Solid-State and Solution Structural Properties of Copper(I) Compounds with Bidentate Phosphane Ligands

Peter Comba,*^[a] Charis Katsichtis,^[a] Bernd Nuber,^[a] and Hans Pritzkow^[a]

Keywords: Copper / Phosphane / Solution structure / P ligands / NMR spectroscopy / Coordination chemistry

The copper(I) compounds $[Cu(dppe)_2]X [X = BF_4^-, I^-; dppe = 1,2-bis(diphenylphosphanyl)ethane], <math>[Cu(dppp)_2]X [X = BF_4^-, I^-; dppp = 1,3-bis(diphenylphosphanyl)propane], <math>[Cu_2^-(dppe)_3I_2]$, and $[Cu_2(dppe)_2I_2]$ have been prepared and their structural properties in solution and in the solid state have been determined. ¹H-, ¹³C-, and ³¹P-NMR spectra in solution [variable temperature and anion (I⁻) concentrations] and

Introduction

Detailed structural studies and the understanding of solution equilibria and dynamics of copper(I) compounds of bidentate phosphanes are of importance due to their potential application as potent antitumor agents^[1] and as free radical scavengers in industrial processes.^{[2][3]} There are a number of published studies of solution equilibria and structures that involve copper(I) compounds with phosphane ligands with variable copper(I)-to-ligand ratios.^[4] Similar equilibria have also been observed for silver(I) compounds of bidentate phosphane ligands.^[5] Mononuclear^[4e,4g,4i-4j,4l,4m,4p] and dinuclear phosphanecopper(I) compounds^[4a-4d,4k,4n,4o,4q] with coordinated and bridging halide anions and with phosphane ligands in various coordination modes have been isolated and characterized. There is spectroscopic evidence that some of the structurally characterized solids lead to complex equilibria in solution. However, so far there is only relatively little thorough information on structures and dynamics in solution.^[1,4f] Here we report our results from studies on the structural properties of copper(I) compounds of dppe and dppp in the solid state and in solution.

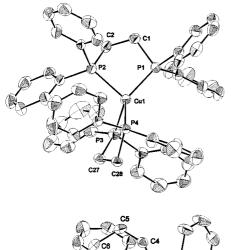
Results and Discussion

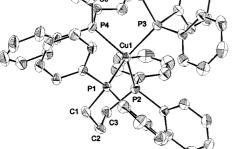
Syntheses and Properties of the Solids

Reaction of $[Cu(CH_3CN)_4]BF_4$ with dppe in CH_2Cl_2 in a 1:2 ratio yields $[Cu(dppe)_2]BF_4$ (1). $[Cu(dppe)_2]I$ (2), $[Cu_2(dppe)_3I_2]$ (3), and $[Cu_2(dppe)_2I_2]$ (4) are prepared under similar conditions from CuI and dppe in CH_2Cl_2 or $CHCl_3$ (1:2, 2:3, and 1:1 Cu^I-to-ligand ratios). Reaction of dppp with $[Cu(CH_3CN)_4]BF_4$ and CuI in a 2:1 ratio in

^[a] Anorganisch-Chemisches Institut der Universität,

E-mail: comba@akcomba.oci.uni-heidelberg.de


analyses of solids (mass spectra, elemental analyses, and CPMAS $^{31}\text{P-NMR}$ spectra) are interpreted with equilibria in solution that involve two mono- and two dinuclear species. The structures of $[\text{Cu}(\text{dppe})_2]\text{ClO}_4$, $[\text{Cu}(\text{dppp})_2]\text{BF}_4$, and $[\text{Cu}_2(\text{dppe})_3\text{I}_2] \cdot 2$ CHCl₃ have been analyzed by X-ray crystallography. In all three structures the copper(I) center adopts a distorted tetrahedral geometry.


CH₂Cl₂ yields the compounds $[Cu(dppp)_2]BF_4$ (5) and $[Cu(dppp)_2]I$ (6), respectively. X-ray quality crystals of 1 (as the perchlorate salt), 3 (with two disordered chloroform molecules in the lattice), and 5 were obtained by vapor diffusion of diethyl ether into a solution of the complexes in CH₂Cl₂ or CHCl₃. The solids were studied by X-ray diffractometry, mass spectrometry, elemental analysis, CPMAS ³¹P-NMR and IR spectroscopy. ¹H, ¹³C, and ³¹P NMR was used to establish the solution structures of the compounds.

ORTEP^[6] plots of the experimentally determined structures of $[Cu(dppe)_2]ClO_4$ (1), $[Cu_2(dppe)_3I_2]$ (3), and $[Cu(dppp)_2]BF_4$ (5) are presented in Figure 1, and selected structural parameters are given in Table 1. As expected, the copper(I) center adopts a distorted tetrahedral geometry in these structures. The copper(I)-phosphane distances are in the range expected from other known structures^[4b,4e,4g,4r] but there is a rather large variation in the individual distances, also within each complex. The degree of distortion from tetrahedral geometry depends primarily on the chelate ring size (dppe vs. dppp), with bite angles of the five-membered chelate rings of approximately 90° and bite angles of the six-membered rings of approximately 98°, and this leads to a flattening of the tetrahedral chromophores (deviation of the angles θ in Table 1 from 90°). All chelate rings are puckered, and the six-membered rings have the expected chair conformations.

There is no crystal structural analysis of $[Cu_2(dppe)_2I_2]$ (4). The structural assignment given in Scheme 1 is based on the reported structures of $[Cu_2(dppf)_2I_2]^{[7]}$ [dppf: 1,1'bis(diphenylphosphanylferrocene)] and $[Cu_2(PhPH_2)_4I_2]^{[8]}$ (PhPH₂: phenylphosphane). The signals in the CPMAS ³¹P-NMR spectra of the copper(I) complexes are rather broad, due to distortion from tetrahedral symmetry, unresolved coupling to the copper nuclei, quadrupole interactions involving the copper centers and the presence of two isotopes (⁶³Cu, ⁶⁵Cu);^[9] nevertheless, the observed spectra (see Table 2 for chemical shift data) are qualitatively in good agree-

Im Neuenheimer Feld 270, D-69120 Heidelberg, Germany, Fax: (internat.) + 49(0)6221/546617

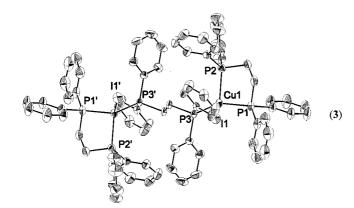
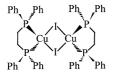



Figure 1. ORTEP^[6] plots of the structures of the molecular cations of $[Cu(dppe)_2]ClO_4$ (1), $[Cu(dppp)_2]BF_4$ (5), and of the dinuclear compound $[Cu_2(dppe)_3I_2] \cdot 2$ CHCl₃ (3)

ment with the X-ray structures of 1, 3, 5 (Figure 1), the putative structure of 4 (Scheme 1), published NMR data of $[CuP_4]^+$ and the structural assignments based on the solution NMR data (see below).

Scheme 1. Putative structure of $[Cu_2(dppe)_2I_2]$ (4) in solid state and in solution

Table 1. Selected structural parameters of $[Cu(dppe)_2]ClO_4$ (1), $[Cu(dppp)_2]BF_4$ (5), and $[Cu_2(dppe)_3I_2]\cdot 2\ CHCl_3$ (3)

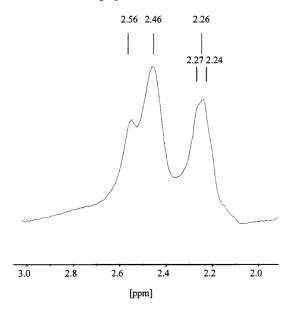
Parameter	[Cu(dppe) ₂]ClO ₄	[Cu(dppp) ₂]BF ₄	[Cu ₂ (dppe) ₃ I ₂] • 2 CHCl ₃
Cu(1) - P(1)	2.259(2) Å	2.303(1) Å	2.315(2) Å
Cu(1) - P(2)	2.301(2) Å	2.298(1) Å	2.321(2) Å
Cu(1) - P(3)	2.300(2) Å	2.296(1) Å	2.273(2) Å
Cu(1) - P(4)	2.270(2) Å	2.317(1) Å	-
Cu(1) - I(1)	_	-	2.623(1) Å
P(1) - Cu(1) - P(2)	90.34(7)°	98.22(5)°	89.82(8)
P(1) - Cu(1) - P(3)	120.38(8)°	120.29(5)°	116.24(7)
P(2)-Cu(1)-P(3)	103.95(8)°	122.83(5)°	109.70(7)
P(3)-Cu(1)-P(4)	90.58(7)°	97.66(5)°	_
P(1)-Cu(1)-I(1)	-	_ ``	113.88(6)
P(2)-Cu(1)-I(1)	-	-	116.29(6)
P(3)-Cu(1)-I(1)	-	-	109.79(5)
$\theta_1^{[a]}$	87.69°	81.44°	80.15°
$\theta_2^{[a]}$	74.43°	77.74°	76.79°

^[a] Tetrahedral twist angles (tetrahedral, $\theta = 90^{\circ}$; θ_2 : planes involving the chelate rings).

Table 2. $^1\text{H-}$ and $^{31}\text{P-NMR}$ chemical shifts of Cu^{I} compounds of dppe and dppp

Compound	¹ H NMR $\delta(CH_2)$ [ppm]	31 P NMR $\delta(P)$ [ppm]	CPMAS ³¹ P NMR δ(P) [ppm]
dppe dppp [Cu(dppe) ₂] ⁺ [Cu(dppe)(<i>P</i> - dppe)]	2.09 2.21; 1.58 2.46	-12.47 -17.18; -17.26 +7.5 -9.5	-12.1 -20.5; -24.4 +10.3
$\begin{array}{l} dppe)I]\\ [Cu_2(dppe)_3I_2]\\ [Cu_2(dppe)_2I_2]\\ [Cu(dppp)_2]BF_4\\ [Cu(dppp)_2]I\end{array}$	2.27 2.56 2.29; 1.62 2.28; 2.05; 1.64	-5.0 -12.5 -8.5 -8.8; -17.5	- -20.0 -10.1 -10.0

Equilibria in Solution

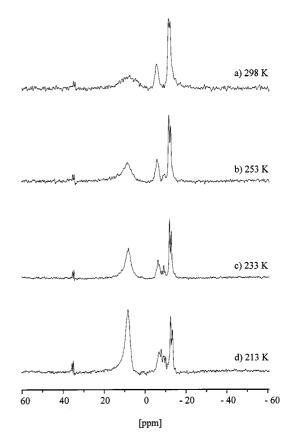

dppe Compounds

(1)

(5)

A broad signal at $\delta = 2.46$ is observed in the ¹H-NMR spectrum of $[Cu(dppe)_2]BF_4$ (1) in CD_2Cl_2 . It is assigned to the methylene protons of the coordinated dppe ligands. The line broadening suggests unresolved ³¹P-¹H coupling (relevant chemical shift data are assembled in Table 2). The ³¹P-NMR spectrum of 1 in CD₂Cl₂ consists of a very broad signal centered at $\delta = +7.5$. It is assigned to the four phosphorus atoms coordinated to the copper(I) center. Lowering of the temperature leads to a significant decrease of $\Delta v_{1/2}$ (2500 Hz at 298 K vs. 250 Hz at 193 K) and a small upfield shift ($\Delta \delta \approx 0.9$) of this signal. This variation as a function of temperature is similar to that reported for $[Cu(dppey)_2]^{+[4p]}$ [dppey = *cis*-bis(diphenylphosphanyl)ethene] and consistent with the line shapes that have been calculated for fast quadrupolar relaxation $^{\left[10\right] }$ of a CuP_{4} complex. No splitting is observed over the whole temperature range and the ³¹P-NMR chemical shifts in the solid state and in solution are similar (Table 2). This suggests that only one species is present in solution, that is, the structure of 1 (see Figure 1) is conserved.

The high-field region of the ¹H-NMR spectrum of $[Cu(dppe)_2]I(2)$ is presented in Figure 2. There are three broad signals at $\delta = 2.56$, 2.46, and 2.26, the latter is split into two signals at $\delta = 2.27$ and 2.24. Three broad resonances at $\delta \approx +7.5$, -5, and -12.5 are observed in the ³¹P-NMR spectrum of **2** (Figure 3a). The signals at $\delta = 2.46$ (¹H NMR) and +7.5 (³¹P NMR) are due to the molecular cation observed in the solids of **1** and **2**, that is, to the structure that is conserved from the solid state; the other signals must be due to other species in solution, which is indicative of a chemical exchange process.



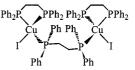

Figure 3. Temperature-dependent $^{31}P\text{-}NMR$ spectra (81 MHz) of $[Cu(dppe)_2]I$ (2) $(CDCl_3;\,85\%\;H_3PO_4)$

Figure 2. ¹H-NMR spectrum (200 MHz) of $[Cu(dppe)_2]I$ (2) (298 K; $CDCl_3)$

From variable-temperature ³¹P-NMR spectra of **2** (Figure 3) it emerges that (i) there is a significant decrease in the line width and a small upfield shift of the signal at $\delta = +7.5$, assigned to $[Cu(dppe)_2]^+$ (see above); (ii) there is an additional multiplet at $\delta = -9.5$ which has maximum relative intensity around 240 K; (iii) at lower temperatures the relative intensity of the signal at $\delta = +7.5$ increases. The multiplet at $\delta = -9.5$ is tentatively assigned to a mononuclear intermediate with one bidentate and one monodentate dppe ligand, that is, a species that results from substitution of one phosphane donor by I⁻. This is consistent with the chemical shift data (see below and Table 2), the concentration profile (relative intensities, see Figure 3 and above) and the NMR titration experiments (see below).

There is a broad signal at $\delta = 2.56$ in the ¹H-NMR spectrum of **4** (see Table 2). This is assigned to the methylene protons of the bidentate dppe ligands. A broad resonance at approximately $\delta = -12.5$ (close to that of the metal-free ligand) is observed in the corresponding ³¹P-NMR spectrum. A similar observation was made in NMR studies of [Cu₂(dppf)₂I₂], which was characterized by an X-ray crystal structure.^[7] Addition of metal-free dppe to a solution of **4** in CDCl₃ leads to additional signals at $\delta = 2.27$ and -5 in the ¹H- and ³¹P-NMR spectra, respectively (Figure 4). These new signals are tentatively assigned to a species with

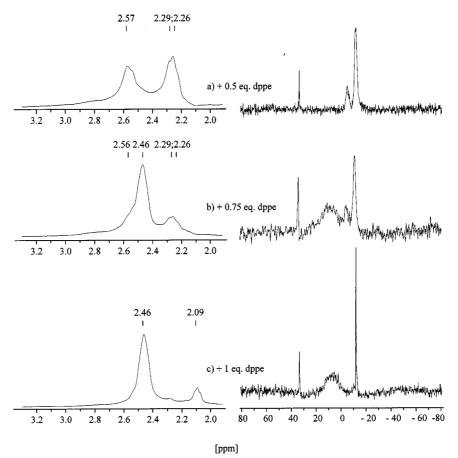
two chelated and one bridging phosphane ligand (Scheme 2). Further addition of dppe leads to decreasing intensity of the signal at $\delta = 2.56$ (¹H NMR), a sharpening of the signal at $\delta = -12.5$ (³¹P NMR) and two additional signals at $\delta = 2.46$ (¹H NMR) and $\delta = +7.5$ (³¹P NMR). That is, addition of dppe to [Cu₂(dppe)₂I₂] produces [Cu(dppe)₂]⁺ via [Cu₂(dppe)₃I₂].

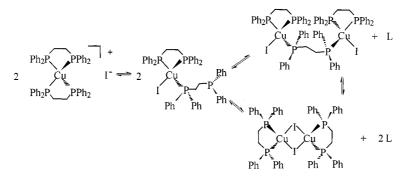
Scheme 2. Solution structure of $[Cu_2(dppe)_3I_2]$ based on $^1H\mathchar`and <math display="inline">^{31}P\mathchar`and$ spectroscopy

In a similar experiment ¹H- and ³¹P-NMR spectra of $[Cu_2(dppe)_3I_2]$ (3) were measured in dependence of the concentration of added dppe. The two signals in the ¹H-NMR spectrum of 3 at $\delta = 2.46$ and 2.27 are assigned to the complexes $[Cu(dppe)_2]I$ and $[Cu_2(dppe)_3I_2]$, respectively. In the ³¹P-NMR spectra there are signals at $\delta = +7.5$ and -5.0, respectively. Addition of excess dppe results in the disappearance of the resonances at $\delta = 2.27$ (¹H NMR) and -5.0 (³¹P NMR). That is, as expected, the equilibrium is shifted towards $[Cu(dppe)_2]^+$. Hence, the signals at $\delta =$

FULL PAPER

FULL PAPER




Figure 4. ¹H- and ³¹P-NMR spectra (200 MHz, 81 MHz) of $[Cu_2(dppe)_2I_2]$ (4) with different concentrations of added ligand $[CDCl_3; 298 \text{ K}; a small amount of impurity at <math>\delta(^{31}P) \approx 33$ is due to phosphane oxide]

2.27 (¹H NMR) and -5.0 (³¹P NMR) are assigned to the same compound, that is, to [Cu₂(dppe)₃I₂].

The observations from temperature-dependent and ligand-concentration-dependent ¹H-NMR and ³¹P-NMR data, and observations based on the solid-state samples are assembled in Scheme 3. The mononuclear compound $[Cu(dppe)_2]I$ is in equilibrium with the putative intermediate [Cu(dppe)(P-dppe)I], which only is observed at low temperature. Dissociation of one or two ligand molecules leads to the dinuclear compounds $[Cu_2(dppe)_3I_2]$ and $[Cu_2(dppe)_2I_2]$, respectively, which have been observed in the solid.

dppp Compounds

Two broad signals for $[Cu(dppp)_2]BF_4$ (5) with an intensity ratio of 2:1 are observed in the ¹H-NMR spectrum at $\delta = 2.29$ and 1.62 (methylene groups of the coordinated dppp ligands). A broad signal at $\delta = -8.5$ (upfield shift of approximately 8.7 ppm with respect to the metal-free ligand) is observed in the ³¹P-NMR spectrum of 5 in CD₂Cl₂. This is assigned to the four coordinated phosphorus atoms. The ³¹P-chemical shifts in the solid state and in solution are similar (see Table 2) and thus the structure of 5 (see Figure 1) is conserved in solution.

Scheme 3. Proposal for the solution equilibria of copper(I) compounds of dppe with two mono- and two dinuclear species

In the high-field region of the ¹H-NMR spectrum of $[Cu(dppp)_2]I$ (6) in CD₂Cl₂ there are multiplets at $\delta = 2.28$ and 1.64 and some signals of lower intensity at $\delta = 2.05$. The ³¹P-NMR spectrum has a broad signal at $\delta = -8.80$ and a signal at -17.5. The low-intensity signals in the ¹H- and ³¹P-NMR spectra of 6 suggest that chemical exchange processes, similar to those of $[Cu(dppe)_2]I$, take place. Unfortunately, the proximity of the ³¹P-NMR signals, due to the smaller chemical shift of the six-membered ring bisphosphane compounds, makes an identification of intermediate compounds in the region between $\delta = -8$ and -17.5 difficult. Thus, a thorough investigation of the solution equilibrium was not appropriate.

The low-temperature ³¹P-NMR spectrum of [Cu- $(dppp)_2$]BF₄ (5) in CD₂Cl₂ (Figure 5) has features that are significantly different from those of $[Cu(dppe)_2]BF_4(1)$ (see Table 2). Below 213 K the signal at $\delta = -8.5$ splits into two signals ($\delta = -5.84$ and -10.36 at 193 K). The iodine salt 6 in CD_2Cl_2 leads to identical spectroscopic results; the signal at $\delta = -17.5$ (room temperature) disappears at low temperature (193 K). An interpretation of these observations emerges from temperature-dependent ¹H-NMR spectroscopy. The two signals at $\delta = 2.29$ and 1.62 (CD₂Cl₂, 298 K), assigned to the methylene protons of 5, are split into five signals at $\delta = 2.85, 2.53, 2.20, 1.47$, and 0.88 (CD₂Cl₂, 193 K) with an intensity ratio of 1:1:2:1:1. The ¹³C-NMR spectrum (CD₂Cl₂, 193 K) has three signals at $\delta = 26.97, 25.91$, and 16.62. These may be assigned to the three chemically and magnetically nonequivalent methylene

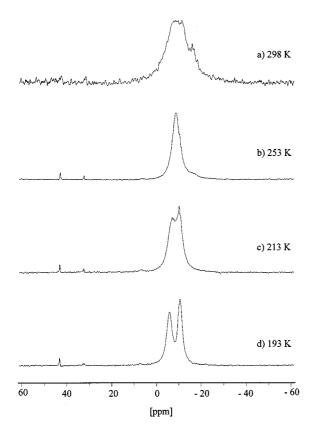


Figure 5. Temperature-dependent 31 P-NMR spectra (81 MHz) of [Cu(dppp)₂]BF₄ (5) (CD₂Cl₂; 85% H₃PO₄)

groups of the six-membered ring in a frozen chair conformation. This is in agreement with the two signals in the ³¹P-NMR spectrum, and these may be assigned to the two nonequivalent phosphorus atoms of the bidentate ligand. This interpretation is also supported by the [¹³C-¹H] spectrum of **5** in CD₂Cl₂.

Experimental Section

Materials: 1,2-Bis(diphenylphosphanyl)ethane (dppe) and 1,3bis(diphenylphosphanyl)propane (dppp) were purchased from Aldrich; CuI was obtained from Fluka and $Cu(BF_4)_2 \cdot x H_2O$ from ABCR Chemicals.

Measurements: ¹H-, ¹³C-, and ³¹P-NMR spectra at 200.13 or 300.13, 50.32 or 75.47, and 81.03 or 121.5 MHz, respectively, were measured with a Bruker AS 200 or a Bruker WH300 instrument with dichloromethane or chloroform as internal reference. H₃PO₄ (85%) was used as external reference for ³¹P-NMR spectra. The ¹H-COSY and [¹³C-¹H] spectra at 500.13 and 125.77 MHz were obtained with a Bruker Advance 500 instrument. – Infrared spectra (KBr pellets) were measured with a Perkin-Elmer 16PC FT-IR instrument. – Elemental analyses were obtained from the micro-analytical laboratory of the chemical institutes of the University of Heidelberg. – Mass spectra (FAB or FD) were measured with a Finnigan 8400 (nitrobenzyl alcohol matrix) or a Jeol JMS-700 instrument.

Syntheses: All manipulations were carried out under Ar, using standard Schlenk techniques. CH_2Cl_2 , $CHCl_3$, and diethyl ether were degassed by bubbling Ar through the solutions for 20 min. $[Cu(CH_3CN)_4]BF_4$ was prepared as reported in the literature.^[11]

[Cu(dppe)_2]BF₄·0.5 H₂O (1): [Cu(CH₃CN)₄]BF₄ (0.395 g, 1.26 mmol) was dissolved in CH₂Cl₂ (4 mL). The ligand dppe (1 g, 2.51 mmol) in CH₂Cl₂ (6 mL) was added (15 min) and the solution was stirred for 15 min at room temperature. After removing approximately 6 mL of the solvent and adding diethyl ether (10 mL), the solution was kept at -15° C over night. The resulting white precipitate was filtered off, recrystallized from methanol/water, and dried in vacuo. Yield (recrystallized): 0.63 g (0.66 mmol; 52%). – C₅₂H₄₈BCuF₄P₄·0.5 H₂O (956.2): calcd. C 65.32, H 5.16, P 12.96; found C 65.43, H 5.13, P 13.03. – IR (KBr): $\tilde{\nu}$ [cm⁻¹] = 3050 (m, C_{ar}-H), 2918 (m, CH₂) 1482 (m, C_{ar}=C_{ar}), 1434 (s, P-Ph), 1054 (s, BF₄⁻), 740, 694 (s, C_{ar}-H, 5 H neighboring). – MS (FAB); *m/z* (%): 859 (100) [M – BF₄], 646 (7) [M – BF₄ – CH₂CH₂PPh₂], 461 (98) [M – BF₄ – CH₂CH₂PPh₂ – PPh₂].

[**Cu(dppe)**₂]**I** • 0.5 H₂O (2): A solution of dppe (1 g, 2.51 mmol) in CHCl₃ (6 mL) was slowly added to a suspension of CuI (0.239 g, 1.26 mmol) in CHCl₃ (2 mL). After stirring for 45 min, a pale yellow solution was obtained. The volume was reduced to 2 mL and diethyl ether was carefully added, until a white solid started to precipitate. After keeping at −15°C over night, the white precipitate was filtered off, recrystallized from methanol/water, and dried in vacuo. Yield (recrystallized): 0.43 g (0.43 mmol; 34%). − C₅₂H₄₈CuIP₄ • 0.5 H₂O (996.3): calcd. C 62.69, H 4.96, P 12.44; found C 62.42, H 4.97, P 12.33. − IR (KBr): \tilde{v} [cm⁻¹] = 3044 (m, C_{ar}−H), 2924 (m, CH₂) 1480 (m, C_{ar}=C_{ar}), 1432 (s, P−Ph), 740, 700 (s, C_{ar}−H, 5 H neighboring).

 $[Cu_2(dppe)_3I_2]$ (3): A solution of dppe (1 g, 2.51 mmol) in CH₂Cl₂ (2 mL) was added to a suspension of CuI (0.319 g, 1.67 mmol) in CH₂Cl₂ (8 mL). The resulting colorless solution was stirred for 15 min, when a white solid started to precipitate. After storage at

FULL PAPER

			C II DC-E D
Empirical formula	$C_{52}H_{48}ClCuO_4P_4$	$C_{80}H_{74}Cl_6Cu_2I_2P_6$	$C_{54}H_{52}BCuF_4P_4$
Formula mass	959.8	1814.9	975.3
Crystal dimensions [mm]	$0.60 \times 0.50 \times 0.50$	$0.95 \times 0.45 \times 0.30$	$0.60 \times 0.55 \times 0.40$
Crystal system	monoclinic	triclinic	monoclinic
a [Å]	12.169(3)	11.828(4)	17.432(3)
$b\left[\hat{A}\right]$	40.640(9)	12.341(7)	15.273(3)
c [A]	19.738(5)	15.691(8)	18.209(4)
α ^[°]	90	77.03(5)	90
βľ°i	97.25(2)	71.64(3)	99.86(2)
α [°] β [°] Υ [°]	90	67.47(4)	90
$V[A^{-3}]$	9683.3(40)	1993.8(17)	4776.3(16)
	$P2_1/c$	P-1	$P2_1/c$
Space group Z	8	2	4
Calcd. density $[g \text{ cm}^{-3}]$	1.317	1.511	1.356
Absorption coeff. [mm ⁻¹]	0.682	1.671	0.644
F(000)	3984	910	2024
θ range [°]	1.69 - 22.50	1.80 - 28.81	1.75 - 25.00
Radiation (λ [Å])	Mo- K_{α} (0.71073)	Mo- K_{α} (0.71073)	Mo- K_{α} (0.71073)
$R1^{[a]}[I > 2\sigma(I)]$	0.062	0.072	0.061
$wR2^{[b]}$ (all data)	0.158	0.186	0.151
No. of reflections	0.120	01100	01101
Measured	13116	10401	8702
Unique	12449 [R(int) = 0.032]	10400 [R(int) = 0.023]	8411 [R(int) = 0.060]
Obsd. $[I > 2\sigma(I)]$	8133	6652	6067
No. of variables	1150	444	782
Goodness of fit on F^2	1.131	1.057	1.063

^[a] $R1 = \Sigma ||F_{o}| - |F_{c}||/\Sigma |F_{o}|. - [b] wR2 = [(\Sigma w (|F_{o}| - |F_{c}|)^{2} / \Sigma w F_{o}^{2})]^{1/2}.$

-15 °C over night, the product was filtered off, recrystallized from methanol/water, and dried in vacuo. Yield (recrystallized): 0.8 g (0.51 mmol; 61%). $-C_{78}H_{72}Cu_2I_2P_6$ (1576.2): calcd. C 59.43, H 4.60, P 11.80; found C 59.72, H 4.77, P 11.63. - IR (KBr): \tilde{v} [cm⁻¹] = 3046 (m, C_{ar}-H), 2902 (w, CH₂) 1482 (s, C_{ar}=C_{ar}), 1432 (s, P-Ph), 747, 705 (s, C_{ar}-H, 5 H neighboring). - MS (FD); *m/z* (%): 1449 (5) [M - I, ^{63/65}Cu], 1051 (17) [M - I - Ph_2PCH_2CH_2PPh_2, ^{63/65}Cu], 859 (100) [M - I - Ph_2PCH_2CH_2PPh_2 - CuI, ^{63/65}Cu], 461 (5) [M - I - Ph_2PCH_2CH_2PPh_2 - CuI - Ph_2PCH_2CH_2 - PPh_2, ^{63/65}Cu].

[Cu₂(dppe)₂I₂]·0.2 CH₂Cl₂ (4): A suspension of CuI (0.239 g, 1.26 mmol) in CH₂Cl₂ (2 mL) was treated with a solution of dppe (0.5 g, 1.26 mmol) in CH₂Cl₂ (3 mL). After addition of CHCl₃ (5 mL) and stirring for 30 min at room temperature, diethyl ether was layered onto the colorless solution, which was kept over night at −15 °C. The white precipitate was filtered off, washed with cold diethyl ether, and dried in vacuo. Yield: 0.85 g (0.72 mmol; 57%). - C₅₂H₄₈Cu₂I₂P₄ · 0.2 CH₂Cl₂ (1194.7): calcd. C 53.03, H 4.11, P 10.52; found C 51.94, H 4.06, P 10.22. - IR (KBr): $\tilde{\nu}$ [cm⁻¹] = 3043 (m, C_{ar}−H), 2924 (m, CH₂) 1481 (m, C_{ar}=C_{ar}), 1432 (s, P−Ph), 1096 (s, C_{ar}=C_{ar}), 739, 692 (s, C_{ar}−H, 5 H neighboring). - MS (FAB); *m*/*z* (%): 1051 (6) [M − I, ^{63/65}Cu], 859 (100) [M − I − CuI], 653 (39) [M − I − Ph₂PCH₂CH₂PPh₂].

[Cu(dppp)₂]BF₄ (5): A pale yellow solution of dppp (1 g, 2.43 mmol) in CH₂Cl₂ (5 mL) was slowly added to a solution of [Cu(CH₃CN)₄]BF₄ (0.382 g, 1.21 mmol) in CH₂Cl₂ (4 mL). After stirring for 15 min, the volume was reduced to 5 mL and diethyl ether was layered onto the solution. The resulting gum was solidified by scratching in ice-cold CH₂Cl₂, recrystallized from methanol/ water, and dried in vacuo. Yield (recrystallized): 0.91 g, (0.93 mmol; 77%). $-C_{54}H_{52}BCuF_4P_4$ (975.3): calcd. C 66.50, H 5.37, P 12.70; found C 66.03, H 5.34, P 12.61. - IR (KBr): \tilde{v} [cm⁻¹] = 3064 (m, C_{ar} -H), 2929 (m, CH₂) 1498 (m, C_{ar} =C_{ar}), 1439 (s, P–Ph), 1067 (s, BF₄⁻), 746, 704 (s, C_{ar} -H, 5 H neighboring). - MS (FAB); *m/z* (%): 887 (51) [M – BF₄], 475 (100) [M – BF₄ – Ph₂P(CH₂)₃PPh₂]. **[Cu(dppp)₂]I**•0.5 H₂O (6): A white suspension of CuI (0.231 g, 1.21 mmol) in CH₂Cl₂ (2 mL) was added to a solution of dppp (1 g, 2.43 mmol) in CH₂Cl₂ (6 mL). After stirring for 15 min, a colorless solution was obtained. Addition of diethyl ether and storage at −15°C over night resulted in a white precipitate, which was filtered off, recrystallized from methanol/water, and dried in vacuo. Yield (recrystallized): 1.03 g (1.00 mmol; 83%). $- C_{54}H_{52}CuIP_4 \cdot 0.5 H_2O$ (1824.3): calcd. C 63.32, H 5.21, P 12.09; found C 63.24, H 5.14, P 12.12. - IR (KBr): \tilde{v} [cm⁻¹] = 3047 (m, C_{ar}−H), 2912 (m, CH₂) 1489 (m, C_{ar}=C_{ar}), 1439 (s, P−Ph), 746, 699 (s, C_{ar}−H, 5 H neighboring).

Structure Determinations: Intensity-measurement data were obtained with a Syntex R3 diffractometer, using Mo- K_a radiation and operating in the ω -scan mode at room temperature. Data were corrected for Lp and absorption effects (ψ scan). The structures were solved by direct methods (SHELXS 86^[12a]) and refined by full-matrix least-squares methods based on F^2 (SHELXL 97^[12b]), using anisotropic thermal parameters for all non-hydrogen atoms. Hydrogen atoms were placed in calculated positions, but their parameters were not refined. The CHCl₃ solvent molecules in [Cu₂(dppe)₃I₂] · 2 CHCl₃ and the BF₄⁻ anion in [Cu(dppp)₂]BF₄ are disordered. The crystallographic data for [Cu(dppe)₂]ClO₄, [Cu₂(dppe)₃I₂] · 2 CHCl₃ and [Cu(dppp)₂]BF₄ are summarized in Table 3.

Acknowledgments

We are grateful to Dr. Voelkel (BASF) for the CPMAS ³¹P-NMR spectra, to Dr. Schilling for the HH- and CH-COSY spectra of $[Cu(dppp)_2]BF_4$ and to the BASF AG, Ludwigshafen, for financial support.

 ^[1] ^[1a] S. J. Berners-Price, R. K. Johnson, C. K. Mirabelli, L. F. Faucette, F. L. McCabe, P. J. Sadler, *Inorg. Chem.* **1987**, *26*, 3383 – ^[1b] S. J. Berners-Price, C. Brevard, A. Pagelot, P. J. Sadler, *Inorg. Chem.* **1986**, *25*, 596.

- ^[2] ^[2a] H. L. Finkbeiner, A. S. Hay, D. M. White, *Polymerization* Processes (Eds.: C. E. Schildknecht, I. Skeist), Wiley-Inter-science, New York, **1977**, p. 537 – ^[2b] G. W. Parshall, *Homo-*geneous Catalysis, Wiley-Interscience, New York, **1980**, p. 113 ^{- [2c]} P. M. Henry, Adv. Organomet. Chem. **1975**, 13, 363 - ^[2d] E. W. Stern, Catal. Rev. **1968**, 1, 74.
- 25, 1506 – ^[34] S. Goldstein, G. Czapski, H. Cohen, D. Mey-erstein, *Inorg. Chem.* **1992**, *31*, 2439 – ^[3e] N. Navon, G. Golub,
- ¹²⁵, 1500 ^[14] S. Goldsteill, G. Czapski, H. Cohen, D. Meyerstein, *Inorg. Chem.* 1992, *31*, 2439 ^[3e] N. Navon, G. Golub, H. Cohen, D. Meyerstein, *Organometallics* 1995, *14*, 5670.
 ^[4] ^[4a] V. G. Albano, P. L. Bellon, G. Ciani, M. Manassero, J. Chem. Soc., Dalton Trans. 1972, 171 ^[4b] V. G. Albano, P. L. Bellon, G. Ciani, J. Chem. Soc., Dalton Trans. 1972, 1938 ^[4c] A. Camus, G. Nardin, L. Randaccio, *Inorg. Chim. Acta* 1975, *12*, 23 ^[4d] P. G. Eller, G. J. Kubas, R. R. Ryan, *Inorg. Chem.* 1977, *16*, 2454 ^[4e] P. Leoni, M. Pasquali, C. A. Ghi-lardi, J. Chem. Soc., Chem. Commun. 1983, 240 ^[4f] D. J. Fife, W. M. Moore, K. W. Morse, *Inorg. Chem.* 1984, *23*, 1684 ^[4g] G. Doyle, K. A. Eriksen, D. Van Engen, J. Am. Chem. Soc. 1985, *107*, 7914 ^[4h] P. F. Barron, J. C. Dyason, P. Healy, L. M. Engelhardt, C. Pakawatchai, V. A. Patrick, A. H. White, J. Chem. Soc., Dalton Trans. 1987, 1099 ^[4i] S. J. Rettig, A. Storr, J. Trotter, *Can. J. Chem.* 1988, *66*, 2194 ^[4i] G. F. Dempsey, G. S. Girolami, *Organometallics* 1988, *7*, 1208 ^[4k] G. A. Bowmaker, A. Camus, P. C. Healy, B. W. Skelton, A. H. White, *Inorg. Chem.* 1989, *28*, 3883 ^[4i] G. A. Bowmaker, P. C. Healy, L. M. Engelhardt, J. D. Kildea, B. W. Skelton, A. H. White, *Inorg. Chem.* 1989, *26*, 2604 ^[4i] D. F. Dempsey. L. M. Engelhardt, J. D. Kildea, B. W. Skelton, A. H. White, Aust. J. Chem. **1990**, 43, 1697 – ^[4m] D. J. Darensbourg, C. C. Chao, J. H. Reibenspies, C. J. Bischoff, *Inorg. Chem.* **1990**, 29, 2153 – ^[4n] R. D. Hart, B. W. Skelton, A. H. White, Aust. J.

Chem. **1991**, *44*, 919 – $[^{4o]}$ B. Mohr, E. E. Brooks, N. Rath, E. Deutsch, *Inorg. Chem.* **1991**, *30*, 4541 – $[^{4p]}$ S. J. Berners-Price, L. A. Colquhoun, P. C. Healy, K. A. Byriel, J. V. Hanna, J. Chem. Soc., Dalton Trans. **1992**, 3357 – $[^{4c]}$ G. A. Bowmaker, D. Chem. Soc., Dalton Trans. **1992**, 3357 – $[^{4c]}$ G. A. Bowmaker, D. Chem. Soc., Dalton Trans. **1992**, 3357 – $[^{4c]}$ G. A. Bowmaker, D. Chem. Soc., Dalton Trans. **1992**, 3357 – $[^{4c]}$ G. A. Bowmaker, D. Chem. Soc., Dalton Trans. **1992**, 3357 – $[^{4c]}$ G. A. Bowmaker, D. Chem. Soc., Dalton Trans. **1992**, 3357 – $[^{4c]}$ G. A. Bowmaker, D. Chem. Soc., Dalton Trans. **1992**, 3357 – $[^{4c]}$ G. A. Bowmaker, D. Chem. Soc., Dalton Trans. **1992**, 3357 – $[^{4c]}$ G. A. Bowmaker, D. Chem. Soc., Dalton Trans. **1992**, 3457 – $[^{4c]}$ G. A. Bowmaker, D. Chem. Soc., Dalton Trans. **1992**, 3457 – $[^{4c]}$ G. A. Bowmaker, D. Chem. Soc., Dalton Trans. **1992**, 3457 – $[^{4c]}$ G. A. Bowmaker, D. Chem. Soc., Dalton Trans. **1992**, 3457 – $[^{4c]}$ G. A. Bowmaker, D. Chem. Soc., Dalton Trans. **1992**, 3457 – $[^{4c]}$ G. A. Bowmaker, D. Chem. Soc., Dalton Trans. **1992**, 3457 – $[^{4c]}$ G. A. Bowmaker, D. Chem. Soc., Dalton Trans. **1992**, 3457 – $[^{4c]}$ G. A. Bowmaker, D. Chem. Soc., Dalton Trans. **1992**, 3457 – $[^{4c]}$ G. A. Bowmaker, D. Chem. Soc., Dalton Trans. **1992**, 3457 – $[^{4c]}$ G. A. Bowmaker, D. Chem. Soc., Dalton Trans. **1992**, 3457 – $[^{4c]}$ G. A. Bowmaker, D. Chem. Soc., Dalton Trans. **1992**, 3457 – $[^{4c]}$ G. A. Bowmaker, D. Chem. Soc., Dalton Trans. **1992**, 3457 – $[^{4c]}$ G. A. Bowmaker, D. Chem. Soc., Dalton Trans. **1992**, 3457 – $[^{4c]}$ G. A. Bowmaker, D. Chem. Soc., Dalton Trans. **1992**, 3457 – $[^{4c]}$ G. A. Bowmaker, D. Chem. Soc., Dalton Trans. **1992**, 3457 – $[^{4c]}$ G. A. Bowmaker, D. Chem. Soc., Dalton Trans. **1994**, 360 – R. D. Hart, B. E. Jones, B. W. Skelton, A. H. White, J. Chem. Soc., Dalton Trans. 1995, 3063 – ^[4r] S. Kitagawa, M. Kondo, S. Katawa, S. Wada, M. Maekawa, M. Munakata, Inorg. Chem. 1995, 34, 1455.

- ^[5] S. J. Berners-Price, R. J. Brown, P. A. Harvey, P. C. Healey, G. A. Koutsantonis, J. Chem. Soc., Dalton Trans. 1998, 1743.
- C. K. Johnson, ORTEP, A Thermal Ellipsoid Plotting Program, [6]
- [8]
- R. J. Batchelor, T. Birchall, R. Faggiani, Can. J. Chem. 1985, 63, 928.

- ^{05, 928.}
 ^[9] E. M. Menger, W. S. Veeman, J. Magn. Reson. 1982, 46, 257.
 ^[10] A. Marker, M. J. Gunter, J. Magn. Reson. 1982, 47, 118.
 ^[11] G. J. Kubas, Inorg. Synth. 1979, 19, 90.
 ^[12] [^{12a]} G. M. Sheldrick, SHELXS 86, University of Göttingen, 1986 ^[12b] G. M. Sheldrick, SHELXL 97, University of Cättingen 1007 Göttingen, 1997.
- ^[13] Crystallographic data (excluding structure factors) for the structures reported in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication nos. CCDC-114482 (3), -114483 (1), -114484 (5). Copies of the data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK [Fax: int. code + 44-1223/336-033; E-mail: deposit@ccdc.cam. ac.uk].

Received November 30, 1998 [I98409]