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Abstract. In thiswork, a green and efficientmethodologyhas beendeveloped for the synthesis of 1,2,3-triazoles
by ‘copper nanoparticles supported on nanocellulose (CuNPs/NC)-catalyzed azide-alkyne cycloaddition
reaction in glycerol, an environmentally benign solvent, with excellent yields. The present catalyst was
characterized by TEM, XRD, SEM-EDX and FT-IR spectroscopy. The reusability of the prepared nanocatalyst
was examined up to five times without significant loss of catalytic activity.
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1. Introduction

1,2,3-Triazoles are an important and most useful class
of five-membered heterocycles which have plethora of
applications starting from industrial fields to pharma-
ceutical compounds.1–4 Many 1,2,3-triazole contain-
ing compounds have been found possessing important
biological activities such as anti-viral, anti-epileptic,
anti-allergic, anti-microbial as well as anti-cancer and
anti-HIV activities.5–8 The 1,2,3-triazoles are gener-
ally formed by the 1,3-dipolar cycloaddition of azides
and alkynes which were first introduced by Michael
in 1893. Later, it was thoroughly developed by the
German Chemist R. Huisgen9 and it is the most conve-
nient and straightforward approach for the synthesis of
1,2,3-triazoles. But this classical method produces both
the 1,4- and 1,5-regioisomers and the reaction requires
elevated temperature. Overcoming these problems, in
2002, Sharpless et al.,10 and Meldal et al.,11 indepen-
dently published their pioneering work on Cu-catalyzed
azide–alkyne cycloaddition (CuAAC) reactions, leading
to a mild and efficient regioselective synthesis of 1,4-
disubstituted 1,2,3-triazoles. Considering the important
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applications of 1,2,3-triazoles, many works have been
done on azide-alkyne cycoaddtion for the synthesis of
1,4-disubstituted 1,2,3- triazoles. Most of the CuAAC
reactions use homogeneous Cu (I) source – either by
direct addition of a Cu(I) salt in presence of stabi-
lizing ligands, or by in situ reduction of Cu(II) by
sodium ascorbate or other reducing agents.12 However,
the complexity of separating the catalyst as well as the
requirement for reducing agents and stabilizing ligands
cause tricky problems. Therefore, the search for new
competentmethods offering high yield,mild conditions,
recyclability and waste avoidance are highly desirable
from an environmental point of view. In this context,
heterogeneous catalysis has attracted much attention in
developing environmentally benign chemical processes.
Moreover, it brings significant advantages, particularly
in the removal of the catalyst from the reaction media,
which can be done by simple filtration.13 In an effort
to find heterogeneous copper catalysts, Cu(0) on char-
coal,14 Cu(0) nanoparticles,15 or nanoporous Cu(0),16

CuO–CeO2 nanocomposite,17 porous Cu18 as well as
microwave irradiated Cu turnings19 have also success-
fully established activity for CuAAC reaction.

http://crossmark.crossref.org/dialog/?doi=10.1007/s12039-017-1318-y&domain=pdf
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Cellulose is Earth’s most abundant and ubiquitous
natural biopolymer and serves as a bio-compatible sup-
port for the catalysts. Thus, it is an excellent starting
material for developing new, more sustainable materials
from renewable resources.20,21 Cellulose nanocrystal-
lites are particularly more important and appealing
derivative of cellulose as they possess unique properties
of high crystalline order, well defined size and mor-
phology, a controlled surface chemistry, and superior
mechanical strength.22 In recent years, nano-catalysis
has come out as a sustainable alternative to conven-
tional catalysis due to unique properties of the metal
nanoparticles like a high surface-to-volume ratio, which
enhances their activity and selectivity, while at the same
time maintaining the intrinsic features of a heteroge-
neous catalyst.23 Cellulose-supported cuprous iodide
nanoparticles (Cell-CuI NPs) have been used for one
pot synthesis of 1,4-disubstituted 1,2,3-triazoles.24 The
long and tedious procedures were normally required
for the heterogenization of copper and hence, there is
still demand to develop easy-to-prepare and versatile
heterogeneous copper catalysts that easily facilitate the
synthesis of triazoles. Owing to our dedication to study
‘click reaction’,25–31 herein we report a facile synthe-
sis of 1,2,3-triazoles by copper nanoparticles supported
on nanocellulose (CuNPs/NC) as a highly efficient and
recyclable heterogeneous catalyst in glycerol at room
temperature.

2. Experimental

2.1 Materials and methods

Reagents and solvents were purchased from Spectrochem,
Merck and Sigma Aldrich and used without further purifica-
tion. All reactions were carried out in oven-dried glassware.
All reactions were monitored by thin layer chromotogra-
phy on aluminium sheets pre-coated with silica gel 60F254
(Merck) and was visualized under 254 nm UV light. Melt-
ing points (M.p.) were obtained on a BÜCHI Melting Point
B-540. 1H NMR (400 MHz), 13C NMR (100 MHz) spectra
were measured on a Bruker Avance 400 MHz spectrome-
ter. Chemical shifts are reported in parts per million (ppm,
δ) downfield from residual solvent peaks and coupling con-
stants are reported as Hertz (Hz). Splitting patterns are
designated as singlet (s), doublet (d), triplet (t). Splitting pat-
terns that could not be interpreted is designated as multiplet
(m).

2.2 Catalyst preparation

The first step in the accomplishment of the goal for the
synthesis of CuNPs/NC was the synthesis of nanocellulose

Scheme 1. Preparation of the catalyst.

which is prepared by acid hydrolysis procedure reported
elsewhere. Briefly, the microcrystalline cellulose was acid
hydrolysed with sulphuric acid concentration of 63 wt% at
45◦C for 105 min to remove the amorphous regions and
were neutralized using a series of centrifugation cycles,
and thereafter sonicated to individualise the nanocrystals
(Scheme 1).32,33

To prepare Cu nanoparticles over nanocellulose, nanocel-
lulose suspension was dispersed with CuSO4 · 5H2O (0.5
g) in water (500 mL) at room temperature for 30 min.
Then, hydrazine hydrate (50%, 10 mL) was added drop wise
for 30 min and the reaction mixture was stirred at room
temperature for 2 h. The obtained solid was centrifuged
and washed with distilled water and acetone, to remove
un-reacted reagents. The product was dried at 100◦C for
10 h and stored in desiccators. The resultant product was
characterized by FT-IR, XRD, SEM-EDX, and TEM anal-
ysis.

2.3 Catalyst characterisation

The copper nanoparticles supported on nanocellulose
(CuNPs/NC) catalyst was fully characterised in order to deter-
mine their nature and morphology. The weight percentage of
copper was found to be 3.31 wt% by inductively coupled
plasma-atomic emission spectroscopy (ICP-AES) analysis.
Transmission electron microscopy (TEM) revealed the pres-
ence of well-dispersed nanoparticles with an average size of
6–7 nm (Figure 1). The EDX pattern determined the elemen-
tal compositions of different elements in the Cell-Cu sample
(Figure 2). The characteristic peaks of C, O and Cu con-
firmed that the Cell-Cu sample is composed of C, O and Cu
elements. The infrared spectrum of catalyst in the range of
500–4000cm−1 is presented in Figure 3(a). The significant
feature in the FT-IR spectrum is the appearance of peak at
806.61 cm−1 for Cu–O stretching vibration. Bands of 1050–
1650cm−1 due to C–OH groups and that of 2700–3500cm−1

due to O–H and C–H groups were observed concerning to
nanocellulose. The XRD pattern shows characteristic peaks
of copper(I) nanoparticles, presenting all the phases of Cu2O
(JCPDS card no -78-2076) as shown in Figure 3(b).
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Figure 1. (a) SEM image of the CuNPs/NC, the surface
morphology of nanocellulose support is observed to be very
smooth. (b), (c) and (d) show the HRTEM images of the pre-
pared catalyst. The HRTEM images evidence the presence
of well dispersed nanoparticles in the support. The average
particle size is found to be 6–7 nm.

2.4 General procedure for the synthesis of
1,4-disubstituted-1H-1,2,3-triazole

To a mixture of azide 1 (1 mmol, 1 equiv.) and acetylene 2
(1.1 mmol, 1.1 equiv.) in glycerol (2 mL) was added the cat-
alyst (20 mg, 3.31 wt%, 1.05 mol%). The mixture was stirred
at room temperature for an appropriate time. The progress
of the reaction was monitored by TLC. After completion of
the reaction it was extracted with EtOAc (2x20 mL), washed
with brine, dried over anhydrous sodium sulfate. The sol-
vent was removed under reduced pressure to give the crude
product and purified through silica gel column chromatog-
raphy (10–20% EtOAc/hexanes) to get the desired product.
The products were characterized by 1H and 13C NMR spec-
troscopy.

3. Results and Discussion

The experiments began with the aim of optimizing
the reaction conditions for CuAAC reaction of benzyl

Figure 2. EDX pattern of the catalyst.
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Figure 3. (a) FTIR spectrum and (b) XRD pattern of the
catalyst.

azide and phenylacetylene. At the first step, the reac-
tion between benzyl azide and phenyl acetylene was
allowed to run without solvent, adding 20 mg of the
catalyst. But no noticeable progress of the reaction was
observed. Then the model reaction was performed with
different solvents and among them glycerol was found
superior than others (Table 1).
Having identified glycerol as the best solvent for the

reaction, we then investigated catalyst loading for the
reaction. However, upon lowering the catalyst concen-
tration to 5 mg the reaction still proceeded but afforded
only 55% yield (Table 1, entry 11). Therefore a catalyst
loading of 20 mg appeared to be optimal with respect to
yield and reaction time (Table 1, entry 7).
Taking the optimized reaction conditions in hand, the

scope of the cycloaddition reaction using CuNPs/NC
was investigatedwith various alkynes and azides at room
temperature. The results are summarized in Table 2.
Both aromatic and aliphatic terminal alkynes readily
reactedwith the diverse azides to give the corresponding
1,2,3-triazoles in good to excellent yields in most of the
tested reactions.
We then examined the possibility of recycling the cat-

alyst. The recyclability of CuNPs/NC was tested in the
cycloaddition of phenylacetylene and benzyl azide (Fig-
ure 4). After each cycle the catalyst was recovered by
simple filtration and reused after washing with ethyl
acetate and drying in the air. The activity of the cat-
alyst was found to decrease to a minor extent in the
reuse; about 90% of the original activity was obtained
even after the fifth run. Moreover, there was no sig-

Table 1. Solvent optimization studya.

Entry Solvent Catalyst loading (mg) Yield (%)b

1 – 20 Trace
2 H2O/t – BuOH (1:1) 20 60
3 H2O 20 89
4 THF 20 48
5 THF/H2O 20 60
6 Acetonitrile 20 65
7 Glycerol 20 99
8 DMF 20 10
9 DMSO 20 45
10 Glycerol 10 65
11 Glycerol 5 55

aReagents and reaction conditions: benzyl azide (1 mmol),
phenyl acetylene (1.1 mmol), catalyst (20 mg, 1.05 mol%) in
the given solvent (2 mL) was stirred at room temperature for 4 h
in open air. bIsolated yields.
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Table 2. Scope of cycloaddition reaction of different azides and alkynesa.

N N
N

3a- 1.5h, 99%
TON=93.93
TOF=62.62 h-1

N N
N

3b- 1.5h, 98%
TON=92.98
TOF=61.99 h-1

3c- 4h, 70%
TON=66.41
TOF=16.60

3d- 4h, 69%
TON=65.46
TOF=16.37 h-1

N N
N

3i-3.5h, 83%
TON=78.75
TOF=22.50 h-1

N N
N

N N
N

N N
N

7

N N
N

OH

N N
N

OH N N
N

OH

N N
N

3e- 2h, 98%
TON=92.98
TOF=46.49 h-1

3f- 4h, 68%
TON=64.52
TOF=16.13 h-1

3g- 2h, 97%
TON=92.03
TOF=46.02 h-1

3h- 4.5h, 82%
TON=77.80
TOF=17.29 h-1

3j- 1.5h, 99%
TON=93.93
TOF=62.62 h-1

3k- 2.5h, 71%
TON=67.36
TOF=26.94 h-1

3l -3.5h, 72%
TON=68.31
TOF=19.52 h-1

3m -3h, 93%
TON=88.24
TOF=29.41 h-1

3n- 3.5h, 89%
TON=84.44
TOF=24.13 h-1

COOMeMeOOC

Bn

N N
N

Br

N N
N

Cl

N N
N

MeO

N N
N

NC

Br
Bn

Bn
Br

aReagents and reaction conditions: azide (1 mmol), alkyne (1.1 mmol) and catalyst (20
mg, 3.31 wt%, 0.0105 mmol, 1.05 mol%) in 2 mL glycerol at room temperature. Yields
were isolated yields.

Figure 4. Recyclability of the catalyst.

nificant leaching of copper species from our catalyst
during the recycling test which was confirmed by ICP
analysis.

4. Conclusions

In conclusion, we have reported here a highly efficient
and versatile method for the cycloaddition of various
azides and alkynes using an easily prepared heteroge-
neous catalyst. Use of benign solvent, high yield, short
reaction time, and room temperature reaction system
make this protocol more advantageous in the synthe-
sis of 1,4-disubstituted 1,2,3-triazoles. This work can
be considered as a very good step towards the emerg-
ing trend of heterogeneous and environmental friendly
synthesis of organic compounds.

Supplementary Information (SI)

General Information, Experimental and Analytical data, 1H
and 13C NMR spectra and characterisation data of all the
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synthesised compounds are available as Supplementary Infor-
mation at www.ias.ac.in/chemsci.
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