

Communication

Copper Catalysis for Selective Heterocoupling of Terminal Alkynes

Lebin Su, Jianyu Dong, Long Liu, Mengli Sun, Renhua Qiu, Yongbo Zhou, and Shuang-Feng Yin J. Am. Chem. Soc., Just Accepted Manuscript • DOI: 10.1021/jacs.6b07984 • Publication Date (Web): 12 Sep 2016 Downloaded from http://pubs.acs.org on September 12, 2016

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

Journal of the American Chemical Society is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Copper Catalysis for Selective Heterocoupling of Terminal Alkynes

Lebin Su,[‡] Jianyu Dong,[‡] Long Liu, Mengli Sun, Renhua Qiu, Yongbo Zhou,* and Shuang-Feng Yin*

State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China

ABSTRACT: A copper-catalyzed selective aerobic heterocoupling of terminal alkynes is disclosed, which enables the synthesis of a broad range of unsymmetrical 1,3-diynes in good to excellent yields. The results disprove the long-held belief that homocouplings are exclusively favored in the Glaser–Hay reaction.

The copper-catalyzed crosscoupling of terminal alkynes (Glaser–Hay reaction) to produce 1,3-diynes is a textbook reaction¹ that has wide applications² in organic synthesis³ and material science.⁴ However, compared to its extensive application to the synthesis of symmetrical 1,3-diynes via the homocoupling of an alkyne, the preparation of unsymmetrical 1,3-diynes, via the coupling of two different alkynes, is rather limited because of the poor selectivity.^{5–8}

Unsymmetrical 1,3-diynes are an important class of intermediates in organic synthesis, and they are ubiquitous structural motifs in a large number of natural products and functional materials.^{2a,5c,d,9} A landmark contribution to the synthesis of these compounds was made based on the Cadiot–Chodkiewicz reaction,^{10a} and the development of its variants was also achieved.^{10b,c} However, prefunctionalized substrates such as 1-haloalkynes are required. Direct synthetic methods that employ a vast excess of one alkyne were recently developed, but resulting in low total heteroselectivity.¹¹ A significant progress was recently made by Shi and coworkers over the Au/phen catalytic system using PhI(OAc)₂ as an oxidant, achieving selective heterocoupling of substituted aromatic alkynes with aliphatic alkynes.¹² Nonetheless, the copper-catalyzed selective heterocoupling of terminal alkynes still remains a big challenge in organic synthesis.^{2a,5,12}

Herein, we describe a copper-catalyzed selective heterocoupling of terminal alkynes using Glaser–Hay-type reaction conditions to produce unsymmetrical 1,3-diynes (eq 1). In addition to the selective heterocoupling of an aromatic alkyne with an aliphatic alkyne, the copper-catalyzed system allows selective heterocoupling between two different aromatic alkynes and between two different aliphatic alkynes.

$$R^{1} \longrightarrow H + H \longrightarrow R^{2} \xrightarrow{Cu^{0}, TMEDA} R^{1} \longrightarrow R^{2} (1)$$

Initially, the reaction of 2,2-dimethylpropargyl alcohol (1a) with phenylacetylene (2a) was tested to optimize the reaction conditions (Table 1, see SI for details). For copper catalysts, CuCl, CuBr, Cu₂O, and CuF₂ showed moderate efficiency (yield: 57-60%, **3a/4a** = 4.5~5.7, entries 1–4) in the presence of N^1 , N^1 , N^2 , N^2 -tetramethylethylenediamine (TMEDA). In the case of copper powder, there was a significant improvement in both yield and selectivity (74%, **3a/4a** = 12, entry 10), whereas Cu(OH)₂, Cu(OAc)₂, Cu(NO₃)₂, and CuO were ineffective (entries 6–9).

Table 1. Optimization of Conditions^a

но-	1a + 2a	H cat. [C H solv	⟨ u], ligand ent, air	→ но→	3; + 4; + 5;	a 	
ontry	ICul	ligond	achient	yield	d (%) ^b		3a/4a/5a
entry	[Cu]	ligand	solvent	3a	4a	5a	Ja/Ha/Ja
1	CuCl	TMEDA	CHCl₃	60	12	18	5.0/1/1.5
2	CuBr	TMEDA	CHCl ₃	57	10	22	5.7/1/2.2
3	Cu ₂ O	TMEDA	CHCl ₃	60	12	24	5.0/1/2
4	CuF ₂	TMEDA	CHCl ₃	58	13	20	4.5/1/1.5
5	Cul	TMEDA	CHCI ₃	46	18	29	2.5/1/1.6
6	Cu(OH) ₂	TMEDA	CHCl ₃	trace	trace	trace	-
7	Cu(OAc) ₂	TMEDA	CHCl ₃	0	0	trace	-
8	Cu(NO ₃) ₂	TMEDA	CHCl ₃	trace	trace	trace	-
9	CuO	TMEDA	CHCl ₃	trace	0	trace	-
10	Cu ⁰	TMEDA	CHCl ₃	74	6	14	12/1 /2.3
11	Cu ⁰	-	CHCl ₃	0	0	0	-
12	Cu ⁰	TEEDA	CHCl ₃	trace	0	trace	-
13	Cu ⁰	Phen	CHCl ₃	0	0	0	-
14	Cu ⁰	TMMDA	CHCI ₃	0	0	trace	-
15	Cu ^v	bpy	CHCI ₃	trace	0	trace	-
16	Cu ^v	DEDMEDA	CHCl ₃	70	11	18	6.4/1/1.6
17°	Cu°	IMEDA	CHCI ₃	38	4	13	9.5/1/3.3
18 ⁰	Cu ^v	TMEDA	CHCl ₃	43	6	11	7.2/1/1.8
19	Cu ^v	TMEDA	CH₃CN	7	trace	20	-
20	Cu ⁰	TMEDA	CHBr ₃	trace	trace	trace	-
21	Cu ⁰	TMEDA	CH ₂ Cl ₂	45	14	19	3.2/1/1.4
22 ^e	Cu ⁰	TMEDA	CHCl ₃ /dioxane	78	5	13	16/1 /2.6
23 ^{f,g}	Cu ⁰	TMEDA	dioxane	72	7	16	10/1/2.3
24	Cu ⁰	TMEDA	dioxane	trace	trace	trace	-
25^h	Cu ⁰	TMEDA	CHCl ₃ /dioxane	83	7	16	12/1 /2.3
26 ^{h,i}	Cu ⁰	TMEDA	CHCl ₂ /dioxane	78	14	13	5.5/1/0.9
27 ^{h,j}	Cu ⁰	TMEDA	CHCl ₃ /dioxane	72	7	13	10/1/1.9
28 ^{g,j}	CuCl	TMEDA	acetone	47	24	25	2.0/1/1

^{*a*}Reaction conditions: 2,2-dimethylpropargyl alcohol, **1a**, (0.20 mmol), phenylacetylene, **2a**, (0.26 mmol), [Cu] (0.01 mmol, 5.0 mol %), ligand (0.04 mmol, 20 mol %), solvent (0.4 mL), air, 50 °C, 4 h. ^{*b*}GC yields of **3a** and **4a** based on **1a**, and **5a** based on **2a**. ^{*c*}30 °C. ^{*d*}70 °C. ^{*e*}CHCl₃ (0.3 mL), 1,4-dioxane (0.1 mL). ^{*f*}5 equiv of CHCl₃ (1 mmol), 1,4-dioxane (0.4 mL). ^{*g*}12 h. ^{*h*}8 h. ^{*i*}**1a** (0.26 mmol), **2a** (0.20 mmol). ^{*j*}**1a** (0.20 mmol), **2a** (0.20 mmol).

The replacement of TMEDA with other bidentate ligands, such as N^1, N^1, N^2, N^2 -tetraethylethylenediamine (TEEDA), Phen, TMMDA, TMTDA and bpy, resulted in no yield for the desired product (entries 12–15). Notably, good yield and heteroselectivity were observed (70%, **3a/4a** = 6, entry 16) by the use of *N*,*N*⁻diethyl-*N*,*N*⁻dimethylethylenediamine (DEDMEDA) that has only a slightly less steric hindrance than that of TEEDA. The reaction was also sensitive to the reaction temperature, and a low yield of the heterocoupling product (**3a**) was observed at temperatures

^{*a*}Reaction conditions: **1** (0.20 mmol), **2** (0.26 mmol), Cu powder (0.01 mmol), TMEDA (0.04 mmol), CHCl₃ (0.3 mL), 1,4-dioxane (0.1 mL), air, 50 °C, overnight. ^{*b*} isolated yield based on **1**, **3/4/5** in parentheses. ^{*c*}**1** (0.20 mmol), **2** (0.20 mmol). ^{*d*} compound **I** (0.01 mmol), TMEDA (0.04 mmol), 1,4-dioxane (0.4 mL). ^{*e*}**1** (1.0 mmol), **2** (1.3 mmol).

higher or lower than 50 °C (entries 17 and 18). An investigation of the effect of the solvent showed that a mixture of CHCl₃ and dioxane was the best for reaction performance, producing 3a in a 78% yield with excellent selectivity (3a/4a = 16, entry 22). The reaction proceeded smoothly in the presence of only 5 equiv of chloroform in dioxane, producing 3a in a 72% yield (entry 23), whereas only a trace amount of 3a was observed in the absence of chloroform (entry 24). By prolonging the reaction time to 8 h, the yield of 3a slightly increased (83%), but the heteroselectivity decreased due to the homocoupling of redundant 1a to 4a (3a/4a = 12, entry 25). A comparable yield for 3a (78%) was observed with the inversion of the 1a to 2a ratio (1.3:1, entry 26). An equimolar mixture of two alkynes gave a satisfactory yield of 3a (72%, 3a/4a = 10, entry 27). In contrast, a low yield of the heterocoupling product^{7,12} was observed under Glaser-Hay reaction conditions (47%, entry 28).

As shown in Table 2, the copper catalytic system exhibits a wide scope of substrates and an outstanding tolerance for functional groups, producing various unsymmetrical 1,3-diynes in good to excellent isolated yields (see SI for details). Aromatic alkynes substituted with alkyl (3b-f), F (3g), Cl (3h), Br (3i), CF₃ (3j), OMe (3k,l), aryl (3m,n), CN (3o), NH₂ (3p), CH₃CO (3q), and NO₂ (3r) worked well to give the corresponding conjugated diynes in 65-87% yields. Steric hindrance has only a slight effect on the reaction (3b-d), and the attachment of an electronwithdrawing group on the phenyl ring results in higher yields for the heterocoupling products (3g-j). Heteroaromatic alkynes that contain thiophene (3s) and pyridine (3t,u) also reacted efficiently. Aliphatic alkynes are good substrates, producing the corresponding conjugated divnes in good to excellent yields (63-91%, 3v-zi). Functional groups, including primary alcohols (3v), secondary alcohols (3w), tertiary alcohols (3x), benzyl alcohols (3y), esters

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59 60 (3za,zf), ethers (3zb), thioethers (3zc), acetals (3zd), amides (3ze), and silicanes (3zg), are all tolerated. In the case of ethisterone, being a highly functionalized aliphatic alkyne, the 1,3-diynederived drug-like molecule was produced in a satisfactory yield (63%, 3zh). This clearly demonstrates the great potential of this new methodology for accessing highly functionalized target molecules. Notably, the reaction of phenylacetylene with cyclohexylacetylene, which do not include any functional substituted groups, also proceeded selectively to afford the corresponding product in a 63% yield (3zi).

In addition to aromatic and aliphatic alkynes, this coppercatalyzed reaction is applicable to the heterocoupling between two different aromatic alkynes, and unsymmetrical aryl-aryl 1,3diynes were selectively produced in 71–87% yields (**3zj–zp**). Remarkably, despite slight differences in reactivity for the C(sp)– H bonds, *p*-tolyacetylene and *o*-tolyacetylene were well "discriminated" in the catalytic reaction, giving the desired product in a 71% yield (**3zo**), which may be resulted from their different steric hindrance, too. The reaction of two different aliphatic alkynes also resulted in selective formation of heterocoupling products, and a variety of unsymmetrical alkyl-alkyl 1,3-diynes were generated in 70–77% yields (**3zq–zt**). Even in the cases of two alkynes in an exact 1:1 molar ratio, satisfactory yields (58–80%) and total heteroselectivity (**3**/(**3**+**4**+**5**), 64–86%) were obtained (**3a**, **3p**, **3s**, **3zc**, **3zi**, **3zh**, **3zn**, **3zp**, **3zp**, **3zq**, and **3zt**).

The method can be applied to the synthesis of unsymmetricalpolyynes, such as conjugated triyne and tetrayne. For example, triyne **8** is selectively produced in a 72% yield from buta-1,3diyn-1-ylbenzene **6** and **1a** (Scheme 1, A). Treatment of **3a** with **3p** under one-pot deprotection/oxidation conditions produced tetrayne **9** in a 69% yield (Scheme 1, B). The gram-scale synthesis of **3a** was successfully achieved (79%, see SI for details). Therefore, we envision important applications for this method, especially for the synthesis of electronic, optical, and natural materials.

Scheme 1. Synthesis of Unsymmetrical Polyynes

To gain insights into the mechanism, several control experiments were conducted. The reaction was accomplished in the presence of a catalytic amount of copper powder under N_2 , but a longer time was required (eq 2), giving a slightly lower yield and selectivity (**3a**: 64%, **3a**/**4a** = 9:1) than the reaction conducted under air. The results indicate that despite its inferiority to air, chloroform can serve as an oxidant.

After treatment of the copper powder with TMEDA in chloroform under dry N₂ at 50 °C for 24 h, a pale yellow solid, **I**, was isolated in a 86% yield. The structure of **I** was unambiguously confirmed using single-crystal X-ray crystallography (Figure 1). The X-ray analysis showed that the copper center was coordinatively saturated inside a tetrahedron structure with similar Cu–Cl distances of 2.2269(9), 2.2471(7), 2.2488(8), and 2.2559(8) Å. Two large Cl–Cu–Cl angles of 131.63(3) ° and 130.36(3) ° allows attack by alkynes. In the Cu $2p_{3/2}$ XPS spectra of **I** (see SI Fig. 1), a peak at a binding energy of ~933.9 eV was accompanied by characteristic Cu(II) shakeup satellites (939–945 eV) that were previously assigned to spinel Cu(II). 13

Figure 1. Molecular structure of **I**. Thermal ellipsoids are drawn at 50% probability. H atoms omitted for clarity. Selected bond lengths (Å) and angles (deg): Cu1-Cl1 = 2.2488(8), Cu1-Cl2 = 2.2471(7), Cu1-Cl3 = 2.2559(8), Cu1-Cl4 = 2.2269(9), Cl4-Cu1-Cl2 = 100.35(3), Cl4-Cu1-Cl1 = 101.14(3), Cl2-Cu1-Cl1 = 131.63(3), Cl4-Cu1-Cl3 = 130.36(3), Cl2-Cu1-Cl3 = 99.78(3), Cl1-Cu1-Cl3 = 98.31(3).

In the ESI-MS spectra of I in methanol, the peak at m/z 367.0 was assigned to $[I+CH_3OH]^+$ (calcd m/z 367.6), indicating that the structure of I was maintained in solution. Indeed, using I as the catalyst in dioxane, the heterocoupling of 1a and 2a produced 3a in a 70% yield in air (eq 3), and comparable results were also observed in the reaction of other substrates, including that of two aromatic alkynes or two aliphatic alkynes (Table 2, 3g, 3n, 3zh, 3zk, and 3zr). The stoichiometric reaction of 1a with 2a over copper compound I under N₂ produced the heterocoupling product 3a in a 61% yield. These results suggest that I served as the active catalytic species.

By combining an electron-rich aromatic alkyne (**2p**, with a relatively stronger π -electron donating ability) with two electrondeficient aromatic alkynes (**2j** and **2q**, of relatively higher acidity), good heteroselectivity (**3zm**, 72% and **3zl**, 65%) was observed between the electron-rich alkyne and electron-deficient alkynes (eq 4). The selective heterocoupling reaction between **2j** and **2q** also occurred, giving the heterocoupling product (**3zp**) in a 18% yield. With the dominance of the heterocoupling reactions, the homocoupling reactions of both **2j** and **2q** became minor and produced the homocoupling products in extremely low yields (4% and 7%, respectively, see SI for details). Thus, we deduce that a bigger difference between the reactivity of the alkynes leads to higher heteroselectivity for the desired product.

Regarding the Glaser–Hay coupling mechanism,^{1c,14} both the deprotonation and π -complexation of the alkyne with copper are mandatory, and the dimeric copper acetylides are the intermediates that are most currently accepted (Figure 2, left). Obviously, it is difficult to control the chemoselectivity similar to that of the Cadiot–Chodkiewicz reaction (Figure 2, right).^{9a,b}

Figure 2. Reaction intermediates in the Glaser coupling reaction (left) and Cadiot–Chodkiewicz coupling reaction (right).

Although the details of the reaction mechanism remain to be clarified, we consider that the good heteroselectivity is perhaps due to the unique structure of copper complex I. It is assumed that the electropositive bis-cation, i.e., the quaternary ammonium of TMEDA, may trap and activate the stronger π -electron donating alkyne (of lower acidity) via a cation- π interaction.¹⁵ The copper center bonds to four highly electronegative atoms (Cl), and its coordinatively saturated nature resists the π -coordination of the C=C triple bond to Cu, but it may favor selective ligand exchange with an alkyne of higher acidity. Thus, the two different alkynes could be "discriminated" by the copper center and bis-cation, respectively.¹⁶ Compared to I, Li₂CuCl₄ or (Et₄N)₂CuCl₄ provides poor yield and selectivity, which further confirms the above suggestion. In addition, the steric hindrance of both the ligand and alkynes can affect this heteroselectivity, suggesting that it may be another factor for the "discrimination" of two different alkynes.

In summary, we present a new copper catalysis that leads to selective oxidative cross-coupling of terminal alkynes under mild conditions, enabling the synthesis of a broad range of unsymmetrical aryl-aryl, aryl-alkyl and alkyl-alkyl 1,3-diynes in good to excellent yields. Both chloroform and TMEDA are essential ingredients for the formation of the copper(II) catalyst I. Catalyst I can "distinguish" two different alkynes on the basis of their differences in intrinsic reactivity and steric hindrance, resulting in selective heterocoupling. The present findings not only provide a general, efficient and simple method for the preparation of unsymmetrical 1,3-diynes and polyynes but also open a new dimension of copper catalysis.

ASSOCIATED CONTENT

Supporting Information

Experimental procedures and characterization data. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Authors

*E-mail: zhouyb@hnu.edu.cn. *E-mail: sf_yin@hnu.edu.cn.

Author Contributions

‡ L.S. and J.D. contributed equally to this work.

Notes

The authors declare no competing financial interests.

ACKNOWLEDGMENT

Financial support by the National NSF of China (nos. 21172062, 21273066, 21273067, and 21573065) and the NSF of Hunan Province (2016JJ1017) is appreciated. We also thank Prof. Wanzhi Chen (Zhejiang University) and Prof. C.T Au (HNU adjunct professor) for their kind help.

REFERENCES

(1) (a) Glaser, C. Ber. Dtsch. Chem. Ges. 1869, 2, 422. (b) Hay, A. S. J. Org. Chem. 1960, 25, 1275. (c) Hay, A. S. J. Org. Chem. 1962, 27, 3320.
 (2) (a) Shi, W.; Lei, A. Tetrahedron Lett. 2014, 55, 2763. (b) Liu, J.;

Lam, J. W. Y.; Tang, B. Z. Chem. Rev. 2009, 109, 5799.

(3) (a) Yu, D. G.; de Azambuja, F.; Gensch, T.; Daniliuc, C. G.; Glorius, F. Angew. Chem. Int. Ed. **2014**, 53, 9650. (b) Wang, L.; Yu, X.; Feng, X.; Bao, M. Org. Lett. **2012**, 14, 2418. (c) Jiang, H.; Zeng, W.; Li, Y.; Wu, W.; Huang, L.; Fu, W. J. Org. Chem. **2012**, 77, 5179. (d) Wang, L.; Yu, X.; Feng, X.; Bao, M. J. Org. Chem. **2013**, 78, 1693. (e) Shun, A.; Tykwinski, R. R. Angew. Chem. Int. Ed. **2006**, 45, 1034. (4) (a) Wang, J.; Shen, Y.; Kessel, S.; Fernandes, P.; Yoshida, K.; Yagai, S.; Kurth, D. C.; Moehwald, H.; Nakanishi, T. *Angew. Chem. Int. Ed.* **2009**, *48*, 2166. (b) Ladika, M.; Fisk, T. E.; Wu, W. S. W.; Jons, S. D. J. *Am. Chem. Soc.* **1994**, *116*, 12093. (c) Eisler, S.; Slepkov, A. D.; Elliott, *Chem. Soc.* **2005**, *127*, 2666. (d) Tisserant, J.-N.; Hany, R.; Wimmer, E.; Sanchez-Ferrer, A.; Adamcik, J.; Wicht, G.; Nueesch, F.; Rentsch, D.; Borgschulte, A.; Mezzenga, R.; Heier, J. *Macromolecules* **2014**, *47*, 721.

(5) (a) Allen, S. E.; Walvoord, R. R.; Padilla-Salinas, R.; Kozlowski, M. C. *Chem. Rev.* **2013**, *113*, 6234. (b) Kenneth D. Karlin; Shinobu Itoh *Copper-Oxygen Chemistry*; John Wiley & Sons, Inc.: Hoboken, New Jersey, 2011. (c) Gwilherm Evano; Nicolas Blanchard *Copper-Mediated Cross-Coupling Reactions*; John Wiley & Sons, Inc.: Hoboken, New Jersey, 2014. (d) Siemsen, P.; Livingston, R. C.; Diederich, F. *Angew. Chem. Int. Ed.* **2000**, *39*, 2633. (e) Stefani, H. A.; Guarezemini, A. S.; Cella, R. *Tetrahedron* **2010**, *66*, 7871.

(6) (a) Jia, X.; Yin, K.; Li, C.; Li, J.; Bian, H. *Green Chem.* **2011**, *13*, 2175. (b) Kamata, K.; Yamaguchi, S.; Kotani, M.; Yamaguchi, K.; Mizuno, N. *Angew. Chem. Int. Ed.* **2008**, *47*, 2407. (c) Crowley, J. D.; Goldup, S. M.; Gowans, N. D.; Leigh, D. A.; Ronaldson, V. E.; Slawin, A. M. Z. J. *Am. Chem. Soc.* **2010**, *132*, 6243. (d) Gao, H.-Y.; Wagner, H.; Zhong, D.; Franke, J.-H.; Studer, A.; Fuchs, H. *Angew. Chem. Int. Ed.* **2013**, *52*, 4024.

(7) For low yields of heterocoupling of two alkynes: (a) Zhang, S.; Liu, X.; Wang, T. *Adv. Synth. Catal.* **2011**, *353*, 1463. (b) Balamurugan, R.; Naveen, N.; Manojveer, S.; Nama, M. V. *Aust. J. Chem.* **2011**, *64*, 567. (c) Wong, W.-Y.; Lu, G.-L.; Choi, K.-H.; Guo, Y.-H. *J. Organomet. Chem.* **2005**, *690*, 177. (d) Navale, B. S.; Bhat, R. G. *RSC Adv.* **2013**, *3*, 5220.

(8) Good yields for crosscoupling of different aromatic alkynes have been reported, nonetherless, the results are not repeatable. See: Liu, Y.; Wang, C.; Wang, X.; Wan, J.-P. *Tetrahedron Lett.* **2013**, *54*, 3953.

(9) (a) Ito, A.; Cui, B.; Chavez, D.; Chai, H. B.; Shin, Y. G.; Kawanishi, K.; Kardono, L. B.; Riswan, S.; Farnsworth, N. R.; Cordell, G. A.; Pezzuto, J. M.; Kinghorn, A. D. *J. Nat. Prod.* **2001**, *64*, 246. (b) Hansen, L.; Boll, P. M. *Phytochemistry* **1986**, *25*, 285.

(10) (a) Cadiot, P.; Chodkiewicz, W. *Chemistry of Acetylenes;* Marcel Dekker, New York, 1969. (b) Sindhu, K. S.; Thankachan, A. P.; Sajitha, P. S.; Anilkumar, G. *Org. Biomol. Chem.* **2015**, *13*, 6891. (c) Yu, M.; Pan, D.; Jia, W.; Chen, W.; Jiao, N. *Tetrahedron Lett.* **2010**, *51*, 1287.

(11) (a) Yin, W.; He, C.; Chen, M.; Zhang, H.; Lei, A. Org. Lett. 2009, 11, 709. (b) Suarez, J. R.; Collado-Sanz, D.; Cardenas, D. J.; Chiara, J. L. J. Org. Chem. 2015, 80, 1098. (c) Balaraman, K.; Kesavan, V. Synthesis 2010, 3461. (d) Lampkowski, J. S.; Durham, C. E.; Padilla, M. S.; Young, D. D. Org. Biomol. Chem. 2015, 13, 424.

(12) Peng, H. H.; Xi, Y. M.; Ronaghi, N.; Dong, B. L.; Akhmedov, N. G.; Shi, X. D. J. Am. Chem. Soc. **2014**, *136*, 13174.

(13) Liu, P.; Hensen, E. J. M. J. Am. Chem. Soc. 2013, 135, 14032.

(14) (a) Bai, R.; Zhang, G.; Yi, H.; Huang, Z.; Qi, X.; Liu, C.; Miller, J. T.; Kropf, A. J.; Bunel, E. E.; Lan, Y.; Lei, A. J. Am. Chem. Soc. 2014, 136, 16760. (b) Zhang, G.; Yi, H.; Zhang, G.; Deng, Y.; Bai, R.; Zhang, H.; Miller, J. T.; Kropf, A. J.; Bunel, E. E.; Lei, A. J. Am. Chem. Soc. 2014, 136, 924. (c) Fomina, L.; Vazquez, B.; Tkatchouk, E.; Fomine, S. Tetrahedron 2002, 58, 6741. (d) Vilhelmsen, M. H.; Jensen, J.; Tortzen, C. G.; Nielsen, M. B. Eur. J. Org. Chem. 2013, 701. (e) Bohlmann, F.; Schönowsky, H.; Inhoffen, E.; Grau, G. Chem. Ber. 1964, 97, 794.

(15) Evidence for cation- π interaction with alkynes: (a) Liu, P.; Hensen, E. J. M. *J. Am. Chem. Soc.* **2013**, *135*, 14032. (b) Nagy, E.; Germain, E. S.; Cosme, P.; Maity, P.; Terentis, A. C.; Lepore, S. D. *Chem. Commun.* **2016**, *52*, 2311.

(16) See SI for further comments on the mechanism.

59 60

1	Copper Catalysis for Selective Heteroco	Copper Catalysis for Selective Heterocoupling of Terminal Alkynes						
2 3	Lebin Su, Jianyu Dong, Long Liu, Mengli Sun, Renhua Qiu, Yongbo Zhou, and Shuang-Feng Yin							
4 5 6 7 8 9 10 11 12	$R^{1} \xrightarrow{+} H$ $R^{2} \xrightarrow{-} H$ $R^{2} \xrightarrow{-} H$ $R^{1} \xrightarrow{-} H$ $R^{2} \xrightarrow{-} H$	R^{1} R^{2} 47 examples up to 91% yield R^{1} , R^{2} = aryl, alkyl						
13 — 14 15								
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41								
41 42 43 44 45 46 47 48								
49 50 51 52 53 54 55 56 57 58 59 60								