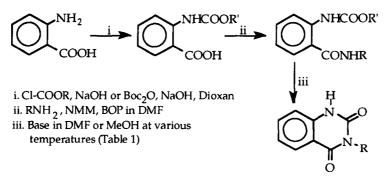


PII: S0040-4039(96)01541-9


Solid Phase Synthesis of chiral 3-substituted Quinazoline-2,4-diones

Laurent Gouilleux, Jean-Alain Fehrentz, F. Winternitz⁴ and Jean Martinez^{*}

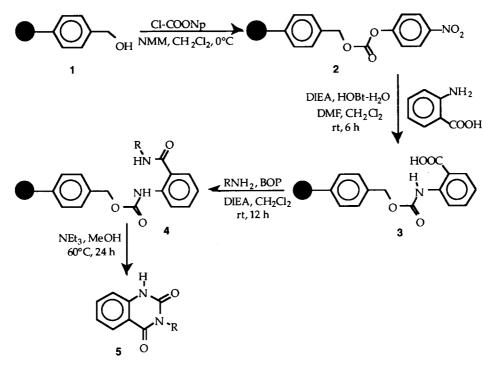
Laboratoire des Aminoacides, Peptides et Protéines (LAPP), ESA 5075, CNRS, Universités de Montpellier I et II, Faculté de Pharmacie, 15 Av. C. Flahault, 34060 Montpellier, Cédex, France.

Abstract: The synthesis of chiral 3-substituted quinazoline-2,4-diones was performed starting from Nurethane anthranilamides. This synthetic pathway was applied in solid phase, from commercially available anthranilic acid that was bound to hydroxymethyl polystyrene resin via a carbamate linker. In both cases, cyclisation occurred under basic conditions to afford non-racemized quinazolinediones in high purity. Copyright © 1996 Published by Elsevier Science Ltd

Quinazoline-2,4-diones are attractive pharmacophores. They present a wide range of pharmacological activities. They have been shown to possess anticonvulsant activity against electroshock^{1a}, they exhibit sedative and hypotensive activities^{1b}, they cause vasodilation^{1c} in animals. They are also useful antiinflammatory agents.^{1d} In recent years, quinazoline derivatives have attracted attention as potential inhibitors of protein tyrosine kinase.^{1e} Hence, there are several synthetic pathways for their preparation², most of them starting from anthranilic acid derivatives. One of the first method of synthesis was described by Canonne and al.^{2e}, from 2-carbomethoxyphenyl isocyanate obtained from phtalic half-esters. We decided to use a more practical approach to synthesize our chiral quinazoline-2,4-diones, performing the synthesis from urethane protected anthranilamide, adapting the method described by Gadekar and al.^{2b} We were particularly interested in the synthesis of chiral 3-substituted quinazoline-2,4-diones, in order to insert these structures in peptide chains to use them as constrained structures.

Scheme 1. Synthesis of quinazoline-2-4-diones

^{*}This paper is dedicated to the memory of Doctor François Winternitz.


Anthranilic acid was converted into its N-urethane derivative using alkylchloroformate (Boc₂O, when R'=tBu) in 1M NaOH. Coupling of the C-terminal protected aminoacid (or amine) was achieved with BOP³ in the presence of N-methylmorpholine (NMM), in DMF. Cyclisation was accomplished in DMF or MeOH, using NaOH, diazabicyclo[5,4,0]undec-7-ene (DBU) or NEt₃ as base, at various temperatures (Scheme 2 and Table 1). In order to optimize the cyclisation conditions, we have used different bases, along with several N-urethane protecting group. Results are reported in Table 1.

R-NH ₂	R'	Base	t _R (hours)	fC	mp℃	yield %
H-Gly-OMe	tBu	NaOH 2M (3 eq)	18	20	299-301°	81°
H-Ala-OMe	Bzl	NaOH 1M (3 eq)	12	د،	268-270°	92°
63	ډ ۲	DBU (5 eq)	6	60	134-136	93
H-βAla-OMe	Et	NaOH 1M (3 eq)	12	د،	211-213	80°
H-Leu-OMe	Bzl	NaOH 2M (3 eq)	18	د ۲	160-162°	88°
Z-Lys-OMe	Bzl	DBU (10 eq)	18	20	131-133	82
د،	67	NaOH 1M (3 eq)	12	20	189-191°	80°
H-Phe-OEt	Et	NaOH 1M (3 eq)	12	20	265-267°	85°
H-Phe-NH ₂	Et	DBU (5 eq)	4.5	60	228-230	80
ډې	tBu	43	7 days	د،	د،	78
4.7	iBu	43	4	.,	.,	83
.,	Bzl	47	2.5 '' ''		85	
4.7	ډ٢	NaOH (5 eq)	0.1	.,	ډ٢	82
د،	د،	NEt ₃ (5 eq)	48		78	
H ₂ N-(CH ₂) ₂ -NHBoc	Et	DBU (10 eq)	1	80	228-230	75

Table 1. Synthesis of quinazoline-2,4-diones in different cyclisation conditions. Melting point and yield of the corresponding acid are indicated (these products were first saponified, then cyclisation occurred).

3-substituted quinazoline-2,4-diones were obtained in high yield and characterized by ¹H NMR spectroscopy and mass spectrosmetry. After the cyclization step, no racemization could be detected by ¹H

NMR spectroscopy or HPLC⁴. In order to obtain a wide diversity of quinazoline-2,4-diones and to apply this strategy to combinatorial chemistry, we decided to transfer this methodology to solid phase synthesis. Recently, several solid phase synthesis of heterocycles were published⁵, including a solid phase synthesis of 1,3-dialkyl quinazoline-2,4-diones.⁶ We would like to report here a novel method for the solid phase synthesis of quinazoline-2,4-diones via N-terminal amino group linkage to the solid support and a base-catalyzed cyclisation/cleavage strategy already used for the synthesis of dipeptides⁷ and hydantoins.⁸ The general method for the synthesis of 3-substituted quinazoline-2,4-diones is shown in scheme 2.

Scheme 2. Solid phase synthesis of quinazoline-2,4-diones

Hydroxymethyl polystyrene resin 1 (0,96 mmol/g) was easily converted into its N-urethane derivative 2 (a robust polymer-bound reagent that can be produced on large scale and stable for long periods⁸) using NMM and paranitrophenyl chloroformate in nearly quantitative yield.⁹ Anthranilic acid (5 eq) was then dissolved in a mixture of DMF/CH₂Cl₂ (1 : 2) along with HOBt (3 eq) and N,N-diisopropylethylamine (DIEA) (6 eq), and added to the activated resin to yield **3**. The amino compound (or C-terminal protected aminoacid derivative) was then coupled using BOP and DIEA to yield **4**. Treatment of the resin intermediate with excess NEt₃ (10 eq) in methanol at 60°C for 24 h afforded 3-substituted quinazoline-2,4-diones **5** in high purity (table 2). They were analyzed for purity by HPLC and characterized by mass spectrometry and ¹H-NMR spectroscopy. By choice of appropriate commercially available anthranilic acid derivatives, 3-substituted quinazoline-2,4-diones **5** with varied R substituents can be easily synthesized.

RNH	[M+H]*	Recention time (min)*	purity %	yield %'
H-Ala-OMe	249	22.2	96	45
H-Phe-NH ₂	310	23	98.3	52
H-Trp-NH ₂	349	21.7	98.5	72
H-Phe-OtBu	367	33.3	90	30
H-Leu-OBzl	367	28.7	97.3	22
H-Lys(Z)-OtBu	482	34.2	80	25
Ph-CH ₂ -NH ₂	253	25.2	99.2	25
HO-(CH ₂) ₃ -NH ₂	221	17.6	99	68

Table 2. Physical characteristics of quinazoline-2,4-diones synthesized by solid phase. "Lichrosorb 250 x 4.6 RP-18 column, 5μ M, Flow rate 1 ml/min, Solvent water/acetonitrile/0.1% TFA, gradient 0 to 100% acetonitrile in 50 min, detection 220 nM; bYield of quinazoline-2,4-diones 5 based on the theoretical recovery starting from 0,96 mmol/g hydroxymethyl polystyrene resin.

In conclusion, an efficient process for the solid phase synthesis of 3-substituted quinazoline-2,4-diones from both commercially available anthranilic acid and amino compounds, including aminoacids, has been developed by using a novel cyclisation/cleavage strategy. The synthesis yields 3-substituted quinazoline-2,4-diones of high purity and can be amenable to automation. Therefore, this strategy could be useful for the synthesis of diverse libraries of quinazoline-2,4-diones derivatives. Syntheses of other heterocycles using a similar approach is currently under investigation in our laboratory.

References and notes

- a) Wenzel, D.G. J. Am. Pharm. Assoc. 1955, 44, 550-553. b) Hayao, S.; Havera, H. J.; Strycker, W. G.; Leipzig, T. G.; Kulp, R. A.; Hartzler, H. E. J. Med. Chem 1965, 8, 807-811; c) Havera, H. J.; Vidrio, H. J. J. Med. Chem. 1979, 22, 1548-1550; d) Maillard, J.; Vincent, M.; Bernard, M. Chim. Ther. 1968, 3, 100-106; e) Fry, D. W.; Kraker, A. J.; Mc Michael, A.; Ambroso, L.; Nelson, J. M.; Leopold, W. R.; Connors, R. W.; Bridges, A. J. Science 1994, 265, 1093-1095.
- a) Akgün, H.; Hollstein, U.; Hurwitz, L. J. Pharm. Sci. 1988, 77, 735-739. b) Gadekar, M. S.; Kotsen, A. M. J. Chem. Soc. 1964, 4, 4666-8. c) Pastor, G.; Blanchard, C.; Montginoul, C.; Toreilles, E.; Giral, L.; Texier, A. Bull. Soc. Chim. France 1975, 1331-8. d) Ellis, G. P. 'Synthesis of Fused Heterocycles' A. Willey Interscience Publication 1987, 47-. e) Canonne, P.; Akssira, M.; Dahdouh, A.; Kasmi, H.; Boumzebra, M. Heterocycles 1993, 36, 1305-1314.
- 3. Castro, B; Dormoy, J. R.; Evin, G.; Selve, C. Tetrahedron Letters 1975, 1219-1222.
- 4. Coupling with H-Leu-OBzl of quinazoline-2,4-dione (acid derivative) obtained from H-Phe-OEt, using BOP, afforded a
- compound as a single diastereomer as shown by ¹H NMR spectroscopy and HPLC).
- 5. Hermkens, P. H. H.; Ottenheijm, H. C. J.; Rees, D. Tetrahedron 1996, 52, 4527-4554
- 6. Buckman, B. O.; Mohan, R. Tetrahedron Letters 1996, 4439-4442.
- 7. Letsinger, R. L.; Kornet, M. J.; Mahadevan, V.; Jerina, D. M. J. Am. Chem. Soc. 1964, 86, 5163-5165.
- 8. Dressman, B. A.; Spangle, L. A.; Kaldor, S. W. Tetrahedron Letters 1996, 937-940.
- Hydroxymethyl polystyrene resin (0,96 mmol/g) was purchased from Bachem Biochimie. An aliquot of the activated resin
 was washed three times with a solution of aqueous ammonia in DMF. UV titration of paranitrophenol in the filtrate afforded
 the approximate loading of the activated resin.

(Received in France 23 July 1996; accepted 6 August 1996)