Downloaded by Pennsylvania State University on 16 March 2013
Published on 26 September 2012 on http://pubs.rsc.org | doi:10.1039/C2CC36128K

ChemComm

Cite this: Chem. Commun.,2012,48,11145-11147

www.rsc.org/chemcomm

View Article Online / Journal Homepage / Table of Contentsfor thisissue

Dynamic Article Links °

COMMUNICATION

Tandem carbon—carbon bond insertion and intramolecular aldol reaction
of benzyne with aroylacetones: novel formation of 4,4'-disubstituted

1,1’-binaphthols
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An efficient route to 4-aryl-2-naphthols from arynes and aroyl-
acetones was developed by carbon—carbon bond insertion followed
by an intramolecular aldol reaction and dehydration. Benzyne
derived from 2-(trimethylsilyl)phenyl triflate reacted with benzoyl-
acetones in refluxing acetonitrile to give 4-aryl-2-naphthols and
3-aryl-1-naphthols.

Fluoride-induced aryne formation by using 2-(trimethylsilyl)-
phenyl triflate (1) has gathered much attention as a valuable
synthetic building tool.! Naphthalene derivatives are ubiquitously
present in natural products, pharmaceuticals, and ligands for
transition-metal catalysts.” In particular, binaphthyl compounds
are very important for enantioselective catalytic reactions.®
Although the synthesis of 1-naphthols through the reaction of
aryne with furans followed by acidic dehydration is a popular
method that emerged from the discovery of benzyne chemistry,*
2-naphthols are difficult to synthesize via benzyne intermediates.
4-Aryl-2-naphthols were previously synthesized by the intra-
molecular carbocyclization of alkynyl ketones,® the Wittig
reaction of 2-benzoylphenylacetate,® the cyclization of alkynone
with I,” and the Friedel-Crafts reaction of cyclopropanecarbonyl
chloride with benzene.® All those methods, however, presented
some difficulties, such as the unavailability of starting materials
and/or the requirement of multi-step reactions. Thus, a more
convenient method for the synthesis of 4-substituted 2-naphthols
is required. A recently developed carbon—carbon insertion
reaction of arynes offers a new method for the synthesis of
ortho-selective aromatic compounds. For example, the reaction of
benzyne derived from triflate 1 with B-diketones, B-diketo esters,
or B-keto esters gave carbon—carbon insertion products.”!'® Other
carbon-heteroatom insertion reactions of arynes were reported as
well.'! Whereas the reaction of benzyne with acetylacetone (2a)
gave 1-(2-acetylphenyl)propane-2-one (3a),” treatment of benzyne
with benzoylacetone (2b) in the presence of Cul catalyst resulted
in the formation of 1,3,3-triphenylbutane-1,3-dione.12 We have
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Fig. 1 Proposed synthesis of 4-substituted 2-naphthols from arynes.

been interested in the difference in reactivity between those
two results. If the carbon—carbon bond insertion reaction of
arynes proceeds in B-diketones, the tandem intramolecular
aldol reaction followed by dehydration would provide a new
route to produce substituted 2-naphthols in a one-pot operation
(Fig. 1). Herein, we report the one-pot synthesis of 2-naphthols
from benzyne precursor 1 and CsF and its application to
4,4'-biaryl-2,2’-binaphthols.

We began our study by reacting diketone 2a or 2b with
benzyne generated from triflate 1 and CsF (Table 1). Treatment
of triflate 1 with CsF followed by the addition of acetylacetone 2
at rt for 3 h resulted in the formation of 1-(2-acetylphenyl)propan-
2-one 3a in 52% yield, the result of which was similar to that of
Yoshida et al. (entry 1).° However, 3,4-dihydro-3-hydroxy-3-
methylnaphthalen-1(2H)-one (4a) was also isolated as the side
product (12%). Prolonging the reaction time produced a larger
amount of cyclized product 4a; the yield was increased to 25%
(entry 2). When excess amounts of 1 and CsF were used, 4a
was obtained in 40% yield (entry 3). Interestingly, when
benzoylacetone 2b was treated with triflate 1, not 1,2,2-triphenyl-
1,3-butanedione, the product reported by Yang er al.,'* but
1-(2-benzoylphenyl)propan-2-one (3b) was obtained in 60%
yield along with 3,4-dihydro-3-hydroxy-3-phenylnaphthalen-
1(2H)-one (4b) and 1,2-diphenylbutane-1,3-dione (7%). Since
the acetyl group attached to the aromatic group is more acidic
than a normal aliphatic acetyl group, the intramolecular aldol
reaction might proceed to give 4 even at room temperature.'>
Thus, we then performed the reaction under refluxing conditions
to determine whether or not the intramolecular aldol reaction
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Table 1 Reaction of triflate 1 with B-diketones 2 in the presence of
CsF

0}
SiMe; 10)
QI A )
oTf R CHiCN
1 2a: R= Me it (¢}
2b: R=Ph SaR=IE
3b: R=Ph
0}
+
0.
OH
4a: R= Me
4b: R=Ph
Products Yields (%)
Entry 1 (equiv.) 2 Time/h 3 4
1 1.2 2a 3.0 3a 52 4a 12
2 1.2 2a 6.0 3a 40 4a 25
3 2.2 2a 14.0 3a 30 4a 40
4 1.2 2b 6.0 3b 60 4b 154
5 2.2 2b 12.0 3b 55 4b 12¢

“ A small amount of 1,2-diphenylbutane-1,3-dione was isolated.

and dehydration would proceed. The reaction of 1 with 2a and
CsF in refluxing acetonitrile proceeded with regioselectivity to
give 3-methyl-1-naphthol (5a) in 80% yield. Meanwhile, when 1
was treated with 2b and CsF in refluxing acetonitrile, a mixture
of 4-phenyl-2-naphthol (6b) and 3-phenyl-1-naphthol (5b) was
obtained in 58% and 15% yields, respectively (Scheme 1).

Thus, not only carbon—carbon insertion but also intramolecular
aldol cyclization and dehydration proceeded under refluxing
conditions (Scheme 2). This reaction has an interesting feature:
it proceeded regioselectively (4 : 1) and the intramolecular aldol
reaction proceeded even under these conditions.

Other substituted benzoylacetones 2 also reacted with triflate
1 and CsF to give the corresponding 3-substituted 1-naphthols
5 and 4-substituted 2-naphthols 6 in moderate to good yields
(Table 2).'

When electron-donating groups were substituted, moderate
amounts of I1-naphthols 5 were obtained (entries 1 and 2).
When electron-withdrawing groups were substituted at the
para position, 2-naphthols 6 were obtained in better yields
(entries 3-5). In particular, the nitro substituent afforded only

OH
CHf?CN CHs
reflux 5a 80%
OH
CsF
1 + 2b ——>
CH;CN Ph
reflux 5b 15%
Ph
190!
OH
6b 58%
Scheme 1
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Table 2 Reaction of triflate 1a with aroylacetones 2

(o} o
)J\)J\ Sl
1 + — >
Ar CH3;CN

reflux

2c: Ar= 4-MeCgHy
2d: Ar= 4—M9005H4
2e: Ar= 4-CICgH4
2f. Ar= 4CF305H4
Zgi Ar=4-NO,CgHy
2h: Ar= 1-naphthyl
2i: Ar= 2-naphthyl

OH

Ar

5c: Ar= 4-MeCgHy
5d: Ar= 4-MeOCgH4
5e: Ar= 4-CICgH4
5f. Ar= 4CF305H4
5g: Ar= 4—N0206H4
5h: Ar= 1-naphthyl

5i: Ar= 2-naphthyl
Ar

100
OH

6¢: Ar= 4-MeCgHy
6d: Ar= 4-MeOCgH4
6e: Ar= 4—C|C6H4
6f: Ar= 4CF3C5H4
Gg: Ar=4-NO,CgHy
6h: Ar= 1-naphthyl
6i: Ar= 2-naphthyl

1-Naphthol 2-Naphthol
Entry 2 Time/h Yield (%) Yield (%)
1 2c 5 Sc 39 6¢c 25
2 2d 4 5d 22 6d 35
3 2e 6 Se 15 6e 65
4 2f 8 5f 15 6f 40
5 2g 8 5¢ 0 6g 67
6 2h 8 Sh 31 6h 44
7 2i 8 5i 39 6i 35

2-naphthol 6g (entry 5). By using 1-(1-naphthyl)butane-1,3-dione
(2h) and 1-(2-naphthyl)butane-1,3-dione (2i) as substrates,
the corresponding 3-naphthyl-1-naphthols and 4-naphthyl-2-
naphthols were obtained in moderate yields (entries 6 and 7).
Thus, naphthols 5 and 6 were synthesized in a one-pot operation
starting from easily available substituted benzoylacetones and
the benzyne precursor.
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OO V,05 (cat), O, OH
o  CICH,CHCI

OH
reflux Oe
6b: Ar = Ph
6¢c: Ar= 4-N0206H4 Ar
7a: Ar=Ph 65%
7b: Ar = 4-NO,CgH, 56%
Scheme 3

Previously, 4-aryl-2-naphthols 6 were synthesized by the
AuCl;/AgOTf-catalyzed intramolecular cyclization of terminal
alkynyl benzophenone® or the TiCly condensation of silyl enol
ether of a-diazoacetoacetate and ketones followed by rhodium
octanoate catalyzed annelation.”” However, those methods
required multistep synthesis of the starting materials. Although
the most straightforward synthesis of 4-phenyl-2-naphthol 6b
would be the Suzuki-Miyaura coupling of 4-bromo-2-naphthol,
the synthesis of 4-bromo-2-naphthol is relatively difficult,
requiring a three-step reaction from 1-naphthylamine.'® The
present method requires only a one-pot reaction starting from
commercially available triflate 1 and benzoylacetone. Thus, a
convenient synthesis of 1- and 2-naphthols was accomplished.

Binaphthols are well known for their synthetic ability due to
their chiral auxiliary and catalytic activity.!” Thus, many
substituted binaphthols were synthesized. In contrast, very
few 4,4'-biaryl-1,1’-binaphthols (7) were synthesized due to
the difficulty of synthesizing starting 4-aryl-2-naphthols.'® As
the regioselective synthesis of 4-substituted 2-naphthols was
achieved, we tried to perform the oxidative coupling of 4.,4'-
diaryl-1,1’-binaphthols according to the method described by
Joseph et al.'® Treatment of 4-phenyl-2-naphthol with V,Os in
refluxing dichloroethane resulted in the formation of 4.,4'-
diphenyl-1,1’-binaphthol (7a) in 65% yield (Scheme 3).

The structure of 7a was determined by 'H and '*C NMR
analysis. In addition, the X-ray crystallographic analysis of 7a
was performed (Fig. S1, ESI¥).%

In conclusion, the synthesis of 4-aryl-2-naphthols 6 from
easily available triflate 1 and aroylacetone 2 was accomplished in
a one-pot operation. Oxidation of 4-aryl-2-naphthols afforded
the corresponding binols 7 in moderate yields.
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