

Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry

ISSN: 1553-3174 (Print) 1553-3182 (Online) Journal homepage: http://www.tandfonline.com/loi/lsrt20

Copper(II) Complexes with Bis-Schiff Bases: Synthesis, Crystal Structures and Antibacterial **Activities**

Xin-Li Zhang

To cite this article: Xin-Li Zhang (2016): Copper(II) Complexes with Bis-Schiff Bases: Synthesis, Crystal Structures and Antibacterial Activities, Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, DOI: 10.1080/15533174.2015.1137069

To link to this article: http://dx.doi.org/10.1080/15533174.2015.1137069

Accepted author version posted online: 24 May 2016. Published online: 24 May 2016.

🖉 Submit your article to this journal 🗹

View related articles

View Crossmark data 🗹

Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=lsrt20

Copper(II) Complexes with Bis-Schiff Bases: Synthesis, Crystal Structures and Antibacterial Activities

XIN-LI ZHANG

College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, P. R. China

E-mail: baojizhangxinli@163.com

Abstract

Reaction of perchlorate with the tridentate Schiff copper bases (H_2L^1) *N*,*N*'-bis(5-methoxysalicylidene)-1,2-ethanediamine and N,N'-bis(5-chlorosalicylidene)-1,3-propanediamine (H₂L²), afforded a dinuclear complex, $[Cu_2(L^1)_2] \cdot 2CH_3OH$ (1), and a mononuclear complex, $[CuL^2]$ (2). The complexes were characterized by single-crystal X-ray diffraction, FT-IR, and elemental analysis. The Cu atom in complex 1 is in a square pyramidal coordination, with two phenolate O and two imine N atoms of L^1 ligand defining the basal plane, and with one phenolate O atom of another L^1 ligand occupying the apical position. The Cu atom in complex 2 is coordinated by two phenolate O and two imine N atoms of L^2 ligand, forming a tetrahedrally distorted square planar geometry. The free Schiff bases and the complexes were assayed for antibacterial activities. Both complexes are more active against the bacteria than the free Schiff bases. Complex 2 has the MIC value of 0.10 $\mu g m L^{-1}$ against *Bacillus subtilis*.

Keywords

bis-Schiff base, copper complex, crystal structure, antibacterial activity

² ACCEPTED MANUSCRIPT

Introduction

The chemistry and the biological potential of Schiff base ligands and their metal complexes have been investigated extensively. Schiff bases are reported to possess various biological activities, such as antibacterial^[1, 2] and antitumour activities.^[3, 4] Metal complexes with Schiff bases as ligands have played important role in the development of coordination chemistry due to their preparative accessibility, structural variety, and biological properties.^[5–7] Interest is still high as few have found their way into application as therapeutic drugs, health, skin care products and in paint dye manufacturing.^[8] Copper complexes with Schiff bases have interesting biological properties.^[9,10] Bis-Schiff bases are readily coordinate to transition metal atoms. We report herein the synthesis and characterization of a new dinuclear complex, $[Cu_2(L^1)_2] \cdot 2CH_3OH$ (1), and a mononuclear complex, $[CuL^2]$ (2), where L^1 and L^2 are the anions of bis-Schiff bases (H_2L^1) N.N'-bis(5-methoxysalicylidene)-1,2-ethanediamine and N,N'-bis(5-chlorosalicylidene)-1,3-propanediamine (H₂L²; Scheme 1). Their antibacterial activities against Bacillus subtilis, Staphylococcus aureus, Escherichia coli, and Pseudomonas fluorescens were evaluated.

Experimental

Materials and Measurements

5-Methoxysalicylaldehyde, 5-chlorosalicylaldehyde, ethane-1,2-diamine and propane-1,3-diamine were purchased from Sigma-Aldrich. All other chemicals were commercial

Downloaded by [University of Sussex Library] at 01:17 27 May 2016

products and used without further purification. Copper perchlorate were prepared from perchloric acid with copper carbonate in distilled water. C, H and N elemental analysis was performed on a Vario EL-III analyzer. Infrared spectra were recorded as KBr pellet on a Nicolet Avatar 360 spectrophotometer in the range 4000–400 cm⁻¹. Molar conductivity was determined in methanol at room temperature on a DDS-11A conductometer. ¹H NMR spectra were recorded on a Bruker spectrometer at 300 MHz.

Synthesis of H_2L^1

5-Methoxysalicylaldehyde (3.04 g, 0.02 mol) dissolved in methanol (30 mL) was added to ethane-1,2-diamine (0.060 g, 0.01 mol) in methanol (30 mL). The reaction mixture was heated under reflux for 1 h and then cooled to room temperature followed by concentrating the resulting mixture to give yellow solid product. Yield 95%. For $C_{18}H_{20}N_2O_4$: Anal. calcd, %: C, 65.84; H, 6.14; N, 8.53. Found, %: C, 65.67; H, 6.73; N, 8.60. ¹H NMR (300 MHz, d^6 -DMSO): δ 11.32 (s, 2H, OH), 8.52 (s, 2H, CH=N), 7.37 (s, 2H, ArH), 6.95-6.83 (m, 4H, ArH), 3.79 (s, 6H, CH₃). *Synthesis of* H_2L^2

5-Chlorosalicylaldehyde (3.12 g, 0.02 mol) dissolved in methanol (30 mL) was added to propane-1,3-diamine (0.074 g, 0.01 mol) in methanol (30 mL). The reaction mixture was heated under reflux for 1 h and then cooled to room temperature followed by concentrating the resulting mixture to give yellow solid product. Yield 97%. For $C_{17}H_{16}Cl_2N_2O_2$: Anal. calcd, %: C, 58.13; H, 4.59; N, 7.98. Found, %: C, 58.27; H, 4.68; N, 7.81. ¹H NMR (300 MHz, d^6 -DMSO): δ 11.77

⁴ ACCEPTED MANUSCRIPT

(s, 2H, OH), 8.53 (s, 2H, CH=N), 7.56 (s, 2H, ArH), 7.33 (d, 2H, ArH), 6.98 (d, 2H, ArH), 3.72 (t, 4H, NCH₂), 1.98 (m, 2H, CH₂).

Synthesis of $[Cu_2(L^1)_2]$ ·2CH₃OH (1)

Copper perchlorate (0.37 g, 1 mmol) in methanol (20 mL) was added to H_2L^1 (0.33 g, 1 mmol) in methanol (20 mL), and the resultant blue reaction mixture was stirred at room temperature for 1 h to give a clear solution. Blue single crystals were obtained by slow evaporation of the solution in air. Yield 45%. For $C_{38}H_{44}Cu_2N_4O_{10}$: Anal. calcd, %: C, 54.08; H, 5.26; N, 6.64. Found, %: C, 53.82; H, 5.41; N, 6.55.

Synthesis of $[CuL^2](2)$

The blue single crystals of complex **2** were prepared according to a similar procedure as that for **1**, with H_2L^2 (0.35 g, 1 mmol) instead of H_2L^1 . Yield 53%. For $C_{17}H_{14}Cl_2CuN_2O_2$: Anal. calcd, %: C, 49.47; H, 3.42; N, 6.79. Found, %: C, 49.62; H, 3.35; N, 6.70.

X-ray Crystallography

Crystal structure determination of the complexes were carried out on a Bruker APEX II CCD area diffractometer equipped with graphite-monochromatized MoK α ($\lambda = 0.71073$ Å) radiation. Structures of both complexes were solved by direct methods and refined on F^2 by full-matrix least-squares methods using SHELX-97.^[11] All the non-hydrogen atoms were refined anisotropically. Hydrogen atoms were included at geometrically calculated positions and refined using a riding model. The crystal data, experimental details, refinement results and details of

⁵ ACCEPTED MANUSCRIPT

structure determinations are listed in Table 1. Selected bond lengths and bond angles are listed in Table 2.

Results and Discussion

The Schiff bases H_2L^1 and H_2L^2 were prepared in quantitative yields in methanol. The compounds are yellow solid product. The elemental analyses are in good agreement with the chemical formulae proposed for the compounds. Complexes **1** and **2** were prepared by the reaction of copper perchlorate with H_2L^1 and H_2L^2 , respectively, in methanol (Scheme 2). Both the Schiff bases and the copper complexes are stable in air at room temperature, and soluble in common polar organic solvents, such as DMSO, DMF, methanol, ethanol, and acetonitrile. The molar conductance values of the complexes measured in methanol at concentrations of 10^{-3} mol·L⁻¹ at 298 K are 18 and 27 Ω^{-1} cm² mol⁻¹, indicating the non-electrolytic nature.^[12]

IR Spectra

The IR spectra of the free Schiff bases H_2L^1 and H_2L^2 showed weak bands due to the phenolic groups centered at about 3430 cm⁻¹, which are assigned to the v_{OH} vibrations. The bands of the phenolic groups are absent in the IR spectra of the copper complexes, indicating the hydroxyl groups are deprotonated during coordination. The intense bands at 1283 cm⁻¹ for H_2L^1 and 1287 cm⁻¹ for H_2L^2 assigned to phenolic C–O linkage shifting toward to higher wave numbers of 1330 cm⁻¹ for **1** and 1337 cm⁻¹ for **2**, confirming the involvement of the deprotonated phenolic groups in bond formation with the copper atoms.^[13] The strong bands in the free Schiff bases at 1645

⁶ ACCEPTED MANUSCRIPT

 cm^{-1} for H_2L^1 and 1651 cm^{-1} for H_2L^2 underwent negative shift of about 10–15 cm^{-1} in the complexes, confirming the coordination of the azomethine N atoms to the copper atoms.^[14] The weak absorption bands in the 400–600 cm^{-1} region are assigned to the vibrations of Cu–N and Cu–O coordinate bonds.

Crystal Structure Description of Complex 1

The structure of complex 1 is shown in Figure 1. The compound contains a crystallographic inversion center symmetry. The independent component of the compound contains a dinuclear complex molecule and two methanol molecules of crystallization. The Cu atom is in a square pyramidal coordination, with two phenolate O and two imine N atoms of a Schiff base ligand L^1 defining the basal plane, and with one phenolate O atom occupying the apical position. The Cu-N and Cu-O bonds in the complex are within normal values as compared with other similar copper complexes with Schiff base ligands.^[15–17] The *cis* and *trans* angles subtended at the Cu atom in the basal plane of the complex are in the range $84.8(1)-93.1(1)^\circ$ and $175.8(1)-177.0(1)^\circ$, respectively. The coordinate bond angles among the apical and basal donor atoms are in the range $85.2(1)-98.2(1)^{\circ}$. Thus, the square pyramidal coordination in the complex is distorted. The dihedral angle between the two benzene rings of the Schiff base ligand is 3.7(3)°. In the crystal structure of the complex, the methanol molecules are linked to the complex molecules through O5-H5...O1ⁱ hydrogen bonds $[O5-H5 = 0.82 \text{ Å}, H5...O1^i = 1.95 \text{ Å}, O5...O1^i = 2.765(4) \text{ Å},$ $O5-H5\cdots O1^{i} = 174^{\circ}$; symmetry code for i: 1 + x, y, z] (Figure 2).

Crystal Structure Description of Complex 2

The structure of complex 2 is shown in Figure 3. The Cu atom is coordinated in a square planar geometry, with two phenolate O and two imine N atoms of a Schiff base ligand. The Cu-N and Cu-O bonds in the complex are comparable to those of complex 1 and also within normal values as compared with other similar copper complexes with Schiff bases.^[15–17] The cis and trans angles subtended at the Cu atom are in the range $87.5(1)-97.7(1)^\circ$ and $153.0(2)-154.1(2)^\circ$, respectively. Thus, the square pyramidal coordination in the complex is tetrahedrally distorted. In the crystal structure of the complex, the complex molecules are stack along the b axis through $\pi \cdots \pi$ interactions [Cg1...Cg1ⁱⁱ = 4.738(3) Å, Cg1...Cg2ⁱⁱ = 4.998(3) Å, Cg1...Cg3ⁱⁱⁱ = 4.313(3) $Cg2\cdots Cg3^{iv}$ Å. = 4.534(3) Å: Cg1, Cg2, Cg3 are the centroids of Cu(1)-O(2)-C(13)-C(12)-C(11)-N(2), C(1)-C(2)-C(3)-C(4)-C(5)-C(6), and C(12)-C(13)-C(14)-C(15)-C(16)-C(17), respectively. Symmetry codes: ii: x, -y, -1/2 + z; iii: x, -yy, 1/2 + z; iv: 1/2 + x, 1/2 - y, 1/2 + z] (Figure 4).

Antibacterial Activity

The free Schiff bases and the two complexes were screened for antibacterial activity against *Bacillus subtilis*, *Staphylococcus aureus*, *Escherichia coli*, and *Pseudomonas fluorescens* by the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) method. The minimum inhibitory concentrations (MICs) of the compounds against the bacteria are presented in Table 3. Penicillin was used as a reference. The results revealed that the free Schiff base H_2L^1 showed

⁸ ACCEPTED MANUSCRIPT

weak activity against *Bacillus subtilis*, *Staphylococcus aureus* and *Escherichia coli*, and no activity against *Pseudomonas fluorescens*. The free Schiff base H_2L^2 showed medium activity against *Bacillus subtilis* and *Staphylococcus aureus*, and weak activity against *Escherichia coli* and *Pseudomonas fluorescens*. It is clear that the activities of the two complexes are much effective than the free Schiff bases. Complexes **1** and **2** have strong activities against *Bacillus subtilis*, *Staphylococcus aureus* and *Escherichia coli*, and weak activity against *Pseudomonas fluorescens*. It should be noted that complex **2** has the MIC value of 0.10 µg mL⁻¹ against *Bacillus subtilis*, which is much lower than the reference drug. This phenomenon is in accordance with the conclusion that compounds bearing halide groups have more potent antibacterial activities.^[18]

Conclusion

In the present work, a dinuclear copper(II) complex and a mononuclear copper(II) complex were prepared and characterized by single-crystal X-ray diffraction. The biological assay revealed that both complexes are more active against the bacteria than the free Schiff bases. The mononuclear copper(II) complex with the bis-Schiff base N,N'-bis(5-chlorosalicylidene)-1,3-propanediamine has the MIC value of 0.10 µg mL⁻¹ against *Bacillus subtilis*.

Acknowledgments

The author thanks to the Shaanxi Key Laboratory of Phytochemistry (grant no. 12JS007) for financial assistance.

Downloaded by [University of Sussex Library] at 01:17 27 May 2016

[°] ACCEPTED MANUSCRIPT

References

- Matin, S.J.; Khojasteh, R.R. Synthesis, characterization, and antibacterial activities of Cr(III), Co(III), Ni(II), and Mn(III) complexes of heptadentate Schiff base ligand derived from tris(2-aminoethyl)amine. *Russ. J. Coord. Chem.* 2015, 85, 1763–1767.
- Li, W.; Ding, B.-W.; Sun, H.; Wang, X.-L.; You, Z.L. Synthesis, crystal structures, and preliminary antibacterial activities of zinc(II) complexes with a tetradentate Schiff base *N*,*N*'-bis(1-pyridin-2-ylethylidene)propane-1,2-diamine. *Synth. React. Inorg. Met.-Org. Nano-Met. Chem.* 2012, 42, 666–670.
- Hazari, P.P.; Pandey, A.K.; Chaturvedi, S.; Tiwari, A.K.; Chandna, S.; Dwarakanath, B.S.; Mishra, A.K. Synthesis of oxovanadium(IV) Schiff base complexes derived from C-substituted diamines and pyridoxal-5-phosphate as antitumor agents. *Chem. Biol. Drug Des.* 2012, 79, 223–234.
- Ramadan, R.M.; Abu Al-Nasr, A.K.; Noureldeen, A.F.H. Synthesis, spectroscopic studies, antimicrobial activities and antitumor of a new monodentate V-shaped Schiff base and its transition metal complexes. *Spectrochim. Acta A* 2014, *132*, 417–422.
- Zhang, J.-C.; Li, Y.-N.; Huang, D.; Xu, F.-Y.; Cheng, X.-S.; You, Z.-L. Alternate arrangement of Cl and Br substituent groups in crystal packing: Syntheses and structures of Schiff bases and their copper(II) complexes. *Chinese J. Inorg. Chem.* 2014, *30*, 425–430.
- 6. Niu, F.; Yan, K.-X.; Pang, L.H.; Qu, D.; Zhao, X.L.; You, Z.L. Synthesis and structural

¹⁰ ACCEPTED MANUSCRIPT

characterization of Schiff base copper(II) complexes with Helicobacter pylori urease inhibitory activities. *Inorg. Chim. Acta* **2015**, *435*, 299–304.

- Mohamed, R.G.; Elantabli, F.M.; Helal, N.H.; El-Medani, S.M. Molybdenum and tungsten carbonyl complexes with N₂ Schiff base donors: Syntheses, spectral, electrochemical, thermal, catalytic epoxidation, and biological activity studies. *Synth. React. Inorg. Met.-Org. Nano-Met. Chem.* 2015, 45, 1839–1850.
- 8. Khoo, T.-J.; bin Break, M.K.; Crouse, K.A.; Tahir, M.I.M.; Ali, A.M.; Cowley, A.R.; Watkin, D.J.; Tarafder, M.T.H. Synthesis, characterization and biological activity of two Schiff base ligands and their nickel(II), copper(II), zinc(II) and cadmium(II) complexes derived from S-4-picolyldithiocarbazate and X-ray crystal structure of cadmium(II) complex derived from pyridine-2-carboxaldehyde. *Inorg. Chim. Acta* 2014, *413*, 68–76.
- Keypour, H.; Shooshtari, A.; Rezaeivala, M.; Mohsenzadeh, F.; Rudbari, H.A. Synthesis and characterization of transition metal complexes of a hexadentate N₄O₂ donor Schiff base ligand: X-ray crystal structures of the copper(II) and zinc(II) complexes and their antibacterial properties. *Transition Met. Chem.* 2015, 40, 715–722.
- Jaividhya, P.; Ganeshpandian, M.; Dhivya, R.; Akbarsha, M.A.; Palaniandavar, M. Fluorescent mixed ligand copper(II) complexes of anthracene-appended Schiff bases: studies on DNA binding, nuclease activity and cytotoxicity. *Dalton Trans.* 2015, 44, 11997–12010.
- 11. Sheldrick, G.M., SHELXTL, Version 5.1, Software Reference Manual, Madison (WI, USA):

Bruker AXS Inc., 1997.

- Geary, W.J. Use of conductivity measurements in organic solvents for characterisation of coordination compounds. *Coord. Chem. Rev.*, **1971**, 7, 81–122.
- 13. Lal, R.A.; Choudhury, S.; Ahmed, A.; Chakraborty, M.; Borthakur, R.; Kumar, A. Synthesis and spectral studies of nickel(II) complexes derived from disalicylaldehyde oxaloyldihydrazone. J. Coord. Chem. 2009, 62, 3864–3874.
- 14. Surati, K.; Thaker, B.T. Synthesis, spectral, crystallography and thermal investigations of novel Schiff base complexes of manganese(III) derived from heterocyclic β-diketone with aromatic and aliphatic diamine. *Spectrochim. Acta A* 2010, 75, 235–242.
- 15. Zhou, X.-S.; You, Z.-L.; Xian, D.-M.; Dong, D.-P. Synthesis, crystal structure, thermal stability, and magnetic property of an end-to-end azido-bridged dinuclear Schiff base copper(II) complex. *Chinese J. Inorg. Chem.* **2013**, *29*, 850–854.
- 16. You, Z.-L.; Xian, D.-M.; Zhang, M. Two lantern-like 1D polymeric Schiff base copper(I/II) complexes derived from copper(II) salts containing rarely seen [Cu^I(NCS)₄] bridges. *CrystEngComm* **2012**, *14*, 7133–7136.
- 17. Xian, D.-M.; You, Z.-L.; Zhang, M.; Hou, P.; Li, X.-H. Dinuclear Schiff-base copper(II) complexes with various bridging groups. *J. Coord. Chem.* **2011**, *64*, 3265–3272.

 Zhang, M.; Xian, D.-M.; Li, H.-H.; Zhang, J.-C.; You, Z.-L. Synthesis and structures of halo-substituted aroylhydrazones with antimicrobial activity. *Aust. J. Chem.* 2012, 65, 434–350.

¹³ ACCEPTED MANUSCRIPT

Complex	1	2
Empirical formula	$C_{38}H_{44}Cu_2N_4O_{10}$	$C_{17}H_{14}Cl_2CuN_2O_2$
Formula weight	843.85	412.74
Temperature	298(2) K	298(2) K
Wavelength	0.71073 Å	0.71073 Å
Crystal system	Monoclinic	Monoclinic
Space group	$P2_{1}/c$	Сс
Unit cell dimensions		
<i>a</i> (Å)	11.1108(9)	21.007(2)
<i>b</i> (Å)	7.5550(6)	8.111(2)
<i>c</i> (Å)	23.964(2)	9.399(2)
β (°)	114.814(2)	94.230(2)
$V(\text{\AA}^3)$	1825.8(2)	1597.1(6)
Ζ	2	4
ρ (calcd.) (g cm ⁻³)	1.535	1.717
$\mu (\mathrm{mm}^{-1})$	1.230	1.714
F(000)	876	836
Crystal size (mm ³)	0.27 imes 0.26 imes 0.23	$0.19 \times 0.18 \times 0.18$

θ range for data collection	2.85 - 25.50	1.94 - 25.50	
(°)			
h/k/l (max, min)	-13, 13/-8, 9/-29,25	-24, 25/-6, 9/-11, 11	
Reflections collected	15966	3970	
Observed reflections $[I >$	2931	2563	
$2\sigma(I)$]			
Max. and min.	0.7324 and 0.7651	0.7365 and 0.7478	
transmission			
Data/restraints/parameters	3392/0/248	2681/2/217	
Goodness-of-fit on F^2	1.046	1.222	
Final R_1 , wR_2 indices $[I >$	0.0406, 0.1066	0.0378, 0.1014	
$2\sigma(I)$]			
R_1 , wR_2 indices (all data)	0.0490, 0.1133	0.0396, 0.1045	

¹⁵ ACCEPTED MANUSCRIPT

	1	1		
1				
Cu1-O1	1.898(2)	Cu1-O2	1.904(2)	
Cu1-N1	1.943(2)	Cu1-N2	1.939(2)	
Cu1-O2A	2.832(3)			
O1-Cu1-O2	89.4(1)	01-Cu1-N2	175.8(1)	
O2-Cu1-N2	92.5(1)	01-Cu1-N1	93.1(1)	
O2-Cu1-N1	177.0(1)	N2-Cu1-N1	84.8(1)	
N1-Cu1-O2A	86.6(1)	N2-Cu1-O2A	85.2(1)	
01-Cu1-O2A	98.2(1)	O2-Cu1-O2A	94.7(1)	
Symmetry operation for generating atoms with the suffix A: $-x$, $-y$, $-z$.				
2				
Cu1-O1	1.906(5)	Cu1-O2	1.898(5)	
Cu1-N1	1.949(6)	Cu1-N2	1.971(6)	
O2-Cu1-O1	87.47(9)	O2-Cu1-N1	154.1(2)	
O1-Cu1-N1	92.6(2)	O2-Cu1-N2	93.7(2)	
01-Cu1-N2	153.0(2)	N1-Cu1-N2	97.7(1)	

Table 2. Selected bond lengths (Å)	and bond angles (°)	for the complexes 1 and 2
------------------------------------	---------------------	---------------------------

¹⁶ ACCEPTED MANUSCRIPT

Compound	Bacillus	Staphylococcus	Escherichia	Pseudomonas
	subtilis	aureus	coli	fluorescens
H_2L^1	12.5	12.5	25	> 100
H_2L^2	3.12	6.25	25	50
1	0.78	3.12	6.25	25
2	0.10	1.56	6.25	25
Penicillin	0.78	3.13	> 100	> 100

Table 3. Antibacterial activity of the tested material (MIC, $\mu g \ mL^{-1}$).

¹⁷ ACCEPTED MANUSCRIPT

Fig. 1. ORTEP plots (30% probability level) and numbering scheme for 1. Symmetry operation for generating atoms with the suffix A: -x, -y, -z.

¹⁸ ACCEPTED MANUSCRIPT

Fig. 2. Molecular packing structure of 2. Hydrogen bonds are drawn as thin dashed lines.

¹⁹ ACCEPTED MANUSCRIPT

Fig. 3. ORTEP plots (30% probability level) and numbering scheme for 2.

²⁰ ACCEPTED MANUSCRIPT

Fig. 4. Molecular packing structure of 2.

²¹ ACCEPTED MANUSCRIPT

Scheme 1. H_2L^1 and H_2L^2 .

²² ACCEPTED MANUSCRIPT

Scheme 2. The synthetic procedure of the complexes.

²³ ACCEPTED MANUSCRIPT