

SCIENCE

Bioorganic & Medicinal Chemistry Letters 13 (2003) 1959-1961

BIOORGANIC & MEDICINAL CHEMISTRY LETTERS

Identification of a Dual Histamine H_1/H_3 Receptor Ligand Based on the H_1 Antagonist Chlorpheniramine

Robert Aslanian,* Mwangi wa Mutahi, Neng-Yang Shih, John J. Piwinski, Robert West, Shirley M. Williams, Susan She, Ren-Long Wu and John A. Hey

The Schering-Plough Research Institute, 2015 Galloping Hill Road, Kenilworth, NJ 07033, USA

Received 21 March 2003; revised 7 April 2003; accepted 9 April 2003

Abstract—Combining the first generation H_1 antihistamine chlorpheniramine (1) with H_3 ligands of the alkylamine type has led to the identification of compound 9d, a dual ligand of both the H_1 and H_3 receptors. © 2003 Elsevier Science Ltd. All rights reserved.

The histamine H_3 receptor is a presynaptic autoreceptor that controls the release of histamine as well as other neurotransmitters such as acetylcholine and norepinephrine.¹ Most of the interest in the therapeutic use of H₃ receptor antagonists and agonists has been in the CNS area, including treatment of cognition disorders, obesity, and sleep-related disorders.² We, however, have been interested in their use for the treatment of allergic diseases, in particular nasal congestion. We previously demonstrated that the combination of the selective H_1 antagonist chlorpheniramine (1) with the selective H_3 antagonist thioperamide prevented congestion in a histamine-driven model of nasal congestion in the cat.³ We became interested in determining if a dual antagonist of these receptors could be designed. There is ample precedent in the histamine literature that supports the concept of dual antagonism in which one of the receptors is the H₁ receptor. These include, among others, dual PAF/H_1 antagonists, NK_1/H_1 antagonists, H_1/H_2 antagonists and LTD₄/H₁ antagonists.⁴ Recently, examples of dual H₁/H₃ antagonists have also been reported although these were not originally designed to be dual antagonists.⁵ This paper describes our efforts towards the identification of a dual antagonist of the H₁ and H₃ receptors based on the first-generation H₁ antagonist chlorpheniramine.

Chlorpheniramine (1) is a potent antagonist of the human H₁ receptor ($K_i = 2 \text{ nM}$).⁶ Our approach for the design of dual H₁/H₃ ligands based on chlorpheniramine

envisioned the coupling of H_3 ligands of the alkylamine class (2)⁷ via the amine moieties that are common to both (Fig. 1). Optional linking groups on either side of the amine moiety provided further opportunity to introduce diversity into the molecules.

Figure 1.

The preparations of the putative dual H_1/H_3 ligands are given in the following Schemes. Analogues in which n=2 or 4 possessing either an amide linker or a straight alkyl chain were prepared as shown in Schemes 1 and 2 (exemplified for n=4). Wittig olefination of the known ketone **4** gave a 1:1 mixture of olefin isomers **5**. Although these could be separated via column chromatography, the mixture was reduced directly to give the ester **6**. The ester **6** was converted to the amides **7** by treatment with the Weinreb reagent⁸ formed from the alkylamine⁷ and Me₃Al. Removal of the triphenylmethyl (Tr) protecting group on the imidazole ring

0960-894X/03/\$ - see front matter \odot 2003 Elsevier Science Ltd. All rights reserved. doi:10.1016/S0960-894X(03)00357-3

^{*}Corresponding author. Tel.: +1-908-7403514; fax: +1-908-7407305; e-mail: robert.aslanian@spcorp.com

gave the amide analogues 8 (R = H). Alternatively, the amide nitrogen was alkylated followed by deprotection of the imidazole ring to give 8 ($R = CH_3$). Reduction of the amide 7 followed by deprotection gave the amine analogues 9. In an analogous manner, amide 10 and amine 11 were prepared.

Scheme 1. (a) $Ph_3PCH_2CO_2CH_3Br$, NaH, THF, 92%; (b) Mg, MeOH, 45%; (c) Me_3Al, aminoalkyl imidazole, toluene, 77%; (d) NaH, MeI, THF, 67% (R = CH₃); (e) 1N HCl, EtOH, 95% (7 to 8), 100% (7 to 9); (f) BH₃·Me_2S, THF, 100%.

Scheme 2. (a) Ph_3PCH_2CNBr , NaH, THF, 90%; (b) NaBH₄, *i*-PrOH, reflux, 78%; (c) LiAlH₄, Et₂O, reflux, 36%; (d) 12, Me₃Al, toluene, 80%; (e) NaH, MeI, THF, 94% (for $R = CH_3$); (f) 1N HCl, EtOH, quantitative; (g) LiAlH₄, THF, 19%.

The three-carbon homologues were prepared starting from the known ester 13 (Scheme 2).⁹ Horner–Wadsworth-Emmons olefination of 5 followed by reduction of the nitrile and double bond gave amine 12. This amine was coupled with ester 13 using Weinreb chemistry to give amide 14. Further manipulation in the same manner as that used to produce analogues in which n=2 or 4 gave the desired targets 15 (n=2) and 16 (n=2).

The synthesis of urea and amidine linked analogues is given in Schemes 3 and 4. Amine 12 was converted to the isocyanate 17 and then coupled with 1-trityl-4-(4-aminobutyl)imidazole to give the urea analogue 18 (n=4) after deprotection.

The amidine **20** (n=2) was formed by reaction of the nitrile **19** with the Weinreb amide formed from 1-triphenylmethyl histamine and Me₃Al. Deprotection of the imidazole ring gave the target. In a similar manner, amidine **21** (n=3) was prepared from amine **12** and tri-tyl-protected 3-[4(5)-imidazolyl]butyronitrile.

Compounds were evaluated for H_3 binding affinity using guinea pig brain membranes as described by Korte et. al.¹⁰ and for H_1 binding affinity using the procedure of Tran.¹¹ These data are presented in Table 1.

Examination of these data indicates that it is easier to maintain H_3 binding affinity than H_1 binding affinity in this series. For example, both neutral linkers like amides

Scheme 3. (a) Triphosgene, pyridine, 100%; (b) aminoalkylimidazole, pyridine, 50%; (c) 1N HCl, EtOH, 90%.

Scheme 4. (a) Ph₃PCH₂CNBr, NaH, THF, 90%; (b) NaBH₄, 2-propanol, reflux, 78%; (c) Me₃Al, 1-triphenylmethyl histamine, toluene; (d) 1N HCl, EtOH, 68% for steps c and d.

Table 1. H_1 and H_3 receptor binding affinity

Example No.	n	R	$K_i (H_{1, nM})^a$	$K_i (H_{3,} nM)^a$
8a	2	Н	N.A. ^b	16
8b	4	Н	N.A.	1
8c	4	CH ₃	N.A.	7
8d	2	CH ₃	N.A.	1
9a	2	Н	600	56
9b	4	Н	254	10
9c	5	Н	39	33
9d	4	CH ₃	7	15
9e	5	CH ₃	6	50
10		Н	N.A.	1
11		Н	N.A.	4
15a	2	Н	N.A.	510
15b	2	CH ₃	N.A.	260
16a	2	Н	N.A.	240
16b	2	CH ₃	10	120
18	4	_	920	23
20	2	_	N.A.	8
21	3	—	201	29

^aBinding K_i values are the average of at least two independent determinations. The average K_i value for thioperamide in the H₃ assay is 7.3±0.7 nM; the average K_i value for chlorpheniramine in the H₁ binding assay is 2.1±0.2 nM.

^bN.A., Less than 50% inhibition when screened at 1 µg/mL.¹³

and ureas (Examples **8a–d** and **18**) as well as analogues with a basic linker like an amine or amidine (Examples **9b,c, 20** and **21**) display excellent affinity for the H_3 receptor. Interestingly, the amides appear to display higher receptor affinity then the corresponding amines (**8a–d** vs **9a–d**). Furthermore, binding affinity for the H_3 receptor is sensitive to the carbon chain length between the imidazole ring and the amine linker. The four carbon chain analogues are generally superior to the two, three or five carbon chains. This result differs somewhat from Timmerman's original work in a structurally similar alkylamine series where H_3 affinity peaked with the five-carbon linker.⁷

In contrast to the generally good H_3 binding affinity of this series, H_1 binding affinity is much more sensitive to the nature of the substrate. None of the compounds which incorporate a neutral linker (i.e., amide or urea) display significant H_1 binding affinity. However, incorporating a basic amine into the linking group restores H_1 binding affinity, which is optimum, when the linker is a tertiary amine (Examples **9d**, **9e** and **16b**). This result is consistent with the known structural requirements for a first generation H_1 ligand, namely that a basic amine, capable of interacting with the aspartic acid residue in transmembrane **3**, be present.¹²

In conclusion, a series of compounds has been prepared that combine known pharmacophores of the H_1 and H_3

receptors to determine if dual affinity for the H_1 and H_3 receptors by a single chemical entity is possible. This led to the identification of compounds that in general display very good affinity for the H_3 receptor, but much lower affinity for the H_1 receptor. However, compound **9d**, incorporating a tertiary amine as the linker, displays very good binding affinity for both the H_1 and H_3 receptors (7 and 15 nM, respectively). Compounds such as this may be useful additions to current therapies for the treatment of allergies and nasal congestion.

References and Notes

1. Hill, S. J.; Ganellin, C. R.; Timmerman, H.; Schwartz, J. C.; Shankley, N. P.; Young, J. M.; Schunack, W.; Levi, R.; Haas, H. L. *Pharmacol. Rev.* **1997**, *49*, 253.

2. Leurs, R.; Blandina, P.; Tedford, C.; Timmerman, H. Trends Pharmacol. Sci. 1998, 19, 177.

- 3. McLeod, R. L.; Mingo, G. G.; Herczku, C.; DeGennaro-Culver, F.; Kreutner, W.; Egan, R. W.; Hey, J. A. *Am. J. Rhinol.* **1999**, *13*, 391.
- 4. (a) Billah, M. M.; Chapman, R. W.; Egan, R. W.; Gilchrest, H.; Piwinski, J. J.; Sherwood, J.; Siegel, M. I.; West, R. E.; Kreutner, W. J. Pharmacol. Exp. Ther. 1990, 252, 1090. (b) Maynard, G. D.; Bratton, L. D.; Kane, J. M.; Burkholder, T. P.; Santiago, B.; Stewart, K. T.; Kudlacz, E. M.; Shatzer, S. A.; Knippenberg, R. W.; Farrell, A. M.; Logan, D. E. Bioorg. Med. Chem. Lett. 1997, 7, 2819. (c) Schulze, F. R.; Buschauer, A.; Schunack, W. Eur. J. Pharm. Sci. 1998, 6, 177. (d) Zhang, M. Q.; van de Stolpe, A.; Zuiderveld, O. P.; Timmerman, H. Eur. J. Med. Chem. 1997, 32, 95.

5. (a) Hüls, A.; Purand, K.; Stark, H.; Ligneau, X.; Arrang, J.-M.; Schwartz, J.-C.; Schunack, W. *Bioorg. Med. Chem. Lett.* **1996**, *6*, 2013. (b) Walczynski, K.; Guryn, R.; Zuiderveld, O. P.; Timmerman, H. *Il Farmaco* **1999**, *54*, 684.

 Anthes, J. A.; Gilchrest, H.; Richard, C.; Eckel, S.; Hesk, D.; West, R. E.; Williams, S. M.; Greenfeder, S.; Billah, M.; Kreutner, W.; Egan, R. W. *Eur. J. Pharmacol.* 2002, 449, 229.
Vollinga, R. C.; Menge, W. M. P. B.; Leurs, R.; Timmerman, H. J. Med. Chem. 1995, 38, 266.

8. Basha, A.; Lipton, M.; Weinreb, S. M. Tetrahedron Lett. 1997, 48, 4171.

9. Browne, L. J.; Gude, C.; Rodriguez, H.; Steele, R. E. J. Med. Chem. 1991, 34, 725.

10. Korte, A. K.; Myers, J.; Shih, N.-Y.; Egan, R. W.; Clark, M. A. *Biochem. Biophys. Res. Commun.* **1990**, *168*, 979. The source of the receptors in these experiments was guinea pig brain. $[^{3}H]N^{\alpha}$ -methyl histamine was used as the radioligand.

11. Tran, V. T.; Chang, R. S. L.; Snyder, S. *Proc. Natl. Acad. Sci. U.S.A.* **1978**, *75*, 6290 The source of the receptors in these experiments was male Sprague–Dawley rat brain. [³H]Pyr-ilamine was used as the radioligand.

12. Wieland, K.; Ter Laak, A.; Smit, M. J.; Kuhne, R.; Timmerman, H.; Leurs, R. J. Biol. Chem. **1999**, 274, 29994.

13. Compounds are screened at a concentration of 1 mg/mL and those demonstrating greater than 50% inhibition are submitted for a K_i determination.