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An efficient route to 4-aryl-2-naphthols from arynes and aroyl-

acetones was developed by carbon–carbon bond insertion followed

by an intramolecular aldol reaction and dehydration. Benzyne

derived from 2-(trimethylsilyl)phenyl triflate reacted with benzoyl-

acetones in refluxing acetonitrile to give 4-aryl-2-naphthols and

3-aryl-1-naphthols.

Fluoride-induced aryne formation by using 2-(trimethylsilyl)-

phenyl triflate (1) has gathered much attention as a valuable

synthetic building tool.1 Naphthalene derivatives are ubiquitously

present in natural products, pharmaceuticals, and ligands for

transition-metal catalysts.2 In particular, binaphthyl compounds

are very important for enantioselective catalytic reactions.3

Although the synthesis of 1-naphthols through the reaction of

aryne with furans followed by acidic dehydration is a popular

method that emerged from the discovery of benzyne chemistry,4

2-naphthols are difficult to synthesize via benzyne intermediates.

4-Aryl-2-naphthols were previously synthesized by the intra-

molecular carbocyclization of alkynyl ketones,5 the Wittig

reaction of 2-benzoylphenylacetate,6 the cyclization of alkynone

with I2,
7 and the Friedel–Crafts reaction of cyclopropanecarbonyl

chloride with benzene.8 All those methods, however, presented

some difficulties, such as the unavailability of starting materials

and/or the requirement of multi-step reactions. Thus, a more

convenient method for the synthesis of 4-substituted 2-naphthols

is required. A recently developed carbon–carbon insertion

reaction of arynes offers a new method for the synthesis of

ortho-selective aromatic compounds. For example, the reaction of

benzyne derived from triflate 1 with b-diketones, b-diketo esters,

or b-keto esters gave carbon–carbon insertion products.9,10 Other

carbon–heteroatom insertion reactions of arynes were reported as

well.11 Whereas the reaction of benzyne with acetylacetone (2a)

gave 1-(2-acetylphenyl)propane-2-one (3a),9 treatment of benzyne

with benzoylacetone (2b) in the presence of CuI catalyst resulted

in the formation of 1,3,3-triphenylbutane-1,3-dione.12 We have

been interested in the difference in reactivity between those

two results. If the carbon–carbon bond insertion reaction of

arynes proceeds in b-diketones, the tandem intramolecular

aldol reaction followed by dehydration would provide a new

route to produce substituted 2-naphthols in a one-pot operation

(Fig. 1). Herein, we report the one-pot synthesis of 2-naphthols

from benzyne precursor 1 and CsF and its application to

4,40-biaryl-2,20-binaphthols.

We began our study by reacting diketone 2a or 2b with

benzyne generated from triflate 1 and CsF (Table 1). Treatment

of triflate 1 with CsF followed by the addition of acetylacetone 2

at rt for 3 h resulted in the formation of 1-(2-acetylphenyl)propan-

2-one 3a in 52% yield, the result of which was similar to that of

Yoshida et al. (entry 1).9 However, 3,4-dihydro-3-hydroxy-3-

methylnaphthalen-1(2H)-one (4a) was also isolated as the side

product (12%). Prolonging the reaction time produced a larger

amount of cyclized product 4a; the yield was increased to 25%

(entry 2). When excess amounts of 1 and CsF were used, 4a

was obtained in 40% yield (entry 3). Interestingly, when

benzoylacetone 2b was treated with triflate 1, not 1,2,2-triphenyl-

1,3-butanedione, the product reported by Yang et al.,12 but

1-(2-benzoylphenyl)propan-2-one (3b) was obtained in 60%

yield along with 3,4-dihydro-3-hydroxy-3-phenylnaphthalen-

1(2H)-one (4b) and 1,2-diphenylbutane-1,3-dione (7%). Since

the acetyl group attached to the aromatic group is more acidic

than a normal aliphatic acetyl group, the intramolecular aldol

reaction might proceed to give 4 even at room temperature.13

Thus, we then performed the reaction under refluxing conditions

to determine whether or not the intramolecular aldol reaction

Fig. 1 Proposed synthesis of 4-substituted 2-naphthols from arynes.

Department of Chemistry, Faculty of Science, Fukuoka University,
Jonan-ku, Fukuoka 814-0180, Japan. E-mail: kokuma@fukuoka-u.ac.jp;
Fax: +81-92-865-6030; Tel: +81-92-871-6631
w Electronic supplementary information (ESI) available: Detailed
experimental procedures and analytical data. CCDC 874289. For
ESI and crystallographic data in CIF or other electronic format see
DOI: 10.1039/c2cc36128k

ChemComm Dynamic Article Links

www.rsc.org/chemcomm COMMUNICATION

D
ow

nl
oa

de
d 

by
 P

en
ns

yl
va

ni
a 

St
at

e 
U

ni
ve

rs
ity

 o
n 

16
 M

ar
ch

 2
01

3
Pu

bl
is

he
d 

on
 2

6 
Se

pt
em

be
r 

20
12

 o
n 

ht
tp

://
pu

bs
.r

sc
.o

rg
 | 

do
i:1

0.
10

39
/C

2C
C

36
12

8K
View Article Online / Journal Homepage / Table of Contents for this issue

http://dx.doi.org/10.1039/c2cc36128k
http://dx.doi.org/10.1039/c2cc36128k
http://dx.doi.org/10.1039/c2cc36128k
http://pubs.rsc.org/en/journals/journal/CC
http://pubs.rsc.org/en/journals/journal/CC?issueid=CC048090


11146 Chem. Commun., 2012, 48, 11145–11147 This journal is c The Royal Society of Chemistry 2012

and dehydration would proceed. The reaction of 1 with 2a and

CsF in refluxing acetonitrile proceeded with regioselectivity to

give 3-methyl-1-naphthol (5a) in 80% yield. Meanwhile, when 1

was treated with 2b and CsF in refluxing acetonitrile, a mixture

of 4-phenyl-2-naphthol (6b) and 3-phenyl-1-naphthol (5b) was

obtained in 58% and 15% yields, respectively (Scheme 1).

Thus, not only carbon–carbon insertion but also intramolecular

aldol cyclization and dehydration proceeded under refluxing

conditions (Scheme 2). This reaction has an interesting feature:

it proceeded regioselectively (4 : 1) and the intramolecular aldol

reaction proceeded even under these conditions.

Other substituted benzoylacetones 2 also reacted with triflate

1 and CsF to give the corresponding 3-substituted 1-naphthols

5 and 4-substituted 2-naphthols 6 in moderate to good yields

(Table 2).14

When electron-donating groups were substituted, moderate

amounts of 1-naphthols 5 were obtained (entries 1 and 2).

When electron-withdrawing groups were substituted at the

para position, 2-naphthols 6 were obtained in better yields

(entries 3–5). In particular, the nitro substituent afforded only

2-naphthol 6g (entry 5). By using 1-(1-naphthyl)butane-1,3-dione

(2h) and 1-(2-naphthyl)butane-1,3-dione (2i) as substrates,

the corresponding 3-naphthyl-1-naphthols and 4-naphthyl-2-

naphthols were obtained in moderate yields (entries 6 and 7).

Thus, naphthols 5 and 6 were synthesized in a one-pot operation

starting from easily available substituted benzoylacetones and

the benzyne precursor.

Table 1 Reaction of triflate 1 with b-diketones 2 in the presence of
CsF

Entry 1 (equiv.) 2 Time/h

Products Yields (%)

3 4

1 1.2 2a 3.0 3a 52 4a 12
2 1.2 2a 6.0 3a 40 4a 25
3 2.2 2a 14.0 3a 30 4a 40
4 1.2 2b 6.0 3b 60 4b 15a

5 2.2 2b 12.0 3b 55 4b 12a

a A small amount of 1,2-diphenylbutane-1,3-dione was isolated.

Scheme 1

Scheme 2

Table 2 Reaction of triflate 1a with aroylacetones 2

Entry 2 Time/h

1-Naphthol 2-Naphthol

Yield (%) Yield (%)

1 2c 5 5c 39 6c 25
2 2d 4 5d 22 6d 35
3 2e 6 5e 15 6e 65
4 2f 8 5f 15 6f 40
5 2g 8 5g 0 6g 67
6 2h 8 5h 31 6h 44
7 2i 8 5i 39 6i 35
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Previously, 4-aryl-2-naphthols 6 were synthesized by the

AuCl3/AgOTf-catalyzed intramolecular cyclization of terminal

alkynyl benzophenone5 or the TiCl4 condensation of silyl enol

ether of a-diazoacetoacetate and ketones followed by rhodium

octanoate catalyzed annelation.15 However, those methods

required multistep synthesis of the starting materials. Although

the most straightforward synthesis of 4-phenyl-2-naphthol 6b

would be the Suzuki–Miyaura coupling of 4-bromo-2-naphthol,

the synthesis of 4-bromo-2-naphthol is relatively difficult,

requiring a three-step reaction from 1-naphthylamine.16 The

present method requires only a one-pot reaction starting from

commercially available triflate 1 and benzoylacetone. Thus, a

convenient synthesis of 1- and 2-naphthols was accomplished.

Binaphthols are well known for their synthetic ability due to

their chiral auxiliary and catalytic activity.17 Thus, many

substituted binaphthols were synthesized. In contrast, very

few 4,40-biaryl-1,10-binaphthols (7) were synthesized due to

the difficulty of synthesizing starting 4-aryl-2-naphthols.18 As

the regioselective synthesis of 4-substituted 2-naphthols was

achieved, we tried to perform the oxidative coupling of 4,40-

diaryl-1,10-binaphthols according to the method described by

Joseph et al.19 Treatment of 4-phenyl-2-naphthol with V2O5 in

refluxing dichloroethane resulted in the formation of 4,40-

diphenyl-1,10-binaphthol (7a) in 65% yield (Scheme 3).

The structure of 7a was determined by 1H and 13C NMR

analysis. In addition, the X-ray crystallographic analysis of 7a

was performed (Fig. S1, ESIw).20

In conclusion, the synthesis of 4-aryl-2-naphthols 6 from

easily available triflate 1 and aroylacetone 2 was accomplished in

a one-pot operation. Oxidation of 4-aryl-2-naphthols afforded

the corresponding binols 7 in moderate yields.
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