LETTERS TO THE EDITOR

Reaction of Bis(chloromethyl)phosphinoyl Chloride and Phenyl (Chloromethyl)phosphonochloridate with Diethyl Bis(trimethylsilyl)phosphoramidite

M. A. Pudovik, L. K. Kibardina, and A. N. Pudovik

Arbuzov Institute of Organic and Phisycal Chemistry, Kazan Research Center, Russian Academy of Sciences, Kazan, Tatarstan, Russia

Received April 5, 2002

It was found that the reactions of bis(chloromethyl)-phosphinoyl chloride (**Ia**) or phenyl (chloromethyl)-phosphonochloridate (**Ib**) with diethyl bis(trimethyl-silyl)phoshoramidite (**II**) are accompanied by liberation of chlorotrimethylsilane and formation of trimethylsilyl bis(chloromethyl)phosphinate (**VIa**) or trimethylsilyl phenyl (chloromethyl)phosphonate (**VIb**), respectively.

$$R(ClCH_2)PCl + (EtO)_2PN(SiMe_3)_2$$

$$Ia, Ib \qquad II$$

$$OSiMe_3$$

$$\longrightarrow R(ClCH_2)PCl + (EtO)_2P=NSiMe_3$$

$$IIIa, IIIb \qquad IV$$

$$Ia + IV \xrightarrow{-Me_3SiCl} \begin{bmatrix} O \\ RP & P(OEt)_2 \\ ClCH_2 & OSiMe_3 \end{bmatrix}$$

$$\longrightarrow R(ClCH_2)POSiMe_3 + [(EtO)_2P=N]_n$$

$$VIa, VIb$$

 $R{=}ClCH_2 \ \ (\textbf{a}), \ \ PhO \ \ (\textbf{b}).$

The ^{31}P NMR spectrum of the reaction mixture of phosphinoyl chloride **Ia** and phosphoroamidite **II** contains signals of trimethylsilyl phosphinate **VIa** (δ_P 26 ppm), bis(chloromethyl)phosphinous chloride (**IIIa**) (δ_P 98 ppm), and residual phosphoramidite **II**. The experimental evidence obtained suggests that the first stage of the reaction involves oxidation of phosphoroamidite **II** to diethyl trimethylsilyl (trimethylsilyl)phosphorimidate (**IV**) and, corresponingly, reduction of compound **Ia** and **Ib** to compounds **IIIa** and **IIIb**, respectively.

Phosphorimidate **IV** reacts with the starting compounds **Ia** and **Ib** to form intermediates **Va** and **Vb**, which, as previously shown [1], undergo β -cleavage to give final products **VIa** and **VIa**, as well as oligomeric product **VII**.

$$\mathbf{Ia} + P(NEt_2)_3 - \underbrace{\begin{array}{c} a \\ \mathbf{VIII} \\ \\ b \\ (Et_2N)_2PCl + (ClCH_2)_2PNEt_2 \\ \mathbf{IX} \\ \mathbf{X} \end{array}}_{a \rightarrow \mathbf{IIIa} + O = P(NEt_2)_3$$

The oxidative ability of phosphinoyl chloride **Ia** toward P(III) derivatives was also illustrated by studying its reaction with hexaethylphosphorous triamide by ³¹P NMR spectroscopy. In this case, both redox [**IIIa** (δ_P 98 ppm) and **VIII** (δ_P 24 ppm)] and exchange reaction products [**IX** (δ_P 160 ppm) and **X** (δ_P 36 ppm)] were detected.

Trimethylsilyl bis(chloromethyl)phosphinate (VIa). A mixture of 3.63 g of compound Ia and 5.62 g of compound II was heated for 3 h at 140°C. Fractionation in a vacuum gave 1.3 g (55%) of compound VIa, bp 68°C (0.06 mm), $n_{\rm D}^{20}$ 1.4530 [1]. ³¹P NMR spectrum: $\delta_{\rm P}$ 26 ppm. ¹H NMR spectrum (CCl₄), δ , ppm: 0.49 s (9H, CH₃Si), 3.83 d (4H, CH₂P, ³ $J_{\rm HCP}$ 6 Hz). Found, %: P 13.26. C₅H₁₃Cl₂O₂PSi. Calculated, %: P 13.18.

Phenyl trimethylsilyl (chloromethyl)phosphonate (VIb) was obtained analogously from 4.5 g of compound Ib and 5.62 g of compound II. Yield 2.25 g (81%), bp 75°C (0.02 mm), $n_{\rm D}^{20}$ 1.5217 [1]. ³¹P NMR spectrum: δ_P 5 ppm. ¹H NMR spectrum (CCl₄), δ, ppm: 0.47 s (9H, CH₃Si); 3.83 d (2H, CH₂P, ³J_{HCP} 6 Hz), 7.23 m (5H, CH_{arom}). Found,%: P 11.22. C₁₀H₁₆ClO₃PSi. Calculated,%: P 11.13.

The ¹H NMR spectra were recorded on a Varian T-60 spectrometer (60 MHz) against internal TMS. The ³¹P NMR spectra were measured on a KGU-4 spectrometer (10.2 MHz) against external 85% phosphoric acid.

ACKNOWLEDGMENTS

The work was financially supported by the Russian

Foundation for Basic Research (project no. 00-03-32837).

REFERENCES

1. Pudovik, M.A., Kibardina, L.K., and Pudovik, A.N., *Zh. Obshch. Khim.*, 1996, vol. 66, no. 11, pp. 1017–1918.