

Available online at www.sciencedirect.com

Bioorganic & Medicinal Chemistry Letters

Bioorganic & Medicinal Chemistry Letters 14 (2004) 459-462

Orally active amino functionalized antimalarial 1,2,4-trioxanes^{\approx}

Chandan Singh,^{a,*} Heetika Malik^a and Sunil K. Puri^b

^aDivision of Medicinal Chemistry, Central Drug Research Institute, Lucknow-226001, India ^bDivision of Parasitology, Central Drug Research Institute, Lucknow-226001, India

Received 19 September 2003; accepted 23 October 2003

Abstract—Using readily available trioxanes **6a–b**, a new series of amino functionalized 1,2,4-trioxanes **8a–e** and **9a–e** have been prepared and evaluated for antimalarial activity against multi-drug resistant *Plasmodium yoelii* in Swiss mice model. Several of these novel trioxanes are orally more active than the parent trioxanes **6a–b**. Antimalarial activity of amino functionalized trioxane **9a**, the most potent compound in the series, is very close to that of β -arteether.

© 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Discovery of Artemisinin 1, as the active principle of the Chinese traditional drug Artemisia annua, has opened new possibilities in malaria chemotherapy.¹ Artemisinin and its more potent derivatives for example, artemether 2, arteether 3 and artesunic acid 4, are highly active against both chloroquine-sensitive and resistant malaria. These drugs are fast acting and are well suited for the treatment of cerebral malaria caused by multidrug resistant Plasmodium falciparum.² Peroxide group present in the form of 1,2,4-trioxane, is essential for the antimalarial activity of these drugs. Synthesis of a large number of structurally simple trioxanes have been reported, several of which have shown promising in vivo antimalarial activity.^{3,4} Though chloroquine is known to antagonise the antimalarial effects of artemisinin derivatives,⁵ recently we and others have attempted to improve the antimalarial activity of easily accessible synthetic trioxanes by incorporating 4-aminoquinoline moiety.⁶ These hybrid molecules 'trioxaquines' (prototype 5) prepared by reductive amination of trioxanes 6a-b with 4-aminoquinolines 7, show only marginal improvement in antimalarial activity over the parent trioxanes. They also suffer from serious limitations such as poor solubility both in water and oil.⁶ Herein we report the preparation and antimalarial activity of 8a-e and 9a-e, a new series of amino functionalized trioxanes which are orally more active than the parent trioxanes **6a–b**. While

0960-894X/\$ - see front matter \odot 2003 Elsevier Ltd. All rights reserved. doi:10.1016/j.bmcl.2003.10.051

amino functionalized derivatives of artemisinin are known,⁷ to the best of our knowledge, this is the first report on amino functionalized synthetic 1,2,4-trioxanes.

β-Hydroxyhydroperoxides **11a–b** prepared by photooxygenation of allylic alcohols **10a–b** were condensed with 1,4-cyclohexanedione to furnish keto-trioxanes **6a–b** in 42–51% yield.⁶ Reductive amination of **6a** with various amines in presence of NaBH(OAc)₃ furnished amino functionalized trioxanes **8a–e** as inseparable

^{*}CDRI Communication no.: 6461.

^{*} Corresponding author. Tel.: +91-0522-2224273; fax: +91-0522-2223405; e-mail: chandancdri@yahoo.com

mixture of diastereomers.⁸ A similar reductive amination of **6b** furnished amino functionalized trioxanes **9a–e** again as inseparable mixture of diastereomers (Scheme 1, Table 1).⁹ Unlike trioxaquines **5**, these amino functionalized trioxanes are stable as free bases and are soluble in groundnut oil, the most commonly used vehicle for antimalarial assessment of artemisinin analogues.

3. Antimalarial activity

Trioxanes **6a–b** and amino functionalized trioxanes **8a– e** and **9a–e** were tested against multi-drug resistant *Plasmodium yoelii* in Swiss mice initially at 96 mg/kg both by oral and intramuscular (im) routes.¹⁰ Compound **9a** which showed 100% protection at 96 mg/kg by oral route was also tested at 48 mg/kg and 24 mg/kg. β -Arteether **3**, which provides 100% protection at 48 mg/kg by oral route, served as positive control. The results are summarized in Table 2.

4. Results and discussion

We have earlier tried to improve the antimalarial activity of trioxanes **6a–b** by incorporating 4-aminoquinoline moieties **7**. But the resulting hybrid molecules 'trioxaquines' (represented by prototype **5**) showed only marginal improvement in activity. These trioxaquines were also unstable as free bases and had serious solubility problem. Amino functionalized trioxanes **8a–e** and

Table 2. In vivo antimalarial activity against P. yoelii in Swiss mice

Scheme 1. Reaction conditions: (a) hv, O_2 , methylene blue, MeCN, -10 to 0° C, 4 h. (b) 1,4-cyclohexanedione, concd HCl, 5 °C, 18 h. (c) RNH₂, NaBH(OAc)₃, CH₂Cl₂, rt, 4 h.

Table 1. Amino functionalized 1,2,4-trioxanes

Ar	R	Yield (%)	
Phenyl	Phenyl	81	
Phenyl	4-Methoxyphenyl	61	
Phenyl	3,5-Dichlorophenyl	62	
Phenyl	4-Acetylaminophenyl	88	
Phenyl	1-Naphthyl	78	
4-Biphenyl	Phenyl	84	
4-Biphenyl	4-Methoxyphenyl	91	
4-Biphenyl	3,5-Dichlorophenyl	44	
4-Biphenyl	4-Acetylaminophenyl	61	
4-Biphenyl	l-Naphthyl	41	
	Ar Phenyl Phenyl Phenyl Phenyl 4-Biphenyl 4-Biphenyl 4-Biphenyl 4-Biphenyl 4-Biphenyl 4-Biphenyl	ArRPhenylPhenylPhenyl4-MethoxyphenylPhenyl3,5-DichlorophenylPhenyl4-AcetylaminophenylPhenyl1-Naphthyl4-BiphenylPhenyl4-Biphenyl3,5-Dichlorophenyl4-Biphenyl3,5-Dichlorophenyl4-Biphenyl4-Acetylaminophenyl4-Biphenyl1-Naphthyl4-Biphenyl1-Naphthyl	

Compd	Dose (mg/kg/day)	Route	% Suppression on day 4 ^a	Mice alive on day 28	Mean survival time ^b (day) \pm SE
6a	96	oral	7	0/5	7.2 ± 0.38
	96	im	99	0/5	11.6 ± 1.08
6b	96	oral	92	0/5	10.2 ± 0.58
	96	im	100	1/5	17.7 ± 1.97
8a	96	oral	95	0/5	12.2 ± 0.73
	96	im	60	0/5	13.4 ± 1.50
8b	96	oral	93	0/5	12.4 ± 1.12
	96	im	63	0/5	10.8 ± 1.50
8c	96	oral	100	2/5	16.5 ± 2.31
	96	im	62	0/5	12.4 ± 0.93
8d	96	oral	77	0/5	9.8 ± 0.37
	96	im	98	0/5	9.0 ± 0.45
8e	96	oral	100	0/5	19.5 ± 1.85
	96	im	44	0/5	9.2 ± 1.68
9a	96	oral	100	5/5	>28
	48	oral	100	3/5	14.5 ± 2.5
	24	oral	98	0/5	13.4 ± 1.14
	96	im	72	0/5	10.7 ± 1.25
9b	96	oral	94	0/5	11.1 ± 1.06
	96	im	57	0/5	8.4 ± 2.4
9c	96	oral	65	0/5	10.2 ± 2.03
	96	im	46	0/5	7.0 ± 0.55
9d	96	oral	49	0/5	8.4 ± 0.75
	96	im	90	0/5	11.6 ± 1.69
9e	96	oral	100	0/5	14.8 ± 1.06
	96	im	nil	0/5	6.6 ± 0.24
β-Arteether	48	oral	100	5/5	>28
	24	oral	100	1/5	17.75 ± 2.46
Chloroquine	48	oral	100	2/5	17.6 ± 1.33
	24	oral	100	0/5	14.8 ± 2.24
Vehicle control	_	_	_	0/15	7.07 ± 0.10

^a Percent suppression = $[(C-T)/C] \times 100$; where C = parasitaemia in control group, and T = parasitaemia in treated group.

^bMST calculated for the mice which died during 28-day observation period and the mice which survive beyond 28 days are excluded.

9a–e, on the other hand, are stable as free bases and are freely soluble in groundnut oil, the most commonly used vehicle for antimalarial testing of artemisinin derivatives. As can be seen from Table 2, several of these novel compounds are orally more active than the parent trioxanes. Thus, while trioxane **6a** is almost completely inactive at 96 mg/kg by oral route, all the amino functionalized trioxanes derived from it except 8d show 93-100% clearance of parasitaemia on day 4 by oral route. Amino functionalized trioxane 8c, which shows 100% inhibition of parasitaemia on day 4, also provides 40% protection in 28-day survival assay. Keto-trioxane 6b shows 92% inhibition of parasitaemia on day 4 when given orally at 96 mg/kg. Its derivative 9a, shows 100% clearance of parasitaemia at 96 mg/kg by oral route and all the treated mice survived beyond day 28. Even at 48 mg/kg by oral route 9a shows 100% clearance of parasitaemia on day 4 and 60% of treated mice survived beyond day 28. Thus activity profile of **9a** by oral route is very close to that of β -arteether. Rests of the compounds derived from **6b** have either comparable activity (9b and 9e) or are less active than 6b. However none of the amino functionalized trioxanes is more active than the parent trioxanes 6a-b by im route. Thus introduction of the amino moiety improves absorption by oral route only.

5. Conclusion

Using easily available trioxanes **6a–b**, for the first time we have prepared a series of amino functionalized trioxanes **8a–e** and **9a–e** in good yield. Several of these trioxanes show better activity by oral route than the parent trioxanes. The activity profile of **9a**, the most potent compound of the series, is very close to that of β arteether, one of the clinically useful antimalarial drugs belonging to artemisinin class.

Acknowledgements

Heetika Malik is grateful to the Council of Scientific and Industrial Research (CSIR), New Delhi for award of Senior Research Fellowship.

References and notes

- For reviews on artemisinin and its analogues see: (a) Klayman, D. L. Science 1985, 228, 1049. (b) Luo, X. D.; Shen, C. C. Med. Res. Rev. 1987, 7, 29. (c) Zaman, S. S.; Sharma, R. P. Heterocycles 1991, 32, 1593. (d) Cumming, J. N.; Ploypradith, P.; Posner, G. H. Adv. Pharmacol. 1997, 37, 253. (e) Zhou, W. S.; Xu, X. X. Acc. Chem. Res. 1994, 27, 211. (f) Bhattacharya, A. K.; Sharma, R. P. Heterocycles 1999, 51, 1681.
- For current status of artemisinin derivatives see: Asthana, O. P.; Srivastava, J. S.; Valecha, N. J. Parasitic Diseases 1997, 21, 1.
- (a) Singh, C.; Misra, D.; Saxena, G.; Chandra, S. *Bioorg. Med. Chem. Lett.* **1992**, *2*, 497. (b) Singh, C.; Misra, D.; Saxena, G.; Chandra, S. *Bioorg. Med. Chem. Lett.* **1995**, *5*, 1913. (c) Singh, C.; Gupta, N.; Puri, S. K. *Bioorg. Med.*

Chem. Lett. **2002**, *12*, 1913. (d) Singh, C.; Gupta, N.; Puri, S. K. Bioorg. Med. Chem. Lett. **2003**, *13*, 3447.

- For other in vivo active trioxanes: (a) Peters, W.; Robinson, B. L.; Rossier, J. C.; Jefford, C. W. Ann. Trop. Med. Parasitol. 1993, 87, 1. (b) Peters, W.; Robinson, B. L.; Rossier, J. C.; Misra, D.; Jefford, C. W. Ann. Trop. Med. Parasitol. 1993, 87, 9. (c) Posner, G. H.; Jeon, H. B.; Parker, M. H.; Krasavin, M.; Paik, I.-H.; Shapiro, T. A. J. Med. Chem. 2001, 44, 3054. (d) Posner, G. H.; Jeon, H. B.; Ploypradith, P.; Paik, I.-H.; Borstnik, K.; Xie, S.; Shapiro, T. A. J. Med. Chem. 2002, 45, 3824.
- Fivelman, Q. L.; Walden, J. C.; Smith, P. J.; Folb, P. I.; Barnes, K. I. *Trans. R. Soc. Trop. Med. Hyg.* **1999**, *93*, 429.
- (a) Singh, C.; Malik, H.; Puri, S. K. *Bioorg. Med. Chem.* 2003, communicated. (b) Dechy-Cabaret, O.; Benoit-Vical, F.; Robert, A.; Magnaval, J.-F.; Seguela, J.-P.; Meunier, B. C. R. Chimie. 2003, 6, 153.
- (a) Hindley, S.; Ward, S. A.; Storr, R. C.; Searle, N. L.; Bray, P. G.; Park, B. K.; Davies, J.; O'Neill, P. M. J. Med. Chem. 2002, 45, 1052. (b) Eckstein-Ludwig, U.; Webb, R. J.; Van Goethem, I. D. A.; East, J. M.; Lee, A. G.; Kimura, M.; O'Neill, P. M.; Bray, P. G.; Ward, S. A.; Krishna, S. Nature 2003, 424, 957.
- In all cases the ratio of the two isomers as measured by HPLC (Shimadzu-CLC Reversed phase C₁₈ column; MeOH:H₂O 80:20, Flow rate 0.8 mL/min) is around 60:40.
- Selected spectral data: Compound **6a**: FT-IR (KBr, cm⁻¹) 1717.4; ¹H NMR (200 MHz, CDCl₃) δ 2.05 (t, 2H, J = 7.06 Hz), 2.32–2.67 (m, 6H), 3.85 (dd, 1H, J = 11.87, 2.91 Hz), 3.96 (dd, 1H, J=11.87, 10.16 Hz), 5.31 (dd, 1H, J = 10.16, 2.91 Hz), 5.36 and 5.53 (2×s, 2×1H), 7.32–7.40 (m, 5H); ¹³C NMR (50 MHz, CDCl₃) δ 27.79 (t), 33.57 (t), 36.79 (t), 36.95 (t), 63.72 (t), 80.83 (d), 101.50 (s), 117.10 (t), 126.81 (2×d), 128.71 (d), 129.04 (2×d), 138.84 (s), 143.59 (s), 210.00 (s); FABMS (m/z) 275 (M⁺ + 1). Anal. calculated: C 70.05%, H 6.61%; found C 69.77%, H 6.86%. Compound 8c: FT-IR (KBr, cm⁻¹) 1590.7, 3418.0; ¹H NMR (200 MHz, CDCl₃) δ 1.47-2.01 (m, 7H), 2.58-2.86 (bm, 1H), 3.34 (bs, 1H), 3.70 (bm, 1H, NH), 3.78 (dd, 1H, J = 11.88, 3.78 Hz), 3.85-4.04 (m, 1H), 5.26(dd, 1H, J = 10.70, 3.78 Hz), 5.32 and 5.51 (2×s, 2×1H), 6.42 and 6.43 (2×s, 1H), 6.63 (s, 1H), 7.25–7.39 (m, 6H); FABMS (m/z) 420, 422 and 424 $(M^+ + 1)$. Anal. calculated: C 62.86%, H 5.51%, N 3.33%; found C 62.59%, H 5.46%, N 2.89%. Compound 8e: FT-IR (Neat, cm⁻¹) 1581.8, 3423.9; ¹H NMR (200 MHz, CDCl₃) δ 1.43-2.17 (m, 7H), 2.60-2.90 (bm, 1H), 3.60-3.65 (bm, 1H), 3.80 (dd, 1H, J = 11.90, 2.77 Hz), 3.89–4.06 (m, 1H), 4.24 (bs, 1H, NH), 5.28 (dd, 1H, J=9.82, 2.77 Hz), 5.33 and 5.51 $(2 \times s, 2 \times 1H)$, 6.63 (d, 1H, J = 7.28 Hz), 7.19–7.47 (m, 9H), 7.75–7.79 (m, 2H); FABMS (m/z) 402 (M⁺ + 1). Anal. calculated: C 77.77%, H 6.77%, N 3.48%; found C 77.83%, H 6.46%, N 3.25%. Compound 9a: FT-IR (KBr, cm⁻¹) 1602.0, 3408.4; ¹H NMR (200 MHz, CDCl₃) δ 1.49-2.04 (m, 7H), 2.61-2.85 (bm, 1H), 3.40-3.64 (bm, 2H), 3.83 (dd, 1H, J=11.96, 2.97 Hz), 3.90-4.09 (m, 1H), 5.31 (dd, 1H, J=9.98, 2.97 Hz), 5.35 and 5.57 (2×s, 2×1H), 6.57-6.71 (m, 2H), 7.12-7.20 (m, 2H), 7.25-7.60 (m, 10H); ¹³C NMR (50 MHz, CDCl₃) δ 27.03 and 27.60 (t), 28.48 and 28.74 (t), 28.98 and 29.09 (t), 32.62 and 33.52 (t), 50.81 and 51.14 (d), 63.23 and 63.52 (t), 80.69 (d), 102.35 and 102.43 (s), 113.69 (2×d), 116.76 and 116.84 (t), 117.69 (d), 127.20 (2×d), 127.43 (2×d), 127.70 (2×d), 127.93 (d), 129.25 (2×d), 129.75 (2×d), 137.81 and 137.85 (s), 140.84 (s), 141.51 (s), 143.33 and 143.37 (s), 147.60 (s); FABMS (m/z) 428 (M⁺ + 1). Anal. calculated: C 78.65%, H 6.93%, N 3.27%; found C 78.25%, H 7.26%, N 3.61%. Compound 9d: FT-IR (KBr, cm⁻¹)

1612.0, 3305.5; ¹H NMR (200 MHz, CDCl₃) δ 1.33–2.07 (m, 7H), 2.12 (s, 3H), 2.59–2.85 (bm, 1H), 3.31–3.41 (bm, 2H), 3.83 (dd, 1H, *J*=11.89, 3.06 Hz), 3.90–4.08 (m, 1H), 5.30 (dd, 1H, *J*=10.01, 3.06 Hz), 5.34 and 5.57 (2×s, 2×1H), 6.55 (d, 2H, *J*=8.62 Hz), 7.02 (s, 1H, NH), 7.24 (d, 2H, *J*=8.62 Hz) 7.31–7.60 (m, 9H); ¹³C NMR (50 MHz, CDCl₃) δ 24.52 (q), 27.02 and 27.56 (t), 28.42 and 28.66 (t), 29.00 (t), 32.59 and 33.48 (t), 51.18 and 51.49 (d), 63.20 and 63.49 (t), 80.68 (d), 102.36 and 102.44 (s), 113.99 (2×d), 116.86 (t), 122.98 (d), 127.19 (2×d), 127.69 (2×d), 127.95 (2×d), 129.26 (2×d), 137.82 (s), 140.79 (2×s), 141.47 (s), 143.27 (s), 144.74 (s), 168.90 (s); FABMS (*m*/*z*) 485 (M⁺ + 1). Anal. calculated:

C 74.44%, H 6.66%, N 5.78%; found C 74.57%, H 6.67%, N 5.38%.

- 10. The in vivo efficacy of compounds was evaluated against *Plasmodium yoelii* (MDR) in Swiss mice model. The mice were inoculated with 1×10^6 parasitised RBC on day zero and treatment was administered to a group of five mice at each dose, from day 0 to 3, in two divided doses daily. The required drug dilutions were prepared in groundnut oil and 0.1 mL volume was administered intramuscularly and orally for each dose. Parasitaemia level were recorded from thin blood smears between day 4-28.¹¹ Mice treated with arteether and chloroquine served as positive controls.
- 11. Puri, S. K.; Singh, N. Expl. Parasit. 2000, 94, 8.