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The viability of performing stereocontrolled aldol additions with a-chiral aldehydes attached by a silyl linker to a hydroxymethylpolystyrene
resin is demonstrated for boron and titanium enolates. Subsequent ketone reduction and manipulation on the solid support leads to elaborate
stereopentad sequences, as occur in 6-deoxyerythronolide B and discodermolide.

The polyketides represent an important reservoir of molecular highly challenging. By starting from simple aldehydes on
diversity for drug discovery.By applying the methods of  solid support, we have recently developed iterative aldol
combinatorial chemistrythe synthesis of libraries of novel procedure®® to generate libraries of polyketide-type se-
polyketide-type structures are possibfeFor synthetic guences of increasing stereochemical complexity, dsin
purposes, it is desirable to assemble such compounds by2 (Scheme 1§¢

chain extension on solid support, enabling the permutation As part of a general program to expand polyketide
of the stereochemistry and substitution pattern in the nascentdiversity’ we now demonstrate the use of more elaborate

carbon skeleton. However, the controlled solid-phase syn-
thesis of the characteristic sequences of contiguous stere_

centers that occur in structurally complex polyketides is Scheme 1
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s By employing a diisopropylsilyl linke?;2° the required

chiral aldehyde3 was prepared on solid support (Scheme

Scheme 2 ! Ol
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chain-extending module, with LiAlldlgave the alcohol®
(92%, 1.4:1 diastereomeric mixture in favor of tlsgn
isomer). As this hydroxyl center is later oxidized back to a
) ketone, both epimeric series were conveniently processed
resin-bound aldehyde8 (Scheme 2), attached through a together; providing a check for any difference in reactivity
secondary alcohol by a novel silyl linker to a polystyrene angd/or selectivity. A modification of Danishefsky’s silyl
support. Aldol chain extension with chlral_ ketone modu_les, linking protocol? as introduced for glycopeptide synthesis,
such as)- and §-4, leads to the expedient construction gjjowed attachment of the sterically hindered secondary
of defined sequences of stereocenters. This is illustrated hergycohol 9 to the polystyrene suppot.This involved silyl-

by the solid-phase synthesis of tetrapropion&taad6 that  ation of the alcoho® with diisopropyldichlorosilane (1 equiv)
correspond configurationally to the indicated segments of jn the presence of imidazole (6 equiv, 1 h) in DMF to
the seceacid of 6-deoxyerythronolide B7J and the anti-  generate a solution of intermedicit®, followed by treatment
cancer agent discodermolid8)€ By suitable structural — f pre-swollen hydroxymethyl Merrifield resi(0.87 mmol/g
permutatiof®€in 3 and4, this methodology should facilitate loading) with 10 (6 equiv) for 36 h (2 cycles). This two-
the parallel synthesis of diverse polyketide-type libraries. step sequence gave the silyl etddrwith a high loading
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on solid support

the required aldehyd& To develop the chemistry and assist
characterization (gel-phagéC NMR, FT-IR) of the subse-
quent resin-bound intermediates, aldehf@avas prepared

of 16 with LiBH, led to reductive removal of the acetate,
generating the corresponding resin-bound dn8-diol 18.

Transformation of resin-bound alcoH# to the acetonide

as a solution model from benzyl alcohol in an analogous derivative21 permitted confirmation of the 1,&nti relation-
manner, thus permitting a direct comparison of the reaction ship from diagnostié3C NMR resonances (100.2, 23.5, 25.1

yields and diastereoselectivities.

Suitable conditions for the aldol chain extension of resin-
bound aldehyde8 with ketone R)-4 were first developed
(Scheme 4). Reaction of aldehy@¢—78 to—27 °C, 17 h)
with a preformed solution of theEj-enol dicyclohexyl-
borinaté? derived from R)-4 (6 equiv, two cycles) in RO
gave theanti-antiadductl3 after standard oxidative workup
(H20,, MeOH, DMF, pH 7 buffer). At this stage, gel-phase
13C NMR and FT-IR analysis indicated essentially complete
conversiont? with the resulting resid3 displaying diagnostic

ppm) Subsequent cleavage of the reg&ih (HF-pyr/pyr)
provided the separable epimeric alcoh®8a and23b (ca.
1.4:1) in 47% vyield over seven steps, with high selectivity
for the newly generated stereocenteps9%:5 dr). This
represents an average Yield of 90% for each step performed
on the resin. In comparison, a 22% overall yield28aand

23b was obtained for the corresponding solution phase
synthesis 12 — 14 — 15 — 20 — 22 — 23ab), which
required chromatographic purification of several intermedi-
ates. By regenerating the aldehyde functionality in r@din

carbonyl resonances (216.6 and 216.9 ppm). Additionally, further chain extension cycles can be potentially performed

comparison of the gel-phaséC NMR spectrum of adduct
13 with that obtained for the corresponding solution-phase
model 14 suggested a high level of diastereoselectivity, as
expected from a matched relationship of the aldol coupling
partners.

To achieve an efficienanti-selective reduction of the
B-hydroxy ketone 13, a modified EvansTishchenk&®
protocol was developed for the solid-phase reaction. Initial
experiments with the solution modé&# using a stoichio-
metric amount of Smland acetaldehyde at°C gave acetate
15 in 87% yield (97:3 dr, where the two epimers at the

to access even more elaborate polyketide sequences. For our
present purposes, Desklartin oxidation of the epimeric
alcohols23aand23b led to isolation of the stereopentéd
(88%) as a single isomer, which is configurationally related
to two tetrapropionate fragments of 6-deoxyerythronolide B.

To expand polyketide diversity, other stereochemical
permutations need to be developed as the chain is extended.
For the solid-phase synthesis of tetraketide sequeice
relevant to discodermolide and 6-deoxyerythronolide B, a
more challengingsynselective addition of ketoneS(-4 to
the resin-bound aldehydgwas required. Previous studies

linking center were separated by chromatography). Reactionijn solution showed that such ethyl ketones prowigta-syn

of the resin-bound addudt3 with this reagent system over
two cycles (20 to 0°C, 16 h) gave resid6 with complete
conversion. At this stage, cleavage from the relGrgave
alcohol17in 72% yield over four steps frorhl. Treatment

(13) (a) Paterson, I.; Goodman, J. M.; Isaka, Tdtrahedron Lett1989
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aldol adducts when enolized with Sn(OF§nd EtN.Y7 In
the present case, these Lewis acidic conditions were found
to partly cleave the silyl linker in the aldehyde componént.
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led only to poor yields and stereoselectivities with resin-bound aldeByde
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However, mild Ti(OPr),Cl,-mediated enolizatidfi of ketone on the resin-bound keton5 to provide 1,3-diol27.2
(9-4 proved to be compatible, leading to the isolation of Acetonide protection of the resin-bound alco@lproved
the syn-syraldol adduct24 (Scheme 5) in high yields and demanding and required special conditions (2-methoxy-

propene, CSA, DMF) to prevent any cleavage of the silyl

linker. The 1,3synrelationship of the acetonide re28 was

Scheme 5
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confirmed by gel-phasC NMR spectroscopy (98.5, 29.8,
19.4 ppmj® and TBAF cleavage led to the isolation of the
epimeric alcohol80in 24% overall yield over six steps (79%
average yield). DessMartin oxidation of the released
alcohols30 then proceeded in 94% vyield. At this stage, the
overall diastereoselectivity of the solid-phase synthesis was
determined as 90:10 dr in favor of isom@&rwhich is con-
figurationally identical to major segments of discodermolide
and 6-deoxyerythronolide B.

In conclusion, we have completed highly stereocontrolled
solid-phase syntheses of tetraketidesand 6, related to
sizable fragments of 6-deoxyerythronolide B and discoder-
molide. This clearly demonstrates the efficiency of our
methodology for solid-phase polyketide synthesis, along with
the general suitability of the silyl link&ifor attachment of
hindered secondary alcohols to the resin. By mimicking the
stereoregulated chain growth involved in the biosynthesis
of polyketidesi®e’ a variety of starting aldehydes may be
combined with various ketone extension modules in an
iterative fashion, enabling extensive diversification and
library generation. Efforts are now directed toward extending
this methodology and applying it to the synthesis of natural

29R = (O-Si(Pr),
30 R =H, 24%, 6 steps :‘ TBAF

and unnatural polyketides.
31 R = BnOSi(Pr),, 86%
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best performed using Zn(B in CH,CI, to afford the 1,3-

syndiol 26 (90:10 dr)2° This reaction was then performed 026046+

(20) Alternative reducing systems explored (c-bBRI/LiBH4, Et:B/
LiBH4, catecholborane, DIBAL) gave lower or overturned selectivities.
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