, T. R.; Wustrow, D. J.; Brink, W. A.; Zoski, K.

T.; Shih, Y.-H.; Whetzel, S. Z.; Georgic, L. M.; Corbin, A. E.;

Akunne, H. C.; Heffiner, T. G.; Pugsley, T. A.; Wise, L. D. J. Med. Chem. 1999, 42, 5181.

18. Perrone, R.; Berardi, F.; Colabufo, N. A.; Leopoldo, M.; Tortorella, V. J. Med. Chem. **2000**, *43*, 270.

19. Thurkauf, A.; Yuan, J.; Chen, X.; He, X. S.; Wasley, J. W.

F.; Hutchison, A.; Woodruff, K. H.; Meade, R.; Hoffman, D. C.; Donovan, H.; Jones-Hertzog, D. K. J. Med. Chem. **1997**, 40, 1.

20. Bristow, L. J.; Collinson, N.; Cook, J. P.; Curtis, N.; Freedman, S. B.; Kulagowski, J. J.; Leeson, P. D.; Patel, S.; Ragan, C. I.; Ridgill, M.; Saywell, K. L.; Trickleback, M. D. *J. Pharmacol. Exp. Ther.* **1997**, *283*, 1256.

21. Ten Brink, R. E.; Bergh, C. L.; Duncan, J. N.; Harris, D. W.; Huff, R. M.; Lahti, R. A.; Lawson, C. F.; Lutzke, B. S.; Martin, I. J.; Rees, S. A.; Schlachter, S. K.; Sih, J. C.; Smith, M. W. J. Med. Chem. **1996**, *39*, 2435.

22. Sanner, M. A.; Chppie, T. A.; Dunaiskis, A. R.; Fliri, A.

F.; Desai, K. A.; Zorn, S. H.; Jackson, C. G.; Faraci, W. S.; Collins, J. L.; Duignan, D. B.; Di Prete, C. C.; Lee, J. S.;

Trozzi, A. Bioorg. Med. Chem. Lett. 1998, 8, 725.

23. Bristow, L. J.; Kramer, M. S.; Kulagowski, J.; Patel, S.; Ragan, C. I.; Seabrook, G. R. *Trends Pharmacol. Sci.* **1997**, *8*, 186.

24. Wikstroem, H. Prog. Med. Chem. 1992, 29, 185.

25. Mewshaw, R. E.; Webb, M. B.; Marquis, K. L.; McGaughey, G. B.; Shi, X.; Wasik, T.; Scerni, R.; Brennan, J. A.; Andree, T. H. *J. Med. Chem.* **1999**, *42*, 2007.

26. Hogberg, T. Drug Des. Discovery 1993, 9, 333.

27. Kebabian, J. W.; Tarazi, F. I.; Kula, N. S.; Baldessarini, R. J. Drug Discovery Today 1997, 2, 333.

28. Seeman, P. Neuropsychopharmacology 1992, 7, 261.

29. Zhang, S.; Hodgetts, K.; Rachwal, S.; Zhao, H.; Wasley,

J. W. F.; Craven, K.; Brodbeck, R.; Hoffman, D.; Thurkauf, A. J. Med. Chem. 2000, 43, in press.

30. Kover, R. X.; Terdjanian, S.; Tran, J.; Thurkauf, A. PCT Int. Appl. WO 9,943,670, 1999; *Chem. Abstr.* **1999**, *131*, 184972.

31. Unpublished results.

32. Mp 153–155 °C (free base), 265–266 °C (2 HCl); ¹H NMR (400 MHz, CDCl₃) δ 7.63–7.38 (m, 2H), 7.26–7.16 (m, 4H), 7.03–6.98 (m, 1H), 6.75–6.73 (m, 1H), 4.02 (s, 2H), 3.57 (t, *J*=8.2 Hz, 1H), 3.08 (d, *J*=8.2 Hz, 2H), 2.88 (m, 4H), 2.80 (m, 4H); LC-MS (APCI, *m*/*z*) 367 (M+1).

33. Guillaumel, J.; Demerseman, P.; Clavel et Rene Royer, J.-M. J. Heterocycl. Chem. **1980**, *17*, 1531.

34. Mp 275–277 °C (2 HCl); ¹H NMR (400 MHz, CDCl₃) δ 7.32–7.13 (m, 8H), 3.45 (s, 2H), 3.35 (s, 3H), 3.04–2.98 (m, 1H), 2.71–2.59 (m, 4H), 2.47 (m, 2H), 2.30–2.16 (m, 2H), 1.75–1.64 (m, 2H), 1.53–1.43 (m, 2H); LC-MS (APCI, *m/z*) 384 (M+1).

35. Prepared from 1H,3H,4H,5H-benzo[f]azepin-2-one by treatment with TMEDA (3 equiv) and iodotrimethyl silane (3 equiv) in anhydrous dichloromethane at 0 °C under argon for 30 min, and subsequent treatment with solid iodine (1.5 equiv) at the same temperature for an additional 1 h. The reaction was quenched by addition of excess aqueous sodium sulfite and worked up as usual. The residue was purified by silica gel column chromatography to give the product as a white solid in 84% yield.

36. Mp 145 °C (2 HCl, dec.); ¹H NMR (400 MHz, CDCl₃) δ 7.30–7.19 (m, 6H), 7.08–7.03 (m, 1H), 6.81 (d, J=8.1 Hz, 1H), 3.42 (s, 2H), 3.18 (s, 3H), 2.67–2.63 (m, 4H), 2.41 (m, 4H), 1.49 (s, 3H); LC-MS (APCI, m/z) 370 (M + 1).