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Abstract. A screening methodology is presented that utilizes the 
linear structure within the deterministic life cycle inventory (LCI) 
model. The methodology ranks each input data element based 
upon the amount it contributes toward the final output. The 
identified data elements along with their position in the deter- 
ministic model are then sorted into descending order based upon 
their individual contributions. This enables practitioners and 
model users to identify those input data elements that contrib- 
ute the most in the inventory stage. Percentages of the top ranked 
data elements are then selected, and their corresponding data 
quality index (DQI) value is upgraded in the stochastic LCI 
model. Monte Carlo computer simulations are obtained and 
used to compare the output variance of the original stochastic 
model with modified stochastic model. The methodology is ap- 
plied to four real-world beverage delivery system LCA inven- 
tory models for verification. This research assists LCA practi- 
tioners by streamlining the conversion process when converting 
a deterministic LCI model to a stochastic model form. Model 
users and decision-makers can benefit from the reduction in out- 
put variance and the increase in ability to discriminate between 
product system alternatives. 

Keywords: Data quality indicator (DQI); input data quality; 
LCI; life cycle inventory (LCI); monte carlo simulation; rank- 
ing; screening; stochastic modeling; streamlining 

Introduction 

Environmental life cycle inventory (LCI) models provide 
useful information regarding the environmental conse- 
quences associated with a number of systems under study. 
These models tend to be deterministic, which limits the model 
results by failing to provide a qualitative understanding of 
the uncertainty associated with the input data. Only more 
recently were approaches developed to build summary or 
data quality indicators to account for data uncertainty in a 
quantitative fashion. The incorporation of these techniques 
has lead the U.S.-EPA's Science Policy Council to approve a 
new agency policy on probabilistic risk assessment using 
Monte Carlo methods (Risk Policy Report [1]). 

Converting deterministic LCI models to a stochastic form 
can be more informative by providing a level of confidence 
when assessing system alternatives, Kennedy et al. [2]. Over- 
all, stochastic LCI modeling provides a method for dealing 

with issues of varying input data quality and its effect on the 
model's output. Uncertainty or variability in the input data 
transfers or propagates into the end results, thus directly 
affecting the reliability and comparability of system alterna- 
tives. The ability to account for data uncertainty, via data 
quality indicators (DQI), strengthens the inventory-model- 
ing framework. However, the large quantity of input data 
and the sequential mathematical combinations of the data 
that is required to support this type of modeling present two 
challenges. First, the uncertainty associated with the large 
quantity of input data and their corresponding sequential 
mathematical combinations confound the propagation of 
variability in the end results. Second, the required qualita- 
tive assessments needed for each input data element's DQI 
make converting deterministic LCI models to a stochastic 
form tedious and laborious. Therefore, research efforts need 
to focus on developing a screening methodology to identify 
those input data elements that contribute the most toward 
the final output. If the uncertainty or data quality of an iden- 
tified input data element is poor, LCI practitioners can re- 
sort to better data collection efforts to improve its uncer- 
tainty or distributional accuracy. These efforts will reduce 
the required number of qualitative assessments when con- 
verting deterministic LCI's to a stochastic form and reduce 
the model output variance. 

In regards to above, recent literature has recognized the need 
for screening model results and streamlining the LCA meth- 
odology. Weitz et al. [3], provides a thorough discussion 
about the importance of, and techniques being used today, 
for simplifying the LCA methodology. Franklin and Hunt 
[4], introduces a screening methodology that identifies cer- 
tain product components in the inventory model that may 
be eliminated. The results of the methodology suggest that 
the majority of the product components, those making up 
at least 95% of the mass of the product, need to be included 
in the LCI study. This methodology is helpful since it would 
inherently reduce some of the required data quality assess- 
ments needed when converting deterministic LCI models to 
a stochastic form. Heijungs [5] expresses the importance of 
having operational methods and criterion in the inventory 
phase to tell LCA practitioners where to invest in further 
qualitative research with high priority. The article also states 
that in life cycle screening it is necessary to distinguish data 
that is uncertain from data that contributes grossly to the 
final result and for which the final result is quite sensitive. 
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The methodology presented in this paper responds to the 
need for streamlining and screening LCI models to identify 
issues where a more detailed assessment is necessary. The 
rank-based approach incorporates the linear structure of the 
LCI modeling framework and demonstrates how improv- 
ing the data quality of the identified data elements enhances 
model performance. The approach advances the stochastic 
LCA inventory modeling methodology two-fold: first by 
reducing the workload in the conversion stage, and second 
by improving the accuracy when distinguishing between sys- 
tem alternatives. The screening methodology for the input 
data elements is presented in section two. Verification of the 
methodology is presented section three, it also highlight the 
benefits of reducing the stochastic model's output variance. 
Conclusions, recommendations, and future research are dis- 
cussed in section four. Fig. 1 : Beverage product system with multiple inputs and outputs 

1 Me thodo logy  

The methodology for screening the input data elements in 
the inventory stage is practical, general, and therefore is 
applicable to any LCI model. The basis of the methodology 
requires ranking each input data element in the determinis- 
tic LCI model. This ranking is based upon the amount each 
data element contributes toward the final output of an envi- 
ronmental burden (e.g. total energy, atmospheric emissions, 
etc.). The data elements along with their position in the de- 
terministic model are then sorted into descending order based 
upon their individual contributions. This enables practitio- 
ners and model users to identify those data elements that 
contribute the most in the inventory stage. Finally, percent- 
ages of the top ranked data elements are selected, and their 
corresponding data quality indicator (DQI) value is upgraded 
in the stochastic LCI model. The modified stochastic model 
is then simulated and evaluated for improvements. 

To better illustrate the methodology, structure, and mathemati- 
cal dependencies involved with both the deterministic and sto- 
chastic LCI model, a simplified overview and example is pre- 
sented. Consider one environmental burden (atmospheric 
emissions) for a beverage product system. Assume the prod- 
uct has four input materials (e.g. two that make up the plastic 
container component and two that make up the product label 
component), and has three environmental emissions (e.g., CO2, 
nitrogen oxide, and sulfur oxide). Let the environmental bur- 
den be denoted by B, the input materials into the system by x 1 
to x4, and the output emissions by x s to x~, see Fig. 1. It will be 
assumed that the input data estimates and the material, en- 
ergy, chemical, and mass balances for this product system's 
inventory phase are representative and satisfy the SETAC guide- 
lines and principles. For more information on the formulation 
and principles of LCI modeling readers are encouraged to ref- 
erence Curran [6]. 

The deterministic LCI models used for this research resemble 
the structure of an environmental input-output model. This is 
often the case since LCI is an extension of the input-output 
form of economic analysis. This structure provides a useful 
framework for tracing energy use and other activities such as 
environmental pollution associated with a product's system, 
see Heijungs [7], or Miller [8] for references. The objective of 

the LCI model is to combine and compile the input and out- 
put data for each step of the system. The majority of the infor- 
mation and computations involved with a LCI model can typi- 
cally be represented in vector and matrix notation: 

A=m'E;  (1) 

where E represents a matrix that makes up the 'input data' 
for a common specified unit, 100 kg for example, of each 
input material across each step in the system. That is, E rep- 
resents a matrix of input data point estimates for each of the 
four materials and their corresponding three output emis- 
sions aggregated across the whole product life cycle. It is 
these estimates whose input data quality is assessed when 
converting from a deterministic model form to a stochastic 
form. The matrix A can be termed as a 'weighted require- 
ment matrix', because it provides coefficients of contribu- 
tion toward the burden of each input across all outputs. 
These coefficients are based upon the amount of weight/ 
mass each input material requires to deliver a functional 
unit of product. The vector of corresponding mass estimates, 
weight factor m' , is made up of linear combinations of 
multiple factors found in the 'Input System Specification' 
(ISS). The ISS is a user specified part of the LCI model that 
provides estimates for factors that make up the required 
weight for each component of the product based on the func- 
tional unit being delivered. It is common for a product sys- 
tem to have alternative formulations. When this is the case 
the ISS adjusts the components' required weight estimates 
according to the alternative being modeled. Table 1 pro- 
vides a visual representation of a deterministic LCI model in 
spreadsheet format. 

The individual cell values within the A matrix can be vali- 
dated by using equation (1) above, that is, multiply each cell 
of m' vector by the corresponding row of E. The environ- 
mental burden, B, for this example system is 2.678 kg as- 
suming 1000 units of product. This value is obtained from 
summing each individual column within the A matrix: 

B = EA = E a j  = Y~ E m,~ U (2) 
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Table 1: Spreadsheet format for a deterministic inventory model 

Input System Specification (ISS) per 1000 units of product defivered 

C1 Container 

Required 
Weight (kg) 

13.25 

Recycling 
Rec. Rate 

0,2464 
C2 Label 7.75 

DETERMINISTIC FORM 

Req'd Poly 
Wt Mfg 

Input x~ 8.25 1.52 

Input x 2 5.00 0.55 

Input x 3 3.25 0.34 

Input x 4 4.50 O, 72 

Input Data By System Steps - Matrix [E] 

Total Pollutants 

Nitrogen Sulfur 
Weight C02 Oxide Oxide 

Components (kg) x 5 xr x 7 

C1 Petrol- x~ lOO kg 3.85 2.46 0.87 

C1 ChemA - x 2 100 kg 12.2 8.54 0.54 

C2 ChemB - x 3 100 kg 0.95 1.32 1.25 

C2 ChemC - x, t00 kg 1.98 4.58 2.47 

Weighted Requirements - Matrix [A] and Vector m 

Wt 
Factor 

Components [m]  

C1 Petrol- x~ 0.151 

C1 ChemA - x 2 0.054 

C2 ChemB - x~ 0.019 

C2 ChemC - x 4 0.042 

Output Subtotals a I = 

Atmospheric Waste (kg) or B = 

Total Pollutants 

Nitrogen Sulfur 
C02 Oxide Oxide 

X 5 X 6 X 7 

0.581 0.374 0.131 

0.658 0.461 0.029 

0.016 0.025 0.023 

0.083 O. 192 O. 103 

1,340 1.052 0.286 

2.678 

where aj is the coefficient of contribution for each atmo- 
spheric emission output, and miieii is the product of the indi- 
vidual cells in both m' and A, respectively. Hence, the sum 
of each individual column divided by the grand total output 
yields the proportion that each atmospheric emission con- 
tributes toward the product's final burden. The individual 
data elements within each column are then scaled by their 
corresponding column proportion value: 

mqe o 

(a. / B) 
(3) 

This results in an input/output matrix of data elements that 
are ranked based on their individual contributions. These 
values are then sorted into descending order and placed into 
a vector containing its contribution percentage and position 
in the original deterministic model. The original position of 
the cells is needed because its corresponding position in the 
stochastic model will be subject to a DQI upgrade. 

The ranking should be applied to the original deterministic 
model, even if a stochastic model already exists. This as- 
sures that the individual contributions obtained in the rank- 
ing methodology are correct, since the data elements in the 

stochastic model are subject to change based on the random 
draws each receives during a simulation. However, if only a 
deterministic model exists then the procedure is highlight- 
ing those input data elements whose uncertainty should be 
assessed with the highest quality. Therefore, as shown in the 
following section, assessing only the important data elements 
and ignoring all remaining data elements streamlines the 
conversion from deterministic to stochastic form. 

Once the original deterministic model has been screened, 
LCA practitioners should focus their efforts on robust data 
collection methods for the identified data elements. These 
efforts will assist in trying to determine each input data 
element's corresponding distribution or assist in improving 
the uncertainty in its estimate value. If actual data exist, 
practitioners can use graphical methods such as boxplots or 
histograms to help characterize the distribution. However, 
if data doesn ' t  exist expert judgment in the form of DQIs 
can be applied to quantify the distribution of the input data, 
for references see Coulon [9], Weidema [10] or Kennedy 
[11]. Each input data element estimate in the deterministic 
LCI model can then be transformed into a random variable 
that draws from a probabilistic distribution. This in turn 
provides the means for stochastic modeling. 

Returning to our example, all the estimates within the ISS 
and E matrices of Table I require obtaining a corresponding 
DQI value. See Table 2 for the stochastic form for the LCI 
model. Notice all estimates in the ISS table and all input 
data element estimates found in the E matrix have their cor- 
responding DQI assessment value shaded and shown in the 
upper right-hand corner of each cell. For this example, we 
are assuming that knowledge of the actual probability dis- 
tribution and its associated parameters is not available. When 
this is the case the appropriate probability distribution to 
use is the beta distribution. 

The DQI values for this research use a single rating to mea- 
sure the overall quality of each data element. This rating is 
based upon a Likert-type [12] sliding scale of one to five, 
with a one representing the worst quality (maximum uncer- 
tainty), and a five representing the best quality (minimum 
uncertainty). These qualitative assessments are then used to 
parameterize the probability density function of a beta ran- 
dom variable x: 

~ 
Lb-,,J [r(a).rqi)J Lb-.J Lb-aJ 

[a<x<b ]. 
f~ otherwise I ' 

(4) 

where cx and 13 are the distribution shape parameters, and a 
and b are the selectable range endpoints. This distribution is 
appropriate primarily because the shape parameters and 
range end points allow virtually any shape probability dis- 
tribution to be represented. The shape parameters establish 
the shape of the distribution and thus the location of the 
probability mass, whereas the endpoints limit the range of 
possible values. The range end points are based on a +/- 
percentage of the original input data element estimate. The 
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Table 2: Spreadsheet format for a stochastic inventory model 

Input System Requirements (ISS) per 1000 units of product defivered 

Required 
Weight (kg) 

C1 13.25 Container 

C2 7.75 Label 

Recycling 
Rec. Rate 

15 
0.2464 

STOCHASTIC FORM 

Req'd Poly 
Wt Mfg 

15 
I n p u t  x 1 8.25 1.52 

Input  x 2 5 . 0  0 . 5 5  

Input x 3 3.25 0.34 

Input x 4 4.50 0.72 

Input Data By System Steps - [E] Matrix 

Total Pollutants 

Weight C02 Nitrogen Sulfur 
(kg) Oxide Oxide 

Component x s x 6 x 7 

C1Petrol-x, 100kg I 5 [ ~ -  15 
3.85 2 . 4 8  0.87 

12 12 
C1 Chem A -  X 2 12.2 8.54 0.54 

too g I ,  
C2 Chem B - x  3 0.95 1.82 1.25 

100kg L~_ ~5 L~_ 
02 Chem C - x 4 1.98 4.58 2.47 

Weighted Requirements - Matrix [A] and Vector m 

Component 

C1 Petrol - x~ 

C1 ChemA - x 2 

C2 ChemB - x a 

C2 ChemC - x 4 

Wt 
Factor 

[m] 
0,151 

0.054 

0.019 

0.042 

Output Subtotals = 

Atmospheric Waste (kg) = 

Total Pollutants 

Nitrogen Sulfur 
CO2 Oxide Oxide 
x 5 X6 X7 

0.581 0.374 0.13~1 

0.658 0.461 0.029 

0.018 0.025 0.023 

0,083 0.192 0,103 

1.340 1.052 0.286 

2.678 
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Fig. 2: Beta probability density function (pdf) for various shape parameters 
(a and 8) listed in Table 1 
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beta distribution shape parameters and range er~dpoints cor- 
responding to each DQI are presented in Table 3. The beta 
probability distribution functions shown in Fig. 2 provide 
an indication for how likely a particular value of x will oc- 
cur, where x can be thought of as the value taken on by an 
input data element having range end points of 0 and 1. Ref- 
erencing Table 2 and Fig. 2 respectively, we see that all the 
DQI values for the input materials are of highest quality 
except for input material x2, therefore the random draws 
for material x2's input data elements will vary about their 
original estimate more than the other material input data 
estimates. Hence, if one of the input data elements for x 2 
had the highest rank or contribution, increasing its DQI value 
can reduce the LCI model output variation since its draws 
will be from a tighter symmetric distribution. 

The shape parameters and range endpoints specified in Table 3 
were established and used if LCA practitioners were not able 
to provide adequate corresponding information. Unless oth- 
erwise specified by the LCA practitioners, the variability of 
the input data is symmetrically distributed about its original 
point estimate utilizing the beta distribution shape parameters. 

Table 3: DQI values and their corresponding beta distribution parameters 

i . . . . . .  : i 

Data Quality indicator 

5 

4.5 

4.0 

3.5 

3.0 

2.5 

2.0 

1.5 

1.0 

. . . .  Beta DistribUtion . . . .  : : : :  

i - S h a p e  parameters Range Endpoints =: 
!:i: (~p) 

5,5 10 

4,4 15 

3,3 20 

2,2 25 

1,1 30 

1,1 35 

1,1 40 

1,1 45 

1,1 50 
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This format is appropriate because with no additional infor- 
mation, it ensures an equal probability of selecting values that 
are the same amount above and below the given the data ele- 
ment value. The range endpoints are coded at +/- 10% of the 
input value from a DQI of five (highest quality) to +/- 50% for 
a DQI of one (lowest quality). These percentages were se- 
lected such that the range of random variable's values the in- 
put data element could assume continuously increase with in- 
cremental decreases in data quality. 

The code that ranks all the data elements in the input/out- 
put matrix can be found in the Appendix. The language se- 
lected was Matlab, version 5.0, since it is a matrix manipu- 
lation-based language. However, any computer language can 
be used to provide the basic operations. If the LCI models 
have a spreadsheet format to manage all the mathematical 
linear combinations, then all that is required is copying the 
correct input/output matrix and assigning it to a correspond- 
ing variable. However, care must be taken to remove any 
rows in the matrix that may subtotal a stage of the resource 
components or any columns that may subtotal a stage of the 
environmental emissions. Failure to do so will result in an 
incorrect ranked vector highlighting certain data elements 
that do not exist. 

2 Application 

This methodology was applied to an existing stochastic LCI 
model developed for a beverage delivery system and pre- 
sented in Kennedy [1]. The model computes the total energy 
in Gigajoules (GJ) required to deliver 10,000 liters of bever- 
age. Four system alternatives were initially studied to vali- 
date and verify any reduction in their output variance. The 
choice of the total energy model was arbitrary. The method- 
ology could have easily been applied to a variety of other 
existing environmental burdens such as waterborne waste 
or atmospheric emissions. 

Prior to verifying any variance reduction, the output from 
the original deterministic and stochastic (baseline) LCI model 
presented in Kennedy [1] was compared to the output from 
the modified stochastic model having five-percent of the top 
ranked data elements receiving a DQI upgrade. The choice 
of five-percent was selected just to test and validate the meth- 
odology. The deterministic model's output point estimate 
and the stochastic model's (baseline and modified) output 
mean values for each system alternative were computed and 
reported in Table 4. The mean values are based upon fifty 
independent Monte Carlo simulation runs. The mean out- 
put associated with each system alternative and each LCI 
model type highlights that the methodology has not altered 
or shifted the output drastically from its original determin- 
istic and stochastic form. 

To measure the amount of variance reduction from the meth- 
odology, an incremental selection of one-percent was se- 
lected. That is, one-percent increments of the top ranked 
data elements in the LCI model are selected to receive an 
upgrade in data quality. A small percentage increment was 
selected in order to highlight the behavior of the DQI up- 
grades and any resulting variance reduction. Based on the 
number of input data elements in the LCI model, this re- 

Table 4: Output from each system alternative for both model types 

System 
Alternative I 

System 
Alternative 2 

Deterministic 
Model Point 

Estimate 

10.7 

28.2 

Baseline 
Stochastic 

Mean 

10.93 

29.55 

Modified 
Stochastic 

Mean 

11.2 

30.75 

Number O f  
Active 
Cells 

391 

386 

System 30.2 33.48 33.15 386 
Alternative 3 

System 25.2 27.34 27.17 374 
Alternative 4 

suited in a cumulative sequence of twenty-seven cells receiv- 
ing the maximum upgrade (DQI value of 5) at each incre- 
mental simulation run. The incremental sequence of upgrades 
continues until all the active cells in the model have been 
updated. The total number of active cells for each system 
alternative is highlighted in the last column of Table 4. There- 
fore, one-percent increments results in fourteen total incre- 
mental simulation runs, no more simulations were needed 
since the remainder of input data elements have a zero value 
- non active cells. Each simulation run obtained fifty inde- 
pendent output values for every one-percent increment, a 
sufficient sample size for acquiring a variance estimate and 
performing graphical analysis. These output values were then 
compared to a single output variance estimate - based on 
five hundred independent simulation runs - from the origi- 
nal corresponding stochastic model. The whole process was 
repeated for all four-beverage system alternatives. Once the 
output data was obtained, the results were analyzed using 
basic summary statistics and plots. The variances from the 
summary statistics for each modified model at each one- 
percent increment were used to obtain the sequence of plots 
shown in Fig. 3. These estimates were compared to the cor- 
responding baseline output variance estimate to determine 
the percentage amount of variance reduction: 

%Var_ Re d. = 
2 (~2 

( (~ Basetine - -  Modified).  
2 

(~ Baseline 

Fig. 3 highlights how much the output variance is reduced as 
the percentage of data elements selected for upgrade increases. 
The remainder of data elements not selected for an upgrade 
remained at their existing DQI value. At two percent, three 
out of the four system alternatives obtained a variance reduc- 
tion greater than twenty-five percent. Alternative one shows 
the highest gain in variance reduction out of all four-system 
alternatives, at one-percent a forty-eight percent reduction was 
obtained. Reductions of this amount will increase practitio- 
ners' and model users' ability to statistically discriminate be- 
tween resembling system alternatives. Overall, each alterna- 
tive obtained an average variance reduction of 51.66, 28.46, 
27.05, and 27.45 percent, respectively. 

The benefit of applying this methodology to existing stochas- 
tic models is that LCA practitioners will know where to focus 
their resources to improve the uncertainty associated with those 
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Fig. 3: Variance reduction plots for each System alternative when 
methodology applied to existing stochastic models 

data elements deemed important. Based upon Fig. 3, improv- 
ing two percent of the data elements can substantially im- 
prove the output variance. Two percent in this case requires 
that fifty-four data elements need to have their uncertainty be 
re-evaluated. Even if this amount of re-evaluation is too costly 
or time consuming, it is highly likely that fifty-four re-evalua- 
tions will not be needed. Generally, some of these data ele- 
ments will already be at their highest index value. Data ele- 
ments that have marginally high DQI values should be left 

Fig. 4: Variance reduction plots for each system alternative when the non- 
selected data elements were set at worse case scenario 

alone, since the time and energy to increase them from a four 
to a five, for example, will not be that beneficial. Simply re- 
evaluating the data elements with lower DQIs will be suffi- 
cient enough to obtain a reduction in the output variance. 

The methodology's ability to reduce the workload during 
the conversion stage was investigated next. This required 
setting all the remaining data elements not selected for an 

Int J LCA 7 (1) 2002 23 



Stochastic Modeling LCA Methodology 

initial assessment (upgrade) to a worse case scenario - DQI 
values of one. Therefore, the only DQI assessments required 
are for the percentage of data element deemed as important, 
all remaining data elements are ignored and set at maxi- 
mum uncertainty (worse case). In doing so, we assume that 
the uncertainty for each of the selected data elements will be 
capable of receiving the highest assessment value - DQI value 
of five. Once again a one-percent selection criterion was used 
and the same simulation process was repeated. The output 
variances were analyzed and first compared to the output 
variance estimates used in the previous simulations for the 
original stochastic baseline models. The second comparison 
was with the new converted stochastic model, which was 
run with each data element set at worse case scenario. The 
results for each system alternative are presented in Fig. 4. 

The plots in Fig. 4 indicate that practitioners need only fo- 
cus on a certain percentage of the data elements identified 
in the screening process. This is based upon the variance 
reductions obtained when compared to the existing stochastic 
or baseline model output. Once again, by two-percent, each 
system alternative experiences some amount of variance re- 
duction. Therefore practitioners could have assessed just two- 
percent of the data elements, instead of all of them, to ob- 
tain model results with less variability. These results suggest 
that the methodology presented within is capable of stream- 
lining the conversion process of going from a deterministic 
to stochastic form. The second comparison with the new 
converted model highlights the overall gain in variance re- 
duction that can be achieved prior to any DQI assessments. 
Even though large gains are expected, the plots emphasize 
that DQI upgrades beyond five-percent do not increase the 
gain in variance reduction significantly. 

It should be noted that this report does not imply or suggest 
that selecting two or five-percent for assessment be the rule- 
of-thumb since results will vary from model to model. Practi- 
tioners will need to exhibit great care when selecting the ini- 
tial percentage of data elements for assessment. Often plotting 
the amount each data element contributes toward the total 
against its corresponding ranking order will help in making 
an educated selection. Fig. 5 illustrates this helpful plot for 
system alternative 2. The plot highlights that two-percent 
would be sufficient for re-assessment since the contribution of 
the data elements beyond 54 is minimal. This corresponds 

Fig. 5: Data element contribution versus ranking order 

with the results shown in Fig. 3, that is, the maximum gain in 
variance reduction was achieved at two-percent. 

Lastly, the methodology was tested to see if the stochastic 
LCI model's reduction in output variance would improve 
the ability to discriminate between system alternatives. 

To more adequately show the benefits of the variance re- 
duction an additional beverage system alternative was cre- 
ated. The fifth alternative created is a feasible derivative of 
alternative four, with mean and variance characteristics simi- 
lar to alternative two. 

Performing an F-test for assessing the equality of means is 
the first step when making multiple comparisons of alterna- 
tives. Analysis of variance (ANOVA) makes use of such a 
test. An ANOVA determines if there exists a statistically sig- 
nificant difference between the means of the system alterna- 
tives. A single factor ANOVA was computed on two sepa- 
rate data sets using ~ = 0.05 to test for equality of means 
between the k treatments (i.e., k ---- 5 system alternatives). 
The two separate data sets are comprised of running fifty 
independent runs for each system alternative from the exist- 
ing (baseline) stochastic model, used in Kennedy [1], and 
the modified stochastic model having the top two-percent 
ranked data elements receiving DQIs of five. It should be 
noted that fifty new observations for the new alternative 
five were required and simulated - utilizing the two-percent 
upgrade. Next a 95% Tukey's comparison of means test 
was performed using ~ -- 0.05 to test for statistical signifi- 
cant differences between the mean output values of each 
possible pair of system alternatives. This test is appropriate 
to further determine which pairs of alternative means are 
significantly different if the results from the ANOVA and F- 
test indicate a significant difference between means exists. 
Tukey's test was selected because it is very conservative and 
exact when the sample size is equal for all alternative means 
under comparison. For detailed information on the analyti- 
cal methods mentioned above l:eaders should reference 
Montgomery [13]. 

Table 5 contains output from SAS, a statistical software pack- 
age, highlighting the ANOVA table and 95% Tukey's confi- 
dence intervals for all pairwise differences between means. Based 
upon the F-test and small P-values for equality of means in the 
ANOVA table, there is strong evidence that at least one system 
alternative has a mean value significantly different than the oth- 
ers. Referencing the Tukey confidence intervals in Table 5 one 
can determine where the significant pairwise differences exist. 
If the confidence interval contains zero or no stars are present 
in the last column, then no significant differences exist be- 
tween the pair of alternatives. Observe the pairwise confidence 
intervals for alternatives two and five. The interval contains 
zero in the baseline analysis, whereas the modified analysis 
does not contain zero. This demonstrates that the reduction in 
variance improves the ability to discern whether a significant 
difference in means exists. This information is very beneficial 
for model users and decision-makers, because they can be as- 
sured when discriminating between candidate system alterna- 
tives with similar characteristics. 
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Table 5: ANOVA and 95% Tukey confidence intervals for both baseline and modified models 

Analysis of Variance Table 

Modified model: 

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 4 15666.49 3916.62 7041.94 0 .000 t  

Error 245 136.26 0.5561 

Total 249 15802.75 

Baseline model: 

Source DF Sum of Squares Mean Square F Value Pr > F 

Model  4 15915.78 3978.94 
4926.50 0.0001 

Error 245 197.87 0 .80766 

Total 249 16113.65 

Tukey Comparison of Means Test 

Analysis for baseline model:. 

Alternative Comparison Lower Confidence Limit Difference Between Means Upper Confidence Limit 

1 - 2 

1 - 3 

1 - 4 

1 - 5 

2 - 3 

2 - 4 

2 - 5 

3 - 4 

3 - 5 

4 - 5 

- 20 .0816  

-22 .6918  

-16 .3788  

-20 .0391 

-3 .1042  

3.2089 

-0 .4515  

5.8191 

2.1587 

-4 .1543  

- 1 9 . 5 8 7 7  

-22 .1979  

- 1 5 . 8 8 4 8  

-19 .5452  

-2 .6102  

3.7028 

0.0425 

6.3130 

2.6527 

-3 .6603  

- 1 9 . 0 9 3 7  *** 

- 2 1 . 7 0 3 9  *** 

- 1 5 . 3 9 0 9  *** 

- 1 9 . 0 5 1 2  *** 

- 2 . 1 1 6 3  *** 

4 .1968 *** 

0 .5364 

6.8070 *** 

3 .1467 *** 

- 3 . 1 6 6 4  *** 

Analysis for Modified Model: 

Alternative Comparison Lower Confidence Limit Difference Between Means Upper Confidence Limit 

1 - 2 

1 - 3 

1 - 4 

1 - 5 

2 - 3 

2 - 4 

2 - 5 

3 - 4 

3 - 5 

4 - 5 

- 19 .9968  

-22 .6446  

- 1 6 . 3 8 1 4  

-19 .2205  

-3 .0577  

3.2055 

0.3664 

5.8533 

3.0142 

-3 .2490  

- 1 9 . 5 8 6 9  

- 2 2 . 2 3 4 7  

- 1 5 . 9 7 1 5  

-18 .8106  

-2 .6478  

3.6154 

0.7763 

6.2632 

3.4241 

-2.8391 

- 1 9 . 1 7 7 0  *** 

- 2 1 . 8 2 4 8  *** 

- 1 5 . 5 6 1 6  *** 

- 1 8 . 4 0 0 7  *** 

- 2 . 2 3 7 9  *** 

4 .0253 *** 

1.1662 *** 

6.6731 *** 

3 .6340 *** 

- 2 . 4 2 9 2  *** 

3 Conclusions 

The methodology presented within has proven to be effective 
at streamlining and improving the stochastic LCI modeling 
process. It is general and applicable to any environmental in- 
ventory model. The application makes the conversion process 
of going from a deterministic to a stochastic model form more 
practicable. Lastly, the methodology improves the output vari- 
ance of existing stochastic models by showing practitioners 
where energy should be focused to improve the data uncer- 
tainty for those important input data elements. 

Even if converting a deterministic model is not feasible, the 
methodology can still be used on existing LCI models to 
identify the important data elements. Once identified, mea- 
sures can be taken to assure that proper attention is always 
allocated to their input data point estimates. However, if 
the deterministic LCI model's total output is due to a small 
number of input data elements, the conversion to a sto- 
chastic form should be considered. The amount of work in 
the conversion is negligible compared to the benefits and 
information gained from stochastic LCI modeling. The abil- 
ity to statistically discriminate between system alternatives 
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gives LCA practitioners and decision-makers an edge in 
policy making. 

The results from the application of the methodology illus- 
trated that a reduction in the output variance is possible 
after only a small percentage of input data elements received 
a DQI upgrade. The plot of the data element contributions 
versus the ranking order also illustrated that small percent- 
ages of the data elements generally contribute the most to- 
ward the total inventory output. This phenomenon suggests 
that LCI input data elements may tend to follow a Pareto 
principle. In other words, a small proportion of the vari- 
ables, input data elements in this case, make up the major- 
ity of the variability. When this characteristic is prevalent, 
the application of a screening experiment or methodology 
proves to be beneficial. 

The development of this research has identified the neces- 
sity of future research. First, work involving the optimiza- 
tion of the ranked vector would prove to be beneficial. Cre- 
ate an algorithm-based screening methodology capable of 
evaluating the combinatorial explosion of possible DQI up- 
grades for each input data element in the stochastic model. 
The algorithm should select those data elements constrained 
on the amount each contributes toward the total output, 
allocation, costs, and the value of its current DQI value. 
The results should highlight lower ranked data elements 
that may have been overlooked utilizing the methodology 
presented within. Second, efforts to improve the quality of 
the existing parameterization format for the beta distribu- 
tion. That  is, research should focus on robust parameter 
representation with the focus of developing a standard. Ad- 
vances such as these will make stochastic modeling itself a 
standard when modeling the inventory stage. 
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Appendix: Matlab code 

% Reads in Matrix A 

function manip=rank_matrix(A) 

pet=. 1 
[m,n]=size(A); 
te_col=sum(A); 

te=sum(te_col); 

col_pct=te_col/te; 
% 

for i=1 :n 

B(:,i)=(A(:,i)*col_pct(i)); 

end; 
% 

% Puts ranked vector into ascending order!!! 
%[a,b]=size(B); 
%B_col=reshape(B,m*n,1); 

%[y,p]=sort(B_col); 
%rv=[y,p]; 
% 

% Puts ranked vector into descending order!!! 
neg_B=(-1)*B; 

[a,b]=size(neg_B); 
B_col=reshape(neg B,m*n, 1 ); 
[y,p]=sort(B_col); 
p=(-1)*p; 
rv=(-1 )*[y,p]; 
% 

% Returning the specified percent of the ranked vec- 
tor!!! 

[r,s]=size(rv); 

pct_rv=rv([1 :pct*r],:); 

manip=pct_rv(:,2) 
% 

% Storing output to a file!! 
%diary store 
%diary off 
% 
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