Late transition-metal complexes with the heterofunctional phosphine Ph₂PNHP(O)Ph₂

Alexandra M. Z. Slawin, Martin B. Smith and J. Derek Woollins *

Department of Chemistry, Loughborough University, Loughborough, Leicestershire LE11 3TU, UK

The complexes [MCl(cod)(HL)] (M = Rh or Ir), $[PdCl(\eta^3 - C_3H_5)(HL)]$, [PdCl(L-L)(HL)], trans- $[RhCl(CO)(HL)_2]$ and [AuCl(HL)] have been synthesised by reaction of either $[\{M(\mu-Cl)(cod)\}_2]$ $(M = RhCl(CO)(HL)_2]$ or Ir; cod = cycloocta-1,5-diene), $[\{Pd(\mu-Cl)(\eta^3-C_3H_5)\}_2]$, $[\{Pd(\mu-Cl)(L-L)\}_2]$ (L-L = $C_{12}H_{12}N$, $C_{10}H_8N$ or $C_9H_{12}N$), $\{\{Rh(\mu-Cl)(CO)_2\}_7\}$ or $\{AuCl(tht)\}$ (tht = tetrahydrothiophene) with $Ph_2PNHP(O)Ph_2$ (HL). In all these complexes the ligand is monodentate P-bound. Chloride abstraction from $[PdCl(C_1, H_1, N)(HL)]$ or $[PdCl(\eta^3-C_3H_5)(HL)]$, using Ag[BF₄], gave the cationic compounds $[Pd(C_{12}H_{12}N)(HL)][BF_4]$ or $[Pd(\eta^3-C_3H_5)(HL)]$ $(C_1H_2)(HL)$ | (HL) | (Hof HL (monodentate P-bound) with KOBut afforded a new class of neutral metallacycles incorporating either an MP₂NO or M₂P₄N₂O₂ framework based on the $[Ph_2PNP(O)Ph_2]^-$ (L⁻) ligand. Reaction of $[\{Pd(\mu-Cl)\}^-$ (C₉H₁₂N)₂] with 4 equivalents of HL in methanol at ambient temperature yielded the neutral palladium(II) complex [PdCl{Ph₂PNP(O)Ph₂-P,O}(Ph₂POMe)] in which one HL ligand has undergone P-N bond scission. The reaction of the iridacycle $[Ir(cod)\{Ph_2PNP(O)Ph_2-P,O\}]$ with MeI was shown to proceed with cis addition affording the iridium(III) metallacycle [IrI(Me)(cod){Ph₂PNP(O)Ph₂-P,O}]. All compounds described have been characterised by a combination of ³¹P-{¹H} NMR spectroscopy, microanalysis and in some cases by ¹H NMR and IR spectroscopy. The molecular structures of four complexes have been determined by single-crystal X-ray diffraction. The metallacycles show π -electron delocalisation in the P-N-P-O fragment.

The co-ordination chemistry of Ph₂PNHPPh₂ (dppa)¹ and [R₂(E)PNP(E)R₂]⁻ (E = O, S or Se; R = Me, Ph or OPh)²⁻¹⁵ has received widespread attention over the last few years, but in contrast only limited studies with Ph₂(E)PNHP(E)Ph₂¹⁶⁻¹⁸ and the monochalcogenides Ph₂PNHP(E)Ph₂ (E = S or Se)¹⁹ have been documented. Cavell and co-workers²⁰ have studied the metal chemistry of the related Ph₂PNPhP(E)Ph₂ (E = S or Se), whilst others^{21,22} have described catalytic applications based on the methylene-bridged counterpart Ph₂PCH₂P-(S)Ph₂. Several studies²³⁻³³ have also focused on the monooxide Ph₂PCH₂P(O)Ph₂ incorporating both a 'soft' and 'hard' donor atom. In these systems, co-ordination to a metal centre is *via* a combination of either one or both of the donor atoms

We recently reported the synthesis of Ph₂PNHP(O)Ph₂ (HL), incorporating an amine backbone, and have demonstrated using complexes of PdII and PtII that a variety of bonding modes exist for this partially oxidised compound.34 In complexes HL can co-ordinate through the phosphorus(III) centre only or chelate using both phosphorus and oxygen centres. We also observed that the acidic amine proton is removed readily affording either P,O-chelate complexes based on an MP2NO metallacycle or a P,O-bridging complex based on an M₂P₄N₂O₂ metallacycle.³⁵ In contrast heterofunctionalised P,O-chelating phosphines incorporating a carbon backbone have been extensively studied by Braunstein and coworkers 36-47 and others. 48-54 To our knowledge, Rossi et al. 55 reported the first examples of related inorganic (carbon-free) rhenium metallacycles containing either Ph₂PNHP(O)Ph₂ or deprotonated [Ph₂PNP(O)Ph₂]⁻. These compounds were made from [AsPh₄][ReOCl₄] and the non-oxidised dppa under different experimental procedures. Recent work by Ellermann and co-workers 56 demonstrated the synthesis of the monodentate P-bound anion [Ph₂PNP(O)Ph₂]⁻, from dppa,

In the present study we describe the reactivity of HL towards Pd^{II}, Rh^I, Ir^I and Au^I and include new examples of metallacycles derived from deprotonated HL. We also show

the unexpected formation of a co-ordinated phosphinite derived from methanolysis of the P-N bond in HL.

Experimental

General

Unless otherwise stated, manipulations were performed under an oxygen-free nitrogen atmosphere using predried solvents and standard Schlenk techniques. The compound $Ph_2PNH-P(O)Ph_2$ was prepared as previously reported.³⁴ The complexes $[\{Pd(\mu-Cl)(L-L)\}_2]$ [HL-L=N,N-dimethylbenzylamine (C₉H₁₃N),⁵⁷ 8-methylquinoline (C₁₀H₉N),⁵⁸ or <math>N,N-dimethyl-1-naphthylamine (C₁₂H₁₃N),⁵⁷ and [AuCl(tht)],⁵⁹ (tht = tetrahydrothiophene) were prepared according to literature methods. The compounds $[\{M(\mu-Cl)(cod)\}_2]$ (M=Rh or Ir; cod = cycloocta-1,5-diene), $[\{Rh(\mu-Cl)(CO)\}_2\}_2]$, $[\{Pd(\mu-Cl)(\eta-C_3H_5)\}_2]$ and $Ag[BF_4]$ were obtained commercially (Aldrich or Fluorochem); KOBu^t (Aldrich, 95% purity) and MeI (Fisons) were used without further purification.

Infrared spectra were recorded as KBr pellets in the range 4000–220 cm⁻¹ on a Perkin-Elmer System 2000 Fourier-transform spectrometer, ¹H NMR spectra (250 MHz) on a Bruker AC250 FT spectrometer with δ referenced to external SiMe₄ and ³¹P-{¹H} NMR spectra (36.2 or 101.3 MHz) either on a JEOL FX90Q or Bruker AC250 FT spectrometer with δ referenced to external H₃PO₄. Microanalyses were performed by the Loughborough University Service within this Department.

Sodium tetrachloropalladate and tetrachloroauric acid were provided on loan by Johnson Matthey plc.

Preparation of the complexes

[RhCl(cod){Ph₂PNHP(O)Ph₂-P}] 1. An orange solution of Ph₂PNHP(O)Ph₂(0.295 g, 0.735 mmol) and [Rh₂(μ -Cl)₂(cod)₂] (0.173 g, 0.351 mmol) in CH₂Cl₂ (40 cm³) was stirred for 40 min. The solvent was removed *in vacuo* to *ca.* 1–2 cm³ and addition of diethyl ether (30 cm³) afforded an orange solid

which was collected by suction filtration and air dried. Yield 0.386 g, 85% [Found (Calc. for $C_{32}H_{33}ClNOP_2Rh$): C, 59.05 (59.30); H, 4.90 (5.15); N, 2.25 (2.15)%]. Selected IR data (KBr): 3193 [v(N-H)] and 1223 cm⁻¹ [v(P=O)]. Slow diffusion of diethyl ether into a CH_2Cl_2 solution of complex 1 over the course of ca. 3 d gave crystals suitable for X-ray crystallography.

[IrCl(cod){Ph₂PNHP(O)Ph₂-P}] 2. An orange solution of Ph₂PNHP(O)Ph₂ (0.200 g, 0.498 mmol) and [Ir₂(μ -Cl)₂(cod)₂] (0.167 g, 0.249 mmol) in CH₂Cl₂ (20 cm³) was stirred for 45 min. The solvent was removed *in vacuo* to *ca.* 1–2 cm³ and addition of diethyl ether (45 cm³) afforded an orange solid which was collected by suction filtration. Yield 0.279 g, 76% [Found (Calc. for C₃₂H₃₃CIIrNOP₂): C, 51.85 (52.15); H, 4.40 (4.50); N, 2.05 (1.90)%]. Selected IR data (KBr): 3227 [ν (N-H)] and 1223 cm⁻¹ [ν (P=O].

[PdCl(η³-C₃H₅){Ph₂PNHP(O)Ph₂-P}] 3. A pale yellow solution of Ph₂PNHP(O)Ph₂ (0.362 g, 0.902 mmol) and [{Pd(μ-Cl)(η³-C₃H₅)}₂] (0.161 g, 0.440 mmol) in CH₂Cl₂ (35 cm³) was stirred for 1 h. The solvent was removed *in vacuo* to *ca.* 1–2 cm³ and addition of diethyl ether (30 cm³) afforded an off-white solid which was collected by suction filtration, washed with diethyl ether (5 cm³) and air dried. Yield 0.481 g, 94% [Found (Calc. for C₂γH₂σClNOP₂Pd): C, 55.40 (55.50); H, 4.15 (4.50); N, 2.55 (2.40)%]. Selected IR data (KBr): 3134 [ν(N–H)] and 1216 cm⁻¹ [ν(P=O)].

[PdCl($C_{12}H_{12}N$){Ph₂PNHP(O)Ph₂-P}] 4. The compound Ph₂PNHP(O)Ph₂ (0.113 g, 0.282 mmol) and [{Pd(μ-Cl) ($C_{12}H_{12}N$)}₂] (0.086 g, 0.138 mmol) were allowed to react in CH₂Cl₂ (10 cm³). After the yellow solution was stirred for 50 min, it was concentrated *in vacuo* to *ca*. 1–2 cm³ and addition of hexane (30 cm³) afforded a pale yellow solid. Yield 0.170 g, 86% [Found (Calc. for $C_{36}H_{33}$ ClN₂OP₂Pd): C, 60.60 (60.60); H, 4.35 (4.65); N, 3.95 (3.95)%]. Selected IR data (KBr): 3141 [v(N-H)] and 1225 cm⁻¹ [v(P=O)].

[PdCl($C_{10}H_8$ N){Ph₂PNHP(O)Ph₂-P}] 5. The compound Ph₂PNHP(O)Ph₂ (0.036 g, 0.090 mmol) and [{Pd(μ-Cl) (C₁₀H₈N)}₂] (0.024 g, 0.042 mmol) were allowed to react in CDCl₃ (0.7 cm³). After the deep yellow solution was stirred for 5 min, it was filtered to remove a small amount of black solid, and addition of hexane (10 cm³) afforded an off-white solid. Yield 0.035 g, 60% [Found (Calc. for C₃₄H₂₉ClN₂OP₂Pd): C, 59.20 (59.55); H, 4.05 (4.25); N, 3.95 (4.10)%].

In situ observation of $[PdCl(C_9H_{12}N)\{Ph_2PNHP(O)Ph_2-P\}]$ 6. To the solids $[\{Pd(\mu-Cl)(C_9H_{12}N)\}_2]$ (0.011 g, 0.020 mmol) and $Ph_2PNHP(O)Ph_2$ (0.017 g, 0.042 mmol) was added CDCl₃ (0.5 cm³) and the reaction monitored immediately by $^{31}P-\{^1H\}$ NMR spectroscopy. The initial spectrum was in excellent agreement with the formation of $[PdCl(C_9H_{12}N)\{Ph_2PNHP-(O)Ph_2-P\}]$ 6, however, after ca. 20 min its conversion into two new species was observed. $^{31}P-\{^1H\}$ NMR data for the major species observed: $\delta(P_A)$ 66.3, $\delta(P_X)$ 58.8, $^2J(P_AP_X)$ 8.8 Hz. A minor product observed was identified as cis- $[Pd\{Ph_2PNP(O)Ph_2-P,O\}_2]$, $^{31}P-\{^1H\}$ NMR data in good agreement with those in ref. 34.

trans-[RhCl(CO){Ph₂PNHP(O)Ph₂-P}₂] 7. To the solids [{Rh(μ-Cl)(CO)₂}₂] (0.029 g, 0.075 mmol) and Ph₂PNH-P(O)Ph₂ (0.124 g, 0.309 mmol) was added CH₂Cl₂ (4 cm³) accompanied by the evolution of CO gas. After stirring the solution for *ca*. 20 min the volume was concentrated by reduction of the solvent *in vacuo* and diethyl ether (20 cm³) added. The pale yellow solid was collected by suction filtration. The product can be recrystallised from CH₂Cl₂-diethyl ether. Yield 0.130 g, 90% [Found (Calc. for C₄₉H₄₂ClN₂O₃P₄Rh);

C, 62.45 (60.70); H, 4.45 (4.40); N, 3.55 (2.90)% V Selected B_{nline} data (KBr): 3244, 3216 [ν (N–H)], 1977 [ν (C=O)], 1221 cm⁻¹ [ν (P=O)].

Reaction of [{Rh(μ -Cl)(CO)₂}₂] with 2 equivalents of HL. To the solids [{Rh(μ -Cl)(CO)₂}₂] (0.036 g, 0.093 mmol) and Ph₂PNHP(O)Ph₂ (0.076 g, 0.189 mmol) was added CH₂Cl₂ (4 cm³) and the resulting yellow solution left to stand. Within *ca*. 10 min a yellow solid deposited and this mixture was stored at *ca*. -20 °C for 2 h. The solid product 8 was collected by suction filtration. Yield 0.085 g, 81% [Found (Calc. for C₂₅H₂₁ClN-O₂P₂Rh): C, 52.55 (52.90); H, 3.35 (3.75); N, 3.15 (2.45)%]. Selected IR data (KBr): 3055 [ν (N-H)], 1981 [ν (C=O)], 1135 cm⁻¹ [ν (P=O, tentative assignment)].

[AuCl{Ph₂PNHP(O)Ph₂-P}] 9. To a solution of [AuCl(tht)] (0.259 g, 0.808 mmol) in CH₂Cl₂ (10 cm³) was added, as a solid in one portion, Ph₂PNHP(O)Ph₂ (0.340 g, 0847 mmol). After dissolution a white solid formed and the resulting mixture was stirred for *ca.* 20 min. The product was collected by suction filtration and washed with diethyl ether (5 cm³). Yield 0.453 g, 88% [Found (Calc. for C₂₄H₂₁AuClNOP₂): C, 45.35 (45.50); H, 3.05 (3.35); N, 2.35 (2.20)%]. Selected IR data (KBr): 3009 [ν (N-H)], 1184 cm⁻¹ [ν (P=O)].

[Pd(C₁₂H₁₂N){Ph₂PNHP(O)Ph₂-P,O}][BF₄] 10. To a CH₂Cl₂ solution (20 cm³) of [PdCl(C₁₂H₁₂N){Ph₂PNHP-(O)Ph₂-P}] (0.086 g, 0.121 mmol) was added solid Ag[BF₄] (0.023 g, 0.118 mmol). After stirring for 4.5 h, the AgCl was removed by filtration through a small Celite pad, the volume concentrated by evaporation under reduced pressure to ca. 2–3 cm³ and diethyl ether (50 cm³) added. The solid product was collected by suction filtration and dried *in vacuo*. Yield 0.064 g, 70% [Found (Calc. for C₃₆H₃₃BF₄N₂OP₂Pd): C, 56.15 (56.55); H, 4.25 (4.35); N, 3.75 (3.65)%]. Selected IR data: 3175 cm⁻¹ [v(N-H)].

[Pd(η^3 -C₃H₅){Ph₂PNHP(O)Ph₂-P,O}][BF₄] 11. To [PdCl-(η^3 -C₃H₅){Ph₂PNHP(O)Ph₂-P}] (0.100 g, 0.171 mmol) in CH₂Cl₂ (20 cm³) was added solid Ag[BF₄] (0.045 g, 0.231 mmol). After stirring for 20 min, the AgCl was filtered off through a small Celite plug, the volume of the filtrate reduced to *ca*. 2 cm³ by evaporation under reduced pressure, and diethyl ether (10 cm³) added. The white solid was collected and dried. Yield 0.100 g, 87% [Found (Calc. for C₂₇H₂₆BF₄NO₂P₂Pd): C, 50.80 (51.00); H, 3.80 (4.15); N, 2.25 (2.20)%]. Selected IR data (KBr): 3180 cm⁻¹ [v(N-H)].

[Rh(cod){Ph₂PNP(O)Ph₂-P,O}] 12. A suspension of [RhCl(cod){Ph₂PNHP(O)Ph₂-P}] (0.165 g, 0.255 mmol) in MeOH (7 cm³) was treated with KOBu¹ (0.030 g, 0.267 mmol). The suspension dissolved rapidly and the resultant yellow solution was stirred for ca. 5 min. Slow evaporation of the solvent *in vacuo* afforded some yellow solid 12 with further precipitation induced by the addition of distilled water (2 cm³). The product was filtered off, washed with a small portion of MeOH (1 cm³) and diethyl ether (1 cm³). Yield 0.114 g, 73% [Found (Calc. for $C_{32}H_{32}NOP_2Rh$): C, 62.35 (62.85); H, 4.95 (5.30); N, 2.40 (2.30)%].

[Ir(cod){Ph₂PNP(O)Ph₂-P,O}] 13. A suspension of [IrCl-(cod){Ph₂PNHP(O)Ph₂-P}] (0.153 g, 0.208 mmol) in MeOH (7 cm³) was treated with KOBu¹ (0.028 g, 0.250 mmol). The suspension rapidly dissolved and an orange solid 13 separated within a few minutes. After stirring the suspension for 10 min the product was collected by suction filtration, washed with a small portion of distilled water (1 cm³) and MeOH (1 cm³). Yield 0.119 g, 82% [Found (Calc. for $C_{32}H_{32}IrNOP_2$): C, 54.70 (54.85); H, 4.60 (4.60); N, 2.20 (2.00)%].

[{Pd(η^3 -C₃H₅)[Ph₂PNP(O)Ph₂-P,O]}₂] 14. Under aerobic conditions, a suspension of [PdCl(η^3 -C₃H₅){Ph₂PNHP-(O)Ph₂-P}] (0.114 g, 0.195 mmol) in MeOH (1 cm³) was treated with KOBu¹ (0.025 g, 0.223 mmol). The suspension dissolved and the solid product 14 separated within a few minutes. After stirring the suspension for *ca.* 5 min the product was collected by suction filtration, washed with a small portion of distilled water (1 cm³) and MeOH (1 cm³). Yield: 0.076 g, 71%. An additional crop (0.016 g) of 14 was obtained upon leaving the filtrate to stand [Found (Calc. for C₅₄H₅₀N₂O₂P₄Pd₂): C, 57.70 (59.20); H, 4.35 (4.60); N, 2.65 (2.55)%].

[Pd($C_{12}H_{12}N$){Ph₂PNP(O)Ph₂-P,O}] 15. Under aerobic conditions, to a suspension of [PdCl($C_{12}H_{12}N$){Ph₂PNHP-(O)Ph₂-P}] (0.109 g, 0.153 mmol) in MeOH (1 cm³) was added KOBu¹ (0.020 g, 0.178 mmol). The mixture was stirred for *ca.* 5 min and the solid product collected by suction filtration, washed with a small portion of distilled water (1 cm³) and MeOH (1 cm³). Yield: 0.086 g, 83% [Found (Calc. for $C_{36}H_{32}N_2OP_2Pd$): C, 63.45 (63.85); H, 4.45 (4.75); N, 4.55 (4.15)%].

[Pd($C_{10}H_8N$){Ph₂PNP(O)Ph₂-P,O}] 16. Under aerobic conditions, to a suspension of [PdCl($C_{10}H_8N$){Ph₂PNHP(O)-Ph₂-P}] (0.049 g, 0.071 mmol) in MeOH (0.5 cm³) was added KOBu^t (0.009 g, 0.080 mmol) yielding a deep yellow solution. After stirring for *ca.* 5 min, a white solid deposited from solution and was collected by suction filtration and washed with a small portion of distilled water (1 cm³). Yield: 0.023 g, 50%. A second crop was obtained from the filtrate (0.010 g) [Found (Calc. for $C_{34}H_{28}N_2OP_2Pd$): C, 62.10 (62.90); H, 4.15 (4.35); N, 4.40 (4.30)%].

[Pd(C₉H₁₂N){Ph₂PNP(O)Ph₂-P,O}] 17. The compound Ph₂PNHP(O)Ph₂ (0.123 g, 0.306 mmol) and [{Pd(μ-Cl)-(C₉H₁₂N)}₂] (0.082 g, 0.149 mmol) were allowed to react in MeOH (1.5 cm³) under aerobic conditions. To the pale yellow solution was immediately added KOBu¹ (0.036 g, 0.321 mmol) and the product separated from solution as an off-white solid. After the mixture was stirred for 5 min, the solid was filtered off, washed with distilled water (2 cm³) and MeOH (2 cm³). Yield 0.182 g, 96% [Found (Calc. for C₃₃H₃₂N₂OP₂Pd·CH₃OH): C, 60.35 (60.65); H, 5.25 (5.40); N, 4.20 (4.15)%]. Slow diffusion of MeOH into a CH₂Cl₂ solution of complex 17 over the course of ca. 1 d gave crystals suitable for X-ray crystallography.

[PdCl{Ph₂PNP(O)Ph₂-P,O}(Ph₂POMe)] 18. The compound Ph₂PNHP(O)Ph₂ (0.193 g, 0.481 mmol) and [{Pd(μ-Cl) (C₉H₁₂N)}₂] (0.067 g, 0.121 mmol) were allowed to react in MeOH (4 cm³) under aerobic conditions. The pale yellow solution was stirred for *ca*. 5 min, filtered and left to stand for *ca*. 12 d. The deposited solids were collected by suction filtration, suspended in toluene (10 cm³) and stirred for 1 h. After filtration, the product was washed with diethyl ether (5 cm³) and dried *in vacuo*. Yield 0.104 g, 57% [Found (Calc. for C₃₇H₃₃ClNO₂P₃Pd·0.5CH₂Cl₂): C, 54.85 (56.25); H, 4.15 (4.30); N, 1.75 (1.75)%]. Slow diffusion of diethyl ether into a CH₂Cl₂ solution of complex 18 over the course of *ca*. 1 d gave crystals suitable for X-ray crystallography.

Alternatively, compound 18 was prepared by refluxing a methanolic solution of [$\{Pd(\mu-Cl)(C_9H_{12}N)\}_2$] and $Ph_2PNH-P(O)Ph_2$ for 2 h. The solid was collected by suction filtration, washed with small portions of MeOH (3 × 1 cm³) and dried in air. Yield: 46%.

[PdI{Ph₂PNP(O)Ph₂-P,O}(Ph₂POMe)] 19. The compound [PdCl{Ph₂PNP(O)Ph₂-P,O}(Ph₂POMe)] (0.055 g, 0.069 mmol) in acetone (10 cm³) was treated with NaI (0.110 g, 0.734 mmol). The orange solution was stirred for 1 h and the solvent

reduced to dryness *in vacuo*. Addition of distilled water (lognoshline yielded a solid which was collected by suction filtration. Crude yield: 0.055 g. The solid was recrystallised from CH₂Cl₂ (1 cm³)—diethyl ether (12 cm³) [Found (Calc. for C₃₇H₃₄I-NO₂P₃Pd): C, 51.70 (52.20); H, 3.70 (4.05); N, 1.65 (1.65)%].

cis-[PdCl₂(Ph₂PNHP(O)Ph₂-P}(Ph₂POMe)] **20.** A CDCl₃ (0.5 cm³) solution of [PdCl{Ph₂PNP(O)Ph₂-P,O}(Ph₂POMe)] (0.030 g, 0.038 mmol) was treated with concentrated HCl (11 mol dm⁻³, ca. 1 drop). The immediate formation of complex **20** was confirmed by 31 P-{ 1 H} NMR spectroscopy. The solution was evaporated to dryness and the residue recrystallised from CH₂Cl₂ (0.5 cm³)-diethyl ether (10 cm³). Yield 0.026 g, 87% [Found (Calc. for C₃₇H₃₄Cl₂NO₂P₃Pd): C, 55.95 (55.90); H, 4.25 (4.30); N, 1.90 (1.75)%]. Selected IR data (KBr): 1222 cm⁻¹ [1 V(P=O)].

Reaction of iodomethane with [Ir(cod){Ph₂PNP(O)Ph₂-P,O}] 13. A deep orange CDCl₃ (ca. 0.5 cm³) solution of [Ir(cod){Ph₂PNP(O)Ph₂-P,O}] (0.025 g, 0.036 mmol) was treated with iodomethane (16-fold molar excess) and the reaction monitored by ³¹P-{¹H} NMR spectroscopy. Two new species [IrI(Me)(cod){Ph₂PNP(O)Ph₂-P,O}] 21a and 21b were observed. After monitoring the reaction for ca. 30 min only 21a remained and was isolated upon addition of hexane (15 cm³). Yield 0.020 g, 67% [Found (Calc. for C₃₃H₃₅IIrNOP₂): C, 46.45 (47.05); H, 3.90 (4.20); N, 1.80 (1.65)%]. A CDCl₃-hexane solution of 21a was left over the course of ca. 6 d to give crystals suitable for X-ray crystallography.

Spectroscopic data for all the new complexes are compiled in Table 1.

X-Ray crystallography

The crystal structures of complexes 1, 17, 18 and 21a were determined using a Rigaku AFC7S diffractometer with graphite-monochromated (Cu-K α) radiation and ω -scans. Details of the data collections and refinements are given in Table 2. Empirical absorption corrections (DIFABS)⁶⁰ were applied. The structures were solved by the heavy-atom method ⁶¹ and all of the non-hydrogen atoms refined anisotropically. The C-H atoms were idealised and fixed (C-H 0.95 Å). No additional constraints or restraints were applied. Refinement was by full-matrix least-squares methods based on *F*. Calculations were performed using TEXSAN. ⁶²

Complete atomic coordinates, thermal parameters and bond lengths and angles have been deposited at the Cambridge Crystallographic Data Centre. See Instructions for Authors, *J. Chem. Soc.*, *Dalton Trans.*, 1996, Issue 1.

Results and Discussion

P-Monodentate and *P*,*O*-chelate complexes of Ph,PNHP(O)Ph,

The compound HL may co-ordinate as a unidentate ligand through P or by chelation (through P,O). We have studied its ligating behaviour towards a range of late transition metals. Thus when $[\{M(\mu\text{-Cl})(cod)\}_2]$ (M = Rh or Ir) was treated with HL in CH₂Cl₂ at ambient temperature the yellow (or orange) mononuclear complexes [MCl(cod) $\{Ph_2PNHP(O)Ph_2P\}\}$ (M = Rh 1 or Ir 2) were isolated in 85 and 76% yield respectively (Scheme 1). Both complexes are air- and moisture-stable in the solid state and moderately stable in solution.

The ³¹P-{¹H} NMR data for both complexes (Table 1) and the ³¹P NMR spectrum of 1 (AMX spin system) are shown in Fig. 1. The high-frequency resonance shows a ¹J(RhP) coupling constant of 159.0 Hz (103 Rh, $I = \frac{1}{2}$, 100% abundance), $^{2}J(P_{\rm A}P_{\rm X})$ of 39.5 Hz; the upfield signals are at a similar chemical shift to that observed for free HL but show, in addition, a small $^{3}J({\rm RhP})$ coupling of 4.6 Hz. In the IR spectra vibrations at 3193

Scheme 1 (i) [$\{M(\mu-Cl)(cod)\}_2$] (M = Rh or Ir), 2 HL; (ii) [$\{Pd(\mu-Cl)(\eta^3-C_3H_5)\}_2$], 2 HL; (iii) [$\{Pd(\mu-Cl)(L-L)\}_2$], 2 HL; (iv) [$\{Rh(\mu-Cl)(CO)_2\}_2$], 4 HL; (v) [AuCl(tht)], HL

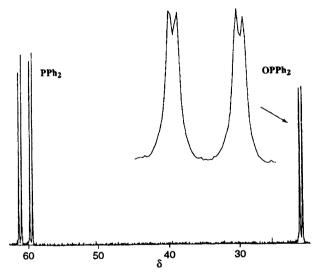


Fig. 1 The $^{31}P-\{^{1}H\}$ NMR spectrum (101.3 MHz) of [RhCl-(cod) $\{Ph_2PNHP(O)Ph_2-P\}$] 1

[v(N-H)], 1223 [v(P=O)] (for 1) and 3227 [v(N-H)], 1223 cm⁻¹ [v(P=O)] (for 2) are observed whereas for HL these are found at 3049 [v(N-H)] and 1183 cm⁻¹ [v(P=O)].³⁴ The lower v(P=O) for HL is a consequence of the different hydrogen-bonding arrangements observed in it ³⁴ and in 1 (X-ray evidence, see below).

We have also studied further bridge-cleavage reactions using HL. Hence treatment of $[\{Pd(\mu-Cl)(\eta^3-C_3H_5)\}_2]$ with 2 equivalents of HL affords complex 3 (Scheme 1) which we have previously reported.³⁵ In a similar fashion the reactivity of the cyclometallated dimers $[\{Pd(\mu-Cl)(L-L)\}_2]$ (L-L = $C_{12}H_{12}N$, $C_{10}H_8N$ or $C_9H_{12}N$) with HL yields [PdCl(L-L)-

(HL)] 4-6 (Scheme 1). With the exception of compound 6, which was characterised in solution only (it decomposes to give one major uncharacterised species, the identity of which is currently under investigation), 3-5 were isolated as air-stable solids. Although we have not been able to isolate 6 the ³¹P NMR spectral data are consistent with the structure shown. The ³¹P-{¹H} NMR spectra (Table 1) of 4-6 in CDCl₃ show two sharp doublets (AX spectrum) in agreement with the inequivalent phosphorus (P^{III} and P^{V}) moieties. To confirm that the high-frequency doublet is due to the phosphorus(III) centre we have measured (CDCl₃ solution) the ³¹P-{¹H} NMR spectra of [$\{PdCl(L-L)\}_2(\mu-Ph_2PNHPPh_2)$] (L-L = $C_{12}H_{12}$ -N or $C_9H_{12}N$), prepared from $[\{Pd(\mu-Cl)(L-L)\}_2]$ and 1 equivalent of dppa: δ 70.8 and 71.2. Related dimeric complexes with bridging diphosphine or diarsine ligands have previously been reported. 63 The phosphorus(v) chemical shifts for 4-6 are close to the value observed for free HL indicating no interaction of the free phosphoryl group with the metal centre. Significant changes are observed when the ³¹P-{¹H} NMR spectrum of 4 is recorded in MeOH (C₆D₆ insert). The resonance of P^V is shifted by ca. 30 ppm (cf. δ 21.1 when recorded in CDCl₃) and there is negligible shift of that of PIII, accompanied by a reduction in the magnitude of ${}^{2}J(PP)$. When the solution is evaporated to dryness and the residue redissolved in CDCl₃ the original ³¹P NMR spectrum was restored. We believe that in methanolic solutions there is evidence for a P=O interaction with the metal centre presumably via chloride loss (see below). A similar behaviour was noted when methanolic solutions of 1 were examined by ³¹P-{¹H} NMR spectroscopy.

The trans N-Pd-P geometry was inferred from the magnitude of the J(PH) couplings observed in the ¹H NMR spectra for complexes **4-6** which corresponded well to those of related compounds. ^{41-44,46,49,52}

The reaction of the rhodium dimer $[\{Rh(\mu-Cl)(CO)_2\}_2]$ with 4 equivalents of HL proceeds rapidly, with the evolution of CO

Table 1 The ³¹P-{¹H} and ¹H NMR data for the new complexes 1-21b

Compound	$\delta(P_A)^c$	$\delta(P_X)^c$	$J(P_AP_X)$	Others
1 d,e	60.4	21.3	39.5	$^{1}J(RhP_{A})$ 159.0, $^{3}J(RhP_{X})$ 4.6
2 f	49.2	22.6	35.2	(N/) (N/
3 ^g	60.8	22.6	37.4	
4 h	73.3	21.1	33.0	
5 ⁱ	66.4	21.7	35.0	
6^{j}	71.7	21.0	33.0	
7 ^d	62.4	20.8	26.4	$^{1}J(RhP_{A})$ 126.6, $^{3}J(RhP_{X})$ 2.5
8 k	86.6	54.7	32.3	$^{1}J(RhP_{A})$ 160.6
9	53.9	26.4	$\mathbf{n.r.}^{l}$	
10 g	67.8	59.0	35.0	
11 ^m	73.4	51.5	22.0	
$12^{d,n}$	69.8	63.0	39.8	$^{1}J(RhP_{A})$ 146.3, $^{n}J(RhP_{X})$ 3.0°
13 ^p	76.4	63.1	39.6	, av
14 ^g	66.8	62.5	35.0	
15 ^q	68.7	50.2	19.8	
16'	61.5	50.4	24.2	
17 s	67.2	49.8	22.0	
$18^{d,t}$	70.2	60.6	12.8	$\delta(PPh_2OMe) 113.2, {}^2J(Ph_2POMeP_A) 33.0, {}^3J(Ph_2POMeP_X) 6.3$
19 d,u	70.5	67.4	16.5	$\delta(Ph_2POMe)$ 115.5, ${}^2J(Ph_2POMeP_A)$ 45.3, ${}^3J(Ph_2POMeP_X)$ 6.3
20 d,v	57.3	22.0	33.0	$\delta(Ph_2POMe) 106.8, {}^2J(Ph_2POMeP_A) 26.0$
21a w	68.2	19.9	26.4	
21bx	75.3	23.0	26.4	

^a Spectra (36.2 MHz) measured in CDCl₃ unless otherwise stated. Chemical shifts (δ) in ppm (\pm 0.1) to high frequency of 85% H₃PO₄. Coupling constants (J) in Hz (\pm 3). ^b Spectra (250 MHz) measured in CDCl₃ unless otherwise stated. Chemical shifts (δ) in ppm (\pm 0.01) to high frequency of SiMe₄ and coupling constants (J) in Hz (\pm 0.1). ^c P_A = phosphorus(III) centre, P_X = phosphorus(v) centre. ^d Spectrum (101.3 MHz) measured in CDCl₃. ^e ³¹P NMR (MeOH–C₆D₆ insert): δ(P_A) 71.4, ¹J(RhP) 158.4 Hz; δ(P_X) 50.1. ¹H NMR: δ 7.96–6.72 (aromatic H); 5.60, 2.92 (=CH, cod); 2.38–1.87 (CH₂, cod). ^f ¹H NMR: δ 7.90–6.84 (aromatic H); 5.25, 2.55 (=CH, cod); 2.27–1.44 (CH₂, cod). ^g ¹H NMR spectrum shows the expected resonances for both phenyl and η³-allyl groups. ^h ³¹P NMR (MeOH–C₆D₆ insert): δ(P_A) 72.2, δ(P_X) 50.5 (P–P coupling not fully resolved). ²J(P_AP_X) 22.0 Hz. ¹H NMR: δ 8.20–6.26 (aromatic H); 3.54 [⁴J(PH) 2.8 Hz, NMe₂]. ⁱ ¹H NMR: δ 9.61–9.58, 8.31–7.26 (aromatic H); 2.95 [³J(PH) 5.0 Hz, CH₂Pd]. ^j After ca. 20 min one major species: δ(P_A) 65.9, δ(P_X) 58.8, ²J(P_AP_X) 8.8 Hz. ¹H NMR: δ 7.90–7.05 (aromatic H); 3.69 [⁴J(PH) 2.5, NCH₂]; 2.47 (NMe₂). ^k Measured in Me₂SO–C₆D₆ insert. ⁱ n.r. = Not resolved. ^m ¹H NMR: δ 7.99–6.62 (aromatic H); 3.49 [⁴J(PH) 2.5, Hz, NMe₂]. ⁱ ¹H NMR: δ 7.73–7.27 (aromatic H); 5.48, 3.26 (=CH, cod); 2.34, 1.98 (CH₂, cod). ^o Contribution from ²J(RhP_X) and ³J(RhP_X). ^p ¹H NMR: δ 7.81–7.27 (aromatic H); 3.10 (CH₂Pd). ^s ¹H NMR: δ 7.83–6.61 (aromatic H); 3.86 [⁴J(PH) 1.8 (NCH₂)]; 2.86 [⁴J(PH) 2.5 Hz, NMe₂]. ⁱ ¹H NMR: δ 8.10–7.27 (aromatic H); 2.81 [³J(PH) 12.5 Hz, OMe]. ^w ¹H NMR: δ 8.11–7.26 (aromatic H); 2.76 [³J(PH) 11.9 Hz, OMe]. ^v ¹H NMR: δ 8.10–7.27 (aromatic H); 2.64 [³J(PH) 10.0 Hz, OMe]. ^w ¹H NMR: δ 8.11–7.26 (aromatic H); 6.18, 5.60, 4.07, 3.71 (=CH, cod); 3.00–1.00 (CH₂, cod); 2.31 [³

gas, to give the pale yellow complex trans-[RhCl(CO)- $\{Ph_{2}PNHP(O)Ph_{2}-P\}_{2}$ 7; characterising data given in Table 1 and the Experimental section. A single v(CO) (KBr disc) was observed in the IR spectrum at 1977 cm⁻¹; the ³¹P-{¹H} NMR spectrum shows a doublet of triplets [δ(P_A) 62.4, ¹J(RhP) 126.6 Hz] and a triplet $[\delta(P_X) 20.8, {}^3J(RhP) 2.5, J(P_AP_X) 26.4 Hz]$. In contrast when $\lceil \{Rh(\mu-Cl)(CO)_2\}_2 \rceil$ is allowed to react with 2 equivalents of HL in CH₂Cl₂ a deep yellow solid 8 having the apparent stoichiometry [RhCl(CO){Ph2PNHP(O)Ph2}] was isolated. The most striking differences are seen in the ³¹P-{¹H} NMR and IR spectra. The high-frequency shift of the P=O group [$\delta(P_x)$ 54.7 vs. 20.8 for 7] in the ³¹P spectrum suggests chelation of the O donor atom. This is also supported by the IR spectrum (KBr disc) which showed a significant shift for the P=O group (1135 vs. 1221 cm⁻¹ for 7). We tentatively suggest that 8 has an analogous structure to that of the isoelectronic complex cis-[RhCl(CO){Ph₂PCH₂P(O)Ph₂-P,O}] (P trans to Cl) reported by Wegman et al. 30 Upon further reaction of a dimethyl sulfoxide (dmso) solution of 8 with 1 equivalent of HL complex 7 was formed instantly (31P NMR evidence).

We have also studied the reaction of HL and [AuCl(tht)] in CH₂Cl₂ which afforded the two-co-ordinate complex [AuCl{Ph₂PNHP(O)Ph₂-P}] 9 in good yield. The ³¹P-{¹H} NMR spectrum showed two singlets; the P-P coupling was not resolved.

Since the pendant P=O group is suitably disposed for chelation we treated complexes 3 and 4 with the chloride abstractor $Ag[BF_4]$ in a non-co-ordinating solvent and isolated in good yields the cationic species 10 and 11 [equations (1) and (2)]. Chelation was deduced by the significant high-frequency shift of the P=O group ($^{31}PNMR$), absence of v(P=O) in the IR spectra and, in the case of 11, a single-crystal structure. 35

$$\begin{bmatrix}
N & Cl & 0 \\
Pd & PPh_2 & Ag[BF_4]
\end{bmatrix}
PPh_2$$

$$\begin{bmatrix}
Ag[BF_4] & O = P \\
Ph_2 & Ph_2 & Ph_2
\end{bmatrix}$$

$$\begin{bmatrix}
Pd & Ph_2 \\
Ph_2 & Ph_2
\end{bmatrix}$$

$$\begin{bmatrix}
Pd & Ph_2 \\
Ph_2 & Ph_2
\end{bmatrix}$$

$$\begin{bmatrix}
Pd & Ph_2 \\
Ph_2 & Ph_2
\end{bmatrix}$$

10 C-N = $C_{12}H_{12}N$

$$\begin{array}{c|c}
 & CI & O & Ph_2 \\
 & Ph_2 & Ph_2 & Ag[BF_4]
\end{array}$$

$$\begin{array}{c|c}
 & Ph_2 \\
 & Ph_2 & Ph_2
\end{array}$$

$$\begin{array}{c|c}
 & Ph_2 \\
 & Ph_2 & Ph_2
\end{array}$$

$$\begin{array}{c|c}
 & Ph_2 \\
 & Ph_2 & Ph_2
\end{array}$$

$$\begin{array}{c|c}
 & Ph_2 & Ph_2 \\
 & Ph_2 & Ph_2
\end{array}$$

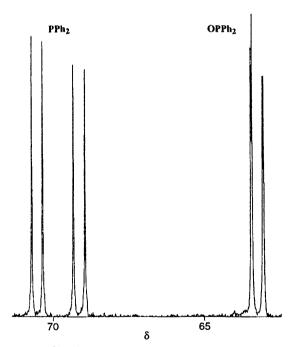
P,O-Chelate and -bridging complexes of [Ph2PNP(O)Ph2]

Braunstein and co-workers ⁴³ found that efficient deprotonation of the methylene proton in related ketophosphine complexes was achieved using NaH in tetrahydrofuran (thf) [equation (3)]. We find that deprotonation of the NH proton using

$$\begin{array}{c|c}
C & Ph_2 & O \\
Pd & Ph_2 & Ph_2 & O \\
Ph & Ph_2 & Ph_2$$

 $C-N = C_9H_{12}N$, $C_{10}H_8N$ or $C_{14}H_{13}N_2$ [PhC(Me)==NNHPh]

KOBu¹ in methanol is an alternative efficient method for synthesising complexes of [Ph₂PNP(O)Ph₂]⁻. This differs with


the propensity of $Ph_2PNRP(X)Ph_2$ (X = S or Se, R = H or Ph) to co-ordinate either as a neutral ligand (through P, X) 19,20 or to undergo slow deprotonation in the absence of *any* base as observed from previous studies within our group. 19 Deprotonation of the amine proton in either 1 or 2 with KOBu¹ affords a transient $[MCl(cod)\{Ph_2PNP(O)Ph_2-P\}]^-$ anion (M = Rh or Ir), which we have not observed, followed by intramolecular ring closure affording the metallacyclic complexes $[M(cod)\{Ph_2PNP(O)Ph_2-P,O\}]$ (M = Rh 12 or Ir 13) [equation (4)].

KOBu^t

NH

$$Cl$$
 PPh_2
 O
 PPh_2
 Ph_2
 Ph

The $^{31}P-\{^{1}H\}$ NMR spectrum of complex 12 is shown in Fig. 2. Confirmation that ring closure has resulted was inferred by the high-frequency shift (ca. 40 ppm) of the phosphorus(v) resonance, with a small $J(RhP_X)$ coupling constant of 3.0 Hz. The $^{1}J(RhP)$ coupling constant of 146.3 Hz is comparable to that observed for 1 indicating a negligible change upon five-

Fig. 2 The ${}^{31}P-{}^{1}H{}$ NMR spectrum (101.3 MHz) of [Rh(cod)- ${}^{21}P+{}$

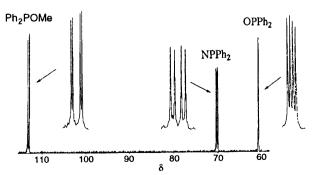


Fig. 3 The $^{31}P-\{^{1}H\}$ NMR spectrum (101.3 MHz) of [PdCl- $\{Ph_2PNP(O)Ph_2-P,O\}(Ph_2POMe)$] 18

membered ring formation (see Table 1 for spectroscopic data)_{nline} Furthermore 12 and 13 are analogous to the metallacyclic compounds [M(cod)(Ph₂PCH₂PPh₂=N)] (M = Rh or Ir) A containing the isoelectronic mixed-donor-atom ligand [Ph₂PCH₂PPh₂=N]⁻⁶⁴

The chelating behaviour of compounds 12 and 13 should be contrasted with the reaction of 3 and KOBu^t in MeOH. Surprisingly, once deprotonated, the anionic ligand forms a novel P,O bridge between two metal centres yielding the palladium(II) dimer $[\{Pd(\eta^3-C_3H_5)[Ph_2PNP(O)Ph_2-P,O]\}_2]$ 14 [equation (5)].³⁵

$$\begin{array}{c|c}
2 & \stackrel{Ph_2}{\longleftarrow} & \stackrel{Ph$$

We have also studied the reaction of complexes 4 and 5 with base and found the efficient formation of the five-membered palladacycles 15 and 16 incorporating two five-membered bicyclic rings, one an organic ring and the other an inorganic (carbon-free) ring [equation (6)]. The versatility of this

$$\begin{array}{c|c}
 & \text{KOBu}^{t} & \text{N} & \text{PPh}_{2} \\
 & \text{P}d & \text{PPh}_{2} & \text{NHPPh}_{2} \\
 & \text{P}d & \text{Ph}_{2} & \text{PH}_{2} & \text{PH}_{2} \\
 & \text{P}d & \text{PH}_{2} & \text{PH}_{2} & \text{PH}_{2} \\
 & \text{P}d & \text{PH}_{2} & \text{PH}_{2} & \text{PH}_{2} \\
 & \text{P}d & \text{PH}_{2} & \text{PH}_{2} & \text{PH}_{2} \\
 & \text{P}d & \text{PH}_{2} & \text{PH}_{2} & \text{PH}_{2} \\
 & \text{P}d & \text{PH}_{2} & \text{PH}_{2} & \text{PH}_{2} \\
 & \text{P}d & \text{PH}_{2} & \text{PH}_{2} & \text{PH}_{2} \\
 & \text{P}d & \text{PH}_{2} & \text{PH}_{2} & \text{PH}_{2} \\
 & \text{P}d & \text{PH}_{2} & \text{PH}_{2} & \text{PH}_{2} \\
 & \text{P}d & \text{PH}_{2} & \text{PH}_{2} & \text{PH}_{2} \\
 & \text{P}d & \text{PH}_{2} & \text{PH}_{2} & \text{PH}_{2} \\
 & \text{P}d & \text{PH}_{2} & \text{PH}_{2} & \text{PH}_{2} \\
 & \text{P}d & \text{PH}_{2} & \text{PH}_{2} & \text{PH}_{2} \\
 & \text{P}d & \text{PH}_{2} & \text{PH}_{2} & \text{PH}_{2} \\
 & \text{P}d & \text{PH}_{2} & \text{PH}_{2} & \text{PH}_{2} & \text{PH}_{2} \\
 & \text{P}d & \text{PH}_{2} & \text{PH}_{2} & \text{PH}_{2} & \text{PH}_{2} \\
 & \text{P}d & \text{PH}_{2} & \text{PH}_{2} & \text{PH}_{2} \\
 & \text{P}d & \text{PH}_{2} & \text{PH}_{2} &$$

reaction was demonstrated by the high-yield (96%) one-pot synthesis of the closely related metallacyclic compound $[Pd(C_9H_{12}N)\{Ph_2PNP(O)Ph_2-P,O\}]$ 17 starting from the cyclometallated dimer $[\{Pd(\mu-Cl)(C_9H_{12}N)\}_2]$ [equation (7)].

$$\frac{1}{2} \left(\begin{array}{c} N \\ Pd \\ Pd \\ Ci \end{array} \right) \xrightarrow{N} \frac{1. \text{HL}}{2. \text{KOBu}^1} \left(\begin{array}{c} N \\ Pd \\ Ph_2 \end{array} \right) \xrightarrow{\text{PPh}_2} (7)$$
17 C-N = C₉H₁₂N

Spectroscopic (31 P) data for these complexes are given in Table 1; most significant is the absence of a doublet centred around δ 21 which is replaced by a new doublet to high frequency typical of P,O-chelation. The crystal structure of one of these compounds (17, see below) was determined to establish the configuration of the bidentate ligands around the palladium.

When a methanolic solution of [{Pd(μ-Cl)(C₉H₁₂N)}₂] and 4 equivalents of HL, in the absence of base, is left to stand for *ca.* 12 d the major product isolated (57%) in addition to small amounts of 17 and the bis(chelate) complex *cis*-[Pd{Ph₂PNP(O)Ph₂-P,O}₂] ³⁴ is the neutral complex [Pd-Cl{Ph₂PNP(O)Ph₂-P,O}(Ph₂POMe)] 18. Alternatively when such a methanol solution is refluxed for *ca.* 2 h compound 18 can be isolated albeit in a lower yield. The ³¹P-{¹H} NMR spectrum is shown in Fig. 3 and clearly reveals three unique phosphorus environments; the lack of any large phosphorus-phosphorus couplings eliminates a mutual *trans* arrangement of Ph₂POMe and the phosphorus(III) centre of the [Ph₂PNP(O)Ph₂] ligand. Metathesis of 18 with NaI in acetone gave the iodo complex 19 which exhibited a similar ³¹P NMR spectrum.

A single-crystal X-ray diffraction study unambiguously verified the structure of complex 18 (see below). To our knowledge the only related palladium(II) complexes containing

$$Ph_{2}P = Ph_{2}$$

$$A \quad M = Rh \text{ or } Ir$$

$$Ph_{2} \quad Ph_{2}$$

$$Ph_{3} \quad Ph_{4}$$

$$Ph_{4} \quad Ph_{5}$$

$$Ph_{5} \quad Ph_{5}$$

$$Ph_{7} \quad Ph_{7}$$

$$Ph_{8} \quad Ph_{1}$$

$$Ph_{1} \quad Ph_{2}$$

$$Ph_{2} \quad Ph_{2}$$

$$Ph_{2} \quad Ph_{3}$$

$$Ph_{4} \quad Ph_{5}$$

$$Ph_{5} \quad Ph_{5}$$

$$Ph_{7} \quad Ph_{7}$$

$$Ph_{8} \quad Ph_{1}$$

$$Ph_{8} \quad Ph_{1}$$

$$Ph_{1} \quad Ph_{2}$$

$$Ph_{2} \quad Ph_{2}$$

$$Ph_{3} \quad Ph_{4}$$

$$Ph_{5} \quad Ph_{5}$$

$$Ph_{7} \quad Ph_{7}$$

$$Ph_{8} \quad Ph_{1}$$

$$Ph_{8} \quad Ph_{1}$$

$$Ph_{8} \quad Ph_{1}$$

$$Ph_{9} \quad Ph_{1}$$

$$Ph_{1} \quad Ph_{2}$$

$$Ph_{2} \quad Ph_{3}$$

$$Ph_{4} \quad Ph_{5}$$

$$Ph_{5} \quad Ph_{5}$$

$$Ph_{7} \quad Ph_{7}$$

$$Ph_{8} \quad Ph_{1}$$

$$Ph_{8} \quad Ph_{1}$$

$$Ph_{8} \quad Ph_{1}$$

$$Ph_{9} \quad Ph_{1}$$

$$Ph_{1} \quad Ph_{2}$$

$$Ph_{2} \quad Ph_{3}$$

$$Ph_{5} \quad Ph_{5}$$

$$Ph_{7} \quad Ph_{7}$$

$$Ph_{8} \quad Ph_{1}$$

$$Ph_{8} \quad Ph_{1}$$

$$Ph_{9} \quad Ph_{1}$$

$$Ph_{1} \quad Ph_{2}$$

$$Ph_{2} \quad Ph_{3}$$

$$Ph_{4} \quad Ph_{5}$$

$$Ph_{5} \quad Ph_{5}$$

$$Ph_{7} \quad Ph_{7}$$

$$Ph_{8} \quad Ph_{8}$$

$$Ph_{8} \quad Ph_{8}$$

$$Ph_{8} \quad Ph_{8}$$

$$Ph_{9} \quad Ph_{9}$$

$$Ph_$$

both a *P,O*-chelating ligand and a monodentate phosphorus ligand are [PdCl{Ph₂PCHC(CF₃)O-*P,O*}(Ph₂POEt)] **B** and [PdCl{Ph₂PCHC(Ph)O-*P,O*}(PPh₃)] **C**. ^{46.65} Although we have not studied the mechanism nor the exact stoichiometry of the reaction we believe that a co-ordinated M-Ph₂PNHP(O)Ph₂ ligand undergoes P-N bond cleavage in methanol. Furthermore, this reaction is similar to the penultimate step in the synthesis of **B**, *i.e.* nucleophilic displacement of CF₃CC⁻ from phosphorus by ethoxide to generate the ethoxydiphenylphosphine ligand, Ph₂POEt. We have not identified the fate of the remaining phosphorus fragment formed upon rupture of the P-N bond nor any other intermediates. We are unaware of any other examples in which dppa or its derivatives undergoes P-N bond cleavage under extremely mild conditions.

The Pd-O bond in complex 18 is readily cleaved upon treatment with concentrated HCl affording the mixed-ligand palladium complex 20 [equation (8)] in which the stereo-

chemistry of the two monodentate ligands is cis (from $^{31}P-\{^{1}H\}$ NMR, Table 1). There was no evidence for the trans-isomer of $[PdCl_2\{Ph_2PNHP(O)Ph_2-P\}(Ph_2POMe)]$ in $CDCl_3$ solution. After ca. 1 d the $^{31}P-\{^{1}H\}$ NMR spectrum shows, in addition to $\bf 20$, small amounts of the known complexes cis- $[Pd-Cl_2(Ph_2POMe)_2]$ and trans- $[PdCl_2\{Ph_2PNHP(O)Ph_2-P\}_2]^{34}$ presumably formed by ligand scrambling. Palladium(II) complexes of the type $[PdCl_2L'(L'')]$ (L' and L'' = monodentate ligands) have previously been reported. 66 Addition of $KOBu^t$ to solutions of $\bf 20$ regenerates $\bf 18$ (^{31}P NMR evidence).

Oxidative-addition reactions of iridium(I) complexes have been extensively studied. We were interested to see whether the iridium complex 13 reacts with electrophiles either at the metal

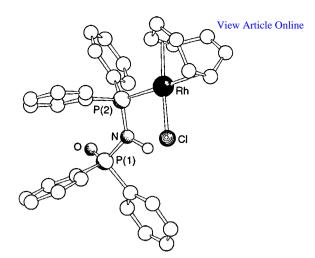


Fig. 4 Crystal structure of [RhCl(cod){Ph₂PNHP(O)Ph₂-P}] 1 (CH protons omitted for clarity)

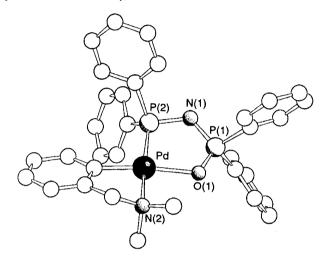


Fig. 5 Crystal structure of $[Pd(o-C_6H_4CH_2NMe_2)\{Ph_2PNP(O)Ph_2-P,O\}]$ -MeOH 17 (CH protons and solvent molecules omitted for clarity)

centre (oxidative addition) or at the nitrogen atom of the IrP₂NO ring. In previous work ³⁴ we showed that protonation of cis-[Pt{Ph₂PNP(O)Ph₂-P,O}₂] with an excess of HBF₄•OEt₂ occurs at both nitrogen atoms. We treated the iridacycle [Ir(cod){Ph₂PNP(O)Ph₂}] 13 with MeI (16-fold molar excess) and initial monitoring of the reaction by ³¹P-{¹H} NMR spectroscopy showed an immediate reaction affording two new species 21a and 21b (1:1 ratio). After ca. 30 min complete isomerisation to 21a had occurred and this complex was isolated by addition of hexane. Proton NMR spectroscopy showed the presence of a co-ordinated methyl group $\lceil \delta(H) \ 2.31$, ³J(PH) 5.0 Hz], cycloocta-1,5-diene and phenyl resonances of the ligand (Table 1). We infer that oxidative addition has occurred with the formation of [IrI(Me)(cod){Ph2PN-P(O)Ph₂}] although we were puzzled by the ³¹P NMR data which suggested the presence of a 'dangling' P=O group. Since the data led to no conclusion about the exact nature of the ligand nor the stereochemistry of the iridium(III) species, an X-ray diffraction study was undertaken (see below). We have not established the structure of 21b but believe it is a second isomer of [IrI(Me)(cod){Ph₂PNP(O)Ph₂}]. Further work is underway to identify this species.

Crystal structures of complexes 1, 17, 18 and 21a

Crystals of complex 1 were grown by slow diffusion of diethyl ether into a CH_2Cl_2 solution and the molecular structure is shown in Fig. 4 (Table 3). The structure reveals a square-planar rhodium centre co-ordinated by a π -bound cod ligand, a

Table 2 Details of the X-ray data collections and refinements for compounds 1, 17, 18 and 21a*

	1	17	18	21a
Empirical formula	C32H33CINOP2Rh	$C_{34}H_{36}N_2O_2P_2Pd$	$C_{37,50}H_{34}Cl_2NO_2P_3Pd$	C33H35IIrNOP,
M	647.92	673.02	800.91	842.72
Crystal colour, habit	Orange, prism	Clear, block	Clear, plate	Yellow, block
Crystal dimensions/mm	$0.20 \times 0.20 \times 0.43$	$0.24 \times 0.26 \times 0.35$	$0.20 \times 0.01 \times 0.40$	$0.21 \times 0.23 \times 0.31$
Space group	$P2_1/n$	$P2_1/n$	$P2_1/c$	$P2_1/c$
$a/ ext{Å}$	14.332(1)	9.064(8)	13.66(1)	15.478(5)
$b/ m \AA$	10.877(2)	24.934(8)	18.311(5)	10.946(6)
$c/ ext{A}$	18.888(1)	14.064(7)	16.608(6)	19.144(4)
β/°	97.074(7)	98.88(5)	113.85(4)	111.46(2)
$U/\mathrm{\AA}^3$	2922	3140	3799	3018
$D_{\rm c}/{ m g~cm^{-3}}$	1.47	1.42	1.40	1.85
μ/mm^{-1}	6.80	5.98	6.68	17.61
$2\theta_{max}/^{o}$	120.2	120.2	120.1	120.6
F(000)	1328	1384	1628	1632
Measured reflections	4836	5141	6138	5044
Independent reflections (R_{int})	4628 (0.013)	4805 (0.116)	5865 (0.046)	4512 (0.175)
Observed reflections $[I > 3.0\sigma(I)]$	3986	3561	3959	3543
Reflection/parameter ratio	11.6:1	9.6:1	9.1:1	10.0:1
Minimum, maximum transmission	0.45, 1.00	0.72, 1.00	0.76, 1.00	0.63, 1.00
Weighting scheme, p	0.002	0.006	0.007	0.008
No. variables	344	371	434	353
Final R,R'	0.037, 0.045	0.034, 0.034	0.056, 0.071	0.033, 0.036
Maximum Δ/σ	0.40	0.02	5.64	0.01
Largest difference peak hole/e Å ⁻³	0.33, -0.63	0.38, -0.55	1.13, -0.63	0.91, -1.05
* Dataila in assumant manaslinia. 7	$A_1 = 1 = -2(E_1)$			

^{*} Details in common: monoclinic; Z = 4; $w^{-1} = \sigma^2(F_0)$.

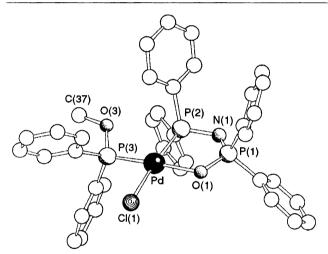


Fig. 6 Crystal structure of [PdCl{Ph₂PNP(O)Ph₂-P,O}(Ph₂POMe)] 0.5CH₂Cl₂ 18 (CH protons and solvent molecules omitted for clarity)

chloride and a neutral HL. The Rh-P(2) [2.289(1) Å] and Rh-Cl [2.377(2) Å] bond lengths are in good agreement with those reported for the related complex [RhCl(cod){P(C₆H₄-F-p)₃}].⁶⁷ The Ph₂PNHP(O)Ph₂ ligand has a shortened P=O bond compared to that observed for the non-co-ordinated but strongly P=O··· H-N hydrogen-bonded starting material. The P-N distances are little affected by co-ordination. The most notable effect is the change in the stereochemistry of the HN-P=O unit. In the structure of HL the NH proton and the P=O oxygen are syn whereas here they are anti. The difference is attributable to different hydrogen-bonding patterns. In 'free' HL the molecules form dimer pairs via N-H \cdots O'=P' hydrogen-bonds. In 1 there is a strong intramolecular $N-H \cdots Cl$ hydrogen bond ($Cl \cdots H 2.32 \text{ Å}$).

Crystals of complex 17 suitable for a structure determination were grown from CH₂Cl₂-MeOH (Fig. 5, Table 4). The palladium has a near square-planar geometry with two coordinated anionic bidentate ligands each forming a fivemembered ring (phosphorus trans to nitrogen). The bond distances for the C-N cyclometallated ring are similar to those observed for the complexes [Pd(L-L)(Ph₂PCH₂CO₂-P,O)],

Table 3 Selected bond distances (Å) and angles (°) for complex 1

Rh-Cl	2.377(2)	P(2)-N	1.701(4)
Rh-P(2)	2.289(1)	P(2)-C(21)	1.812(6)
Rh-C(1)	2.129(6)	P(2)-C(27)	1.802(5)
Rh-C(2)	2.127(6)	C(1)-C(2)	1.371(9)
Rh-C(5)	2.247(6)	C(1)-C(8)	1.510(9)
Rh-C(6)	2.231(6)	C(2)-C(3)	1.514(10)
P(1)-O	1.478(4)	C(3)-C(4)	1.421(12)
P(1)-N	1.672(4)	C(5)-C(6)	1.370(9)
P(1)-C(9)	1.788(6)	C(6)-C(7)	1.511(9)
P(1)-C(15)	1.797(6)	C(7)-C(8)	1.446(10)
Cl-Rh-P(2)	90.07(5)	Rh-P(2)-C(21)	118.61(17)
Cl-Rh-C(1)	161.81(21)	Rh-P(2)-C(27)	112.81(18)
Cl-Rh-C(2)	160.01(20)	N-P(2)-C(21)	106.03(24)
Cl-Rh-C(5)	89.36(21)	N-P(2)-C(27)	108.20(23)
Cl-Rh-C(6)	89.32(17)	C(21)-P(2)-C(27)	102.88(26)
P(2)-Rh-C(1)	91.45(17)	P(1)-N-P(2)	132.64(27)
P(2)-Rh-C(2)	94.96(18)	Rh-C(1)-C(2)	71.10(39)
P(2)-Rh-C(5)	166.22(21)	Rh-C(1)-C(8)	109.97(47)
P(2)-Rh-C(6)	158.12(21)	C(2)-C(1)-C(8)	126.53(67)
C(1)-Rh- $C(2)$	37.59(24)	Rh-C(2)-C(1)	71.31(39)
C(1)-Rh- $C(5)$	93.38(26)	Rh-C(2)-C(3)	110.74(54)
C(1)– Rh – $C(6)$	82.58(23)	C(1)-C(2)-C(3)	124.31(64)
C(2)-Rh- $C(5)$	81.19(27)	C(2)-C(3)-C(4)	118.77(74)
C(2)-Rh- $C(6)$	93.04(24)	C(3)-C(4)-C(5)	118.10(76)
C(5)-Rh- $C(6)$	35.64(24)	Rh-C(5)-C(4)	108.55(55)
O-P(1)-N	114.95(22)	Rh-C(5)-C(6)	71.54(38)
O-P(1)-C(9)	112.17(25)	C(4)-C(5)-C(6)	125.24(80)
O-P(1)-C(15)	113.10(24)	Rh-C(6)-C(5)	72.82(39)
N-P(1)-C(9)	108.22(24)	Rh-C(6)-C(7)	106.59(44)
N-P(1)-C(15)	102.37(22)	C(5)-C(6)-C(7)	125.48(75)
C(9)-P(1)-C(15)	105.15(25)	C(6)-C(7)-C(8)	119.07(60)
Rh-P(2)N	107.74(15)	C(1)-C(8)-C(7)	117.50(63)

 $[Pd(L-L){Ph_2PCH=C(OEt)O-P,O}]$ and $[PdCl(L-L){(C_6-P,O)}]$ H_{11} ₂PCMe₂CH₂COMe-P,O}] (L-L = C₉H₁₂N).⁴⁴

Crystals of complex 18 were grown by slow diffusion of diethyl ether into a CH₂Cl₂ solution and the molecular structure is shown in Fig. 6 (Table 5). It confirms a squareplanar environment around the palladium with the Ph₂POMe ligand trans to the oxygen atom of the bidentate ligand.

The molecular structure of complex 21a is shown in Fig. 7 (Table 6). The Ir-C (olefinic) distances range from 2.191(8) to 2.325(9) Å with an average of 2.195 Å for Ir-C(31)/Ir-C(32) and

O(1)-P(1)-N(1)

O(1)-P(1)-C(1)

O(1)-P(1)-C(7)

N(1)-P(1)-C(1)

N(1)-P(1)-C(7)

C(1)-P(1)-C(7)

Pd-P(2)-N(1)

Pd-P(2)-C(13)

Table 4 Selected bond distances (Å) and angles (°) for complex 17 1.805(5)Pd-P(2)2.242(1)P(1)-C(7)Pd-O(1) 2.132(3)P(2)-N(1)1.634(4)P(2)-C(13)Pd-N(2) 2.137(3)1.821(5) Pd-C(29) 1.975(5)P(2)-C(19)1.820(4)P(1)-O(1)1.516(3) N(2)-C(25)1.468(6) P(1)-N(1)1.602(4)N(2)-C(26)1.484(6) N(2)-C(27)1.478(6) 1.809(5)P(1)-C(1)P(2)-Pd-O(1)86.29(9) P(1)-N(1)-P(2)117.05(23) P(2)-Pd-N(2)172.05(11) Pd-N(2)-C(25) 111.27(32) P(2)-Pd-C(29)100.02(15) Pd-N(2)-C(26) 112.91(31) 104.63(29) O(1)-Pd-N(2)91.71(14) Pd-N(2)-C(27) O(1)-Pd-C(29)173.48(16) C(25)-N(2)-C(26) 107.78(41) N(2)-Pd-C(29)82.26(18) C(25)-N(2)-C(27)110.20(40) O(1)-P(1)-N(1)C(26)-N(2)-C(27) 114.90(19) 110.04(41) O(1)-P(1)-C(1)108.27(22) N(2)-C(27)-C(28)108.88(40) O(1)-P(1)-C(7)110.01(21) C(27)-C(28)-C(29)117.83(44) N(1)-P(1)-C(1)108.26(21) C(27)-C(28)-C(33)121.19(47) N(1)-P(1)-C(7)109.38(21) C(29)-C(28)-C(33) 120.95(48) C(1)-P(1)-C(7)Pd-C(29)-C(28) 112,36(35) 105.60(23) Pd-P(2)-N(1)106.39(14) Pd-C(29)-C(30) 130.26(38) Pd-P(2)-C(13)119.55(17) C(28)-C(29)-C(30) 117.27(44) Pd-P(2)-C(19)114.05(15) C(29)-C(30)-C(31)121.57(49) N(1) = P(2) = C(13)119.51(52) 107.03(21) C(30)-C(31)-C(32)119.98(50) N(1)-P(2)-C(19)105.69(20) C(31)-C(32)-C(33)C(13)-P(2)-C(19)103.21(22) C(28)-C(33)-C(32) 120.71(49) Pd-O(1)-P(1)114.77(18)

Pd-Cl(1) 2.361(3)P(1)-C(7)1.832(12)Pd-P(2)2.255(3)P(2)-N(1)1.614(9)Pd-P(3)2.199(3)P(2)-C(13)1.800(12)Pd-O(1) 2.128(7) 1.813(11) P(2)-C(19)Cl(2)-C(40)1.644(37) P(3)-O(3)1.598(6) Cl(3)-C(40)1.541(35) P(3)-C(25)1.813(11)P(1)-O(1)1.533(7) P(3)-C(31)1.798(11) P(1)-N(1)1.610(9) O(3)-C(37)1.421(13) P(1)-C(1)1.797(11) Cl(1)-Pd-P(2)174.49(11) Pd-P(2)-C(19)114.80(38) Ci(1)-Pd-P(3)87.45(10) N(1)-P(2)-C(13)108.67(55) Cl(1)-Pd-O(1)90.60(19) N(1)-P(2)-C(19)104.67(52) P(2)-Pd-P(3)96.02(11) C(13)-P(2)-C(19)105.80(53) P(2)-Pd-O(1)85.80(19) Pd-P(3)-O(3)111.85(31) P(3)-Pd-O(1)177.37(20) Pd-P(3)-C(25) 112.12(35)

Pd-P(3)-C(31)

O(3)-P(3)-C(25)

O(3)-P(3)-C(31)

Pd-O(1)-P(1)

P(3)-O(3)-C(37)

P(1)-N(1)-P(2)

C(25)-P(3)-C(31)

114.73(40)

104.74(46)

105.12(45)

107.56(52)

114.09(36)

124.10(73)

115.32(53)

114.56(44)

108.61(46)

108.27(49)

107.86(51)

110.38(55)

106.88(52)

106.49(33)

115.77(41)

Table 5 Selected bond distances (Å) and angles (°) for complex 18

2.302(9) Å for Ir-C(35)/Ir-C(36) and can be compared with those in trans- $[IrCl_2(acac)(cod)]$ and [IrI(Me)(acac)(cod)] (acac = acetylacetonate). ^{68,69} The Ir-C (methyl) and Ir-I distances of 2.147(8) and 2.703(1) Å respectively differ slightly from those reported for the complex [IrI(Me)(acac)(cod)]. ⁶⁹ The solid-state structure shows a cis oxidative addition of MeI and contrasts the trans addition seen with [Ir(acac)(cod)]. ⁶⁹

A comparison of the MP₂NO metallacycles in complexes 17, 18 and 21a reveals a shortening of the P-N bonds and lengthening of the P-O bonds as a result of deprotonation/complexation (Table 7). Furthermore the P-N-P angle is significantly contracted relative to that in free HL and 1. Interestingly there are differences in the planarity of the MP₂NO rings. Thus, the MP₂NO mean plane for 21a has a maximum deviation from the mean plane of 0.08 Å for O(1), whilst in 17 the maximum deviation is 0.10 Å for N(1) and in 18 this rises to 0.26 Å [at N(1)]. Clearly, the energy differences

Table 6 Selected bond distances (Å) and angles (°) for complex 21a

Ir-I Ir-P(2) Ir-O Ir-C(25) Ir-C(31) Ir-C(32) Ir-C(36) P(1)-O P(1)-N P(1)-C(1) P(1)-C(7)	2.703(1) 2.329(2) 2.218(5) 2.147(8) 2.198(9) 2.191(8) 2.325(9) 2.279(9) 1.517(6) 1.595(7) 1.819(8) 1.809(8)	P(2)-N P(2)-C(13) P(2)-C(19) C(31)-C(32) C(31)-C(38) C(32)-C(33) C(33)-C(34) C(34)-C(35) C(35)-C(36) C(36)-C(37) C(37)-C(38)	1.621(7) 1.832(8) 1.828(8) 1.355(12) 1.455(12) 1.544(13) 1.519(13) 1.501(12) 1.363(13) 1.512(12) 1.535(13)
I-Ir-P(2) I-Ir-O I-Ir-C(25) I-Ir-C(31) I-Ir-C(32) I-Ir-C(35) I-Ir-C(36) P(2)-Ir-C(36) P(2)-Ir-C(31) P(2)-Ir-C(31) P(2)-Ir-C(31) P(2)-Ir-C(33) P(2)-Ir-C(36) O-Ir-C(35) O-Ir-C(31) O-Ir-C(35) O-Ir-C(35) O-Ir-C(36) C(25)-Ir-C(31) C(25)-Ir-C(35) C(25)-Ir-C(35) C(25)-Ir-C(35) C(25)-Ir-C(35) C(31)-Ir-C(35) C(31)-Ir-C(35) C(31)-Ir-C(35) C(31)-Ir-C(35) C(31)-Ir-C(36) C(31)-Ir-C(36) C(31)-Ir-C(36) C(32)-Ir-C(36)	93.48(5) 83.01(13) 82.93(21) 161.11(23) 159.71(27) 87.13(21) 90.89(22) 82.34(15) 89.06(23) 90.52(23) 97.89(26) 168.68(24) 156.68(25) 163.02(26) 79.24(26) 115.06(29) 108.93(26) 75.47(28) 115.62(31) 80.52(33) 79.80(33) 114.22(34) 35.96(32) 92.53(31) 78.50(32) 78.50(32)	O-P(1)-C(1) O-P(1)-C(7) N-P(1)-C(7) N-P(1)-C(7) C(1)-P(1)-C(7) Ir-P(2)-N Ir-P(2)-C(13) Ir-P(2)-C(13) N-P(2)-C(19) C(13)-P(2)-C(19) Ir-O-P(1) P(1)-N-P(2) Ir-C(31)-C(38) C(32)-C(31)-C(38) Ir-C(32)-C(31) Ir-C(32)-C(33) C(32)-C(33)-C(34) C(32)-C(33)-C(34) C(33)-C(34)-C(35) Ir-C(35)-C(36) Ir-C(35)-C(36) Ir-C(35)-C(36) Ir-C(36)-C(35) Ir-C(36)-C(35) Ir-C(36)-C(35) Ir-C(36)-C(35) Ir-C(36)-C(35) Ir-C(36)-C(35) Ir-C(36)-C(35)	109.25(34) 108.89(37) 109.10(36) 111.09(38) 103.25(38) 107.85(24) 117.78(27) 117.93(28) 105.59(38) 105.59(38) 105.74(37) 100.75(36) 116.59(27) 118.21(41) 71.73(54) 111.72(61) 126.31(89) 72.31(55) 114.55(63) 123.47(81) 114.57(76) 114.32(84) 109.07(58) 70.92(55) 124.52(87) 74.65(52)
C(32)-Ir-C(35) C(32)-Ir-C(36) C(35)-Ir-C(36) O-P(1)-N	78.47(33) 85.29(32) 34.43(31) 114.64(33)	Ir-C(36)-C(37) C(35)-C(36)-C(37) C(36)-C(37)-C(38) C(31)-C(38)-C(37)	110.88(59) 123.28(84) 114.16(78) 113.78(81)

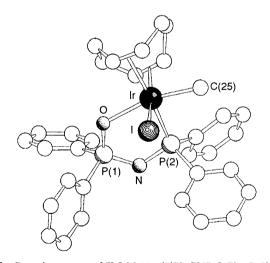


Fig. 7 Crystal structure of [IrI(Me)(cod){Ph₂PNP(O)Ph₂-P,O}] 21a (CH protons omitted for clarity)

associated with slight differences in planarity are not large. The ability of P-N rings such as phosphazene to form delocalised systems with no requirement for planarity is well documented.

In complex 18 the non-bonded Pd \cdots O(3) distance is 3.16 Å. There are no significant intermolecular contacts in 1, 18 or 21a although in 17 there is a strong hydrogen bond between the methanol O-H and $[Ph_2PNP(O)Ph_2]^-$ ligand nitrogen $(O \cdots N 2.87, H \cdots N 1.79 Å, O-H \cdots N 175°)$.

Table 7 Comparison of selected bond distances (Å) and angles (°) for compounds 1, 17, 18 and 21a together with HL^a and [AsPh₄][ReCl₄L]^b

	1	17	18	21a	HL	$[AsPh_4][ReCl_4L]$
M-O(1)		2.132(3)	2.128(7)	2.218(5)		2.054(3)
O(1)-P(1)	1.478(4)	1.516(3)	1.533(7)	1.517(6)	1.508(2)	1.543(3)
P(1)-N(1)	1.672(4)	1.602(4)	1.610(9)	1.595(7)	1.651(3)	1.594(4)
N(1)-P(2)	1.701(4)	1.634(4)	1.614(9)	1.621(7)	1.707(3)	1.621(4)
P(2)–M	2.289(1)	2.242(1)	2.255(3)	2.329(2)		2.490(1)
M-O(1)-P(1)		114.8(2)	114.1(4)	116.6(3)		121.1(2)
O(1)-P(1)-N(1)	115.0(2)	114.9(2)	114.6(4)	114.6(3)	111.0(1)	113.8(2)
P(1)-N(1)-P(2)	132.6(3)	117.1(2)	115.3(5)	118.2(4)	125.6(2)	116.4(2)
N(1)-P(2)-M	107.7(2)	106.4(1)	106.5(3)	107.8(2)		104.7(1)
P(2)-M-O(1)		86.29(9)	85.8(2)	82.3(1)		81.2(1)

^a From ref. 34. ^b From ref. 55.

We have shown that a range of transition-metal complexes with HL are accessible and deprotonation affords a chelating or bridging ligand. Furthermore we have demonstrated that the [Ph₂PNP(O)Ph₂] anion can be stabilised by incorporation into a metallacycle. The instability of the P-N bond in HL was illustrated by its facile cleavage affording a palladium-bound Ph₂POMe ligand. Further studies will concentrate on elucidating the mechanism involved in the formation of 18. We are also investigating the synthesis of new heterobimetallics using HL as a bridging ligand.

Acknowledgements

We are grateful to the EPSRC for support and to Johnson Matthey for loans of precious metals.

References

- 1 P. Bhattacharyya and J. D. Woollins, Polyhedron, 1995, 14, 3367.
- 2 C. Silvestru, R. Rösler, I. Haiduc, R. Cea-Olivares and G. Espinosa-Pérez, Inorg. Chem., 1995, 34, 3352.
- 3 J. S. Casas, A. Castineiras, I. Haiduc, A. Sánchez, J. Sordo and E. M. Vázquez-López, Polyhedron, 1995, 14, 805 and refs. therein.
- 4 I. Haiduc, R. Cea-Olivares, S. Hernández-Ortega and C. Silvestru,
- Polyhedron, 1995, 14, 2041. 5 N. Zúniga-Villarreal, C. Silvestru, M. Reyes Lezama, S. Hernández-Ortega and C. Alvarez Toledano, J. Organomet. Chem., 1995, 496,
- 6 J. S. Casas, A. Castineiras, I. Haiduc, A. Sánchez, J. Sordo and E. M. Vázquez-López, Polyhedron, 1994, 13, 2873.
- Silvestru, I. Haiduc, R. Cea-Olivares and A. Zimbron, Polyhedron, 1994, 13, 3159.
- 8 I. Haiduc, C. Silvestru, H. W. Roesky, H.-G. Schmidt and M. Noltemeyer, Polyhedron, 1993, 12, 69.
- 9 P. Bhattacharyya, J. Novosad, J. Phillips, A. M. Z. Slawin, D. J. Williams and J. D. Woollins, J. Chem. Soc., Dalton Trans., 1995,
- 10 P. Bhattacharyya, A. M. Z. Slawin, D. J. Williams and J. D. Woollins, J. Chem. Soc., Dalton Trans., 1995, 2489.
- 11 J. R. Phillips, A. M. Z. Slawin, A. J. P. White, D. J. Williams and J. D. Woollins, J. Chem. Soc., Dalton Trans., 1995, 2467.
- 12 A. M. Z. Slawin, J. Ward, D. J. Williams and J. D. Woollins, J. Chem. Soc., Chem. Commun., 1994, 421.
- Rossi, A. Marchi, L. Marvelli, L. Magon, M. Peruzzini, U. Casellato and R. Graziani, J. Chem. Soc., Dalton Trans., 1993, 723
- 14 R. Rossi, A. Marchi, L. Marvelli, M. Peruzzini, U. Casellato and R. Graziani, J. Chem. Soc., Dalton Trans., 1992, 435.
- 15 H. Bock, H. Schödel, Z. Havlas and E. Herrmann, Angew. Chem., Int. Ed. Engl., 1995, 34, 1355.
- 16 G. P. McQuillan and I. A. Oxton, Inorg. Chim. Acta, 1978, 29, 69.
- 17 I. Cuadrado and M. Moran, Transition Met. Chem., 1984, 9, 96.
- 18 R. O. Day, R. R. Holmes, A. Schmidpeter, K. Stoll and L. Howe, Chem. Ber., 1991, 124, 2443.
- 19 P. Bhattacharyya, A. M. Z. Slawin, D. J. Williams and J. D. Woollins, J. Chem. Soc., Dalton Trans., 1995, 3189.
- 20 M. S. Balakrishna, R. Klien, S. Uhlenbrock, A. A. Pinkerton and R. G. Cavell, Inorg. Chem., 1993, 32, 5676.

- 21 M. J. Baker, M. F. Giles, A. G. Orpen, M. J. Taylor and R. J. Watt, J. Chem. Soc., Chem. Commun., 1995, 197. 22 T. Y. H. Wong, A. F. Barnabas, D. Sallin and B. R. James, Inorg.
- Chem., 1995, 34, 2278.
- 23 T. C. Blagborough, R. Davis and P. Ivison, J. Organomet. Chem., 1994, 467, 85.
- 24 R. Rossi, A. Marchi, L. Marvelli, L. Magon, M. Peruzzini, U. Casellato and R. Graziani, Inorg. Chim. Acta, 1993, 204, 63.
- 25 K. V. Katti and C. L. Barnes, Inorg. Chem., 1992, 31, 4231
- 26 X. L. R. Fontaine, E. H. Fowles, T. P. Layzell, B. L. Shaw and M. Thornton-Pett, J. Chem. Soc., Dalton Trans., 1991, 1519
- 27 N. A. Bondarenko, M. V. Rudomino and E. N. Tsvetkov, Synthesis,
- 28 G. A. Carriedo, M. L. Rodríguez, S. García-Granda and A. Aguirre, Inorg. Chim. Acta, 1990, 178, 101.
- 29 D. J. Darensbourg, D. J. Zalewski, C. Plepys and C. Campana, Inorg. Chem., 1987, 26, 3727.
- 30 R. W. Wegman, A. G. Abatjoglou and A. M. Harrison, J. Chem. Soc., Chem. Commun., 1987, 1891
- 31 S. J. Higgins, R. Taylor and B. L. Shaw, J. Organomet. Chem., 1987, **325**, 285
- 32 Q.-B. Bao, S. J. Landon, A. L. Rheingold, T. M. Haller and T. B. Brill, Inorg. Chem., 1985, 24, 900.
- 33 A. A. Frew, R. H. Hill, L. Manojlovic-Muir and R. J. Puddephatt, J. Chem. Soc., Chem. Commun., 1982, 198.
- 34 P. Bhattacharyya, A. M. Z. Slawin, M. B. Smith and J. D. Woollins, Inorg. Chem., in the press.
- 35 A. M. Z. Slawin, M. B. Smith and J. D. Woollins, Polyhedron, in the
- 36 P. Braunstein, Y. Chauvin, J. Nähring, Y. Dusausoy, D. Bayeul, A. Tiripicchio and F. Ugozzoli, J. Chem. Soc., Dalton Trans., 1995,
- 37 P. Braunstein, Y. Chauvin, J. Nähring, A. DeCain and J. Fischer, J. Chem. Soc., Dalton Trans., 1995, 863.
- 38 P. Braunstein, S. Coco Cea, M. I. Bruce, B. W. Skelton and A. H. White, J. Chem. Soc., Dalton Trans., 1992, 2539.
- 39 P. Braunstein, S. Coco Cea, A. DeCain and J. Fischer, *Inorg. Chem.*, 1992, 31, 4203
- 40 P. Braunstein, D. G. Kelly, A. Tiripicchio and F. Ugozzoli, Inorg. Chem., 1993, 32, 4845.
- 41 F. Balegroune, P. Braunstein, D. Grandjean, D. Matt and D. Nobel, Inorg. Chem., 1988, 27, 3320.
- 42 P. Braunstein, D. Matt, D. Nobel and J. Fischer, J. Chem. Soc., Chem. Commun., 1987, 1530.
- 43 S.-E. Bouaoud, P. Braunstein, D. Grandjean, D. Matt and D. Nobel, Inorg. Chem., 1986, 25, 3765.
- 44 P. Braunstein, D. Matt, D. Nobel, S.-E. Bouaoud and D. Grandjean, J. Organomet. Chem., 1986, 301, 401 and refs. therein.
- 45 P. Braunstein, D. Matt, Y. Dusausoy, J. Fischer, A. Mitschler and L. Ricard, J. Am. Chem. Soc., 1981, 103, 5115.
- 46 P. Braunstein, D. Matt, D. Nobel, F. Balegroune, S.-E. Bouaoud, D. Grandjean and J. Fischer, J. Chem. Soc., Dalton Trans., 1988,
- 47 P. Braunstein, D. Matt and D. Nobel, J. Am. Chem. Soc., 1988, 110,
- 48 D. Matt, M. Huhn, M. Bonnet, I. Tkatchenko, U. Englert and W. Kläui, Inorg. Chem., 1995, 34, 1288.
- 49 D. Matt, N. Sutter-Beydoun, J.-P. Brunette, F. Balagroune and D. Grandjean, Inorg. Chem., 1993, 32, 3488
- 50 D. Matt, M. Huhn, J. Fischer, A. DeCain, W. Kläui, I. Tkatchenko and M. C. Bonnet, J. Chem. Soc., Dalton Trans., 1993, 1173.

- 51 D. Matt, N. Sutter-Beydoun, A. El Amiri, J.-P. Brunette, P. Briard and D. Grandjean, Inorg. Chim. Acta, 1993, 208, 5.
- 52 F. Balegroune, D. Grandjean, D. Lakkis and D. Matt, J. Chem. Soc., Chem. Commun., 1992, 1084.
- 53 D. A. Knight, D. J. Cole-Hamilton and D. Cupertino, J. Chem. Soc., Dalton Trans., 1990, 3051.
- 54 D. A. Knight, D. J. Cole-Hamilton, D. Cupertino, M. Harman and M. B. Hursthouse, Polyhedron, 1992, 11, 1987.
- 55 R. Rossi, L. Marvelli, A. Marchi, L. Magon, V. Bertolasi and V. Ferretti, *J. Chem. Soc.*, *Dalton Trans.*, 1994, 339.
- 56 D. Pohl, J. Ellermann, F. A. Knoch and M. Moll, J. Organomet. Chem., 1995, 495, C6.
- 57 A. C. Cope and E. C. Friedrich, J. Am. Chem. Soc., 1968, 90, 909.
- 58 G. E. Hartwell, R. V. Lawrence and M. J. Smas, Chem. Commun., 1970, 912.
- 59 R. Uson, A. Laguna and J. Vicente, J. Organomet. Chem., 1977, 131,
- 60 DIFABS, N. G. Walker and D. Stuart, Acta Crystallogr., Sect. A, 1983, 39, 158.
- 61 DIRDIF 92-PATTY, P. T. Beurskens, G. Admiraal, G. Beurskens, W. P. Bosman, S. Garcia-Granda, R. O. Gould, J. M. M. Smits and

- C. Smykalla, The DIRDIF program system, Technical Report of the Crystallography Laboratory, University of Nijmegen, 1992.
- 62 TEXSAN, Crystal Structure Analysis Package, Molecular Structure Corporation, The Woodlands, TX, 1985 and 1992. 63 J. Fornies, R. Navarro and V. Sicilia, *Polyhedron*, 1988, 7, 2659;
- J. Dehand, M. Pfeffer and M. Zinsius, Inorg. Chim. Acta, 1975,
- 64 K. V. Katti and R. G. Cavell, Organometallics, 1989, 8, 2147.
- 65 N. J. Taylor and A. J. Carty, J. Chem. Soc., Chem. Commun., 1976,
- 66 A. W. Verstuyft, D. A. Redfield, L. W. Cary and J. H. Nelson, Inorg. Chem., 1976, 15, 1128.
- 67 M. Iglesias, C. Del Pino, A. Corma, S. García-Blanco and S. Martinez Carrera, *Inorg. Chim. Acta*, 1987, **127**, 215. 68 P. A. Tucker, *Acta Crystallogr.*, *Sect. C*, 1984, **40**, 620.
- 69 S. S. Basson, J. G. Leipoldt, W. Purcell and J. B. Schoeman, Acta Crystallogr., Sect. C, 1989, 45, 2000.

Received 28th September 1995; Paper 5/06405H