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A novel, mild and a convenient method for the 
nitrodecarboxylation of substituted cinnamic acid derivatives 
to their nitroolefins is achieved using catalytic amount of 
CuCl (10 mol%) and tert-butyl nitrite (2 equiv) as a nitrating 
agent in the presence of air. This reaction provides a useful 10 

method for the synthesis of β,β-disubstituted nitroolefin 
derivatives, which are generally difficult to access from other 
conventional methods. Additionally, this  reaction is selective 
as E-isomer of acid derivatives furnish the corresponding E-
nitroolefins. One more salient feature of the method is, unlike 15 

other methods, no metal nitrates or HNO3 are employed for 
the transformation. 

In recent times, decarboxylative coupling reactions have emerged 
as a powerful tool for C-C1 bond and C-hetero2 bond forming 
reactions. By adopting the decarboxylative coupling strategy, a 20 

variety of aromatic acids and acrylic acids were coupled with 
aromatic halides3a or triflates,3b hydrocarbons,3c alcohols,3d 
ethers3d etc.1 to obtain a variety of compounds including olefin 
derivatives. Nitroolefins represent a unique class of nitro 
compounds, which have multifaceted utility in organic synthesis.4 25 

Besides their applications in pharmaceuticals,5 they serve as 
important precursors in organic synthesis.4 β-monosubstituted 
nitroolefins and β,β-disubstituted nitroolefins also serve as vital 
precursors for catalytic asymmetric conjugate addition6 and 
asymmetric hydrogenation7 to furnish optically active, 30 

synthetically valuable products.8 Henry reaction of condensing 
aldehydes with nitroalkanes is one of the general methods to 
access conjugated nitroolefins.9 Nitration of alkenes is another 
useful method for synthesizing nitroolefins.10 Although 
decarboxylative nitration is known in literature, it was achieved 35 

using harsh reaction conditions such as high temperature,11a or 
highly acidic reaction conditions (HNO3),

11b-d or using 
stoichiometric amounts of metal nitrates.11e-i Due to these 
reasons, these strategies have  restricted the scope of reactions 
and lack of compatibility with oxidizable and/or acid sensitive 40 

functional groups. To overcome these limitations, mild and 
convenient methods to access nitroolefins are well sought. As 
cinnamic acid and its derivatives are easily available or 
synthesized the nitrodecarboxylation of cinnamic acid and its 
derivatives serve as a convenient and attractive procedure for the 45 

synthesis of corresponding nitroolefins. Although, nitroolefins are 
synthesized from their corresponding olefins, the isolation of 
such olefins is a cumbersome task, due to their volatile nature, 

which is a one of the major limitations associated with these 
methods. The decarboxylation of cinnamic acid is generally  50 

Table 1. Screening studies 

Ph
COOH

Ph
NO2

1a 2a

+ TBN

Catalyst
Oxidant

Solvent, Temp

Ph Ph

2

 

entry 
TBN 

(equiv) 

catalyst  

(10 mol%) 
oxidant 

solvent  

(°C) 

yielda 

(%) 

1 1.5 CuCl O2 CH3CN (rt) 34 

2 1.5 CuCl O2 CH3CN (60) 66 

3 1.5 CuCl O2 CH3CN (80) 77 

4 1.5 CuCl O2 CH3CN (80) 83 

5 2.0 CuCl air CH3CN (80) 96 

6 2.0 CuCl air CH3CN (80) 82b 

7 2.0 none air CH3CN (80) 44 

8 2.0 CuI air CH3CN (80) 90 

9 2.0 CuCl2 ·2H2O air CH3CN (80) 83 

10 2.0 Cu(ClO4)·6H2O air CH3CN (80) 86 

11 2.0 Cu(OTf)2 air CH3CN (80) 77 

12 2.0 CuCl air DCE (80) 50 

13 2.0 CuCl air THF (80) 72 

14 2.0 CuCl air Toluene (80) 70 

15 2.0 CuCl air DMF (80) trace 

16 2.0 CuCl air H2O (80) nd 
a Isolated yields. b 5 mol %  of CuCl. 

 55 

performed using copper salt of cinnamic acid followed by 
quenching with suitable radical partner.3c,3d tert-Butyl nitrite 
(TBN) is a mild, and commercially available nitrating reagent 
which is easy to handle,  and is known to generate nitro radical in 
the presence of air12a,12b,  or oxygen.12c,12d  In this context, we 60 

envisioned a reaction of α, β-unsaturated acid with Cu salt and 
TBN in the presence of air to obtain the corresponding nitro 
compound. In this direction, and in continuation of our studies on 
the utility of copper catalysts for C-N bond forming reaction,13 
herein we present a novel, mild method to synthesize a variety of 65 

β-monosubstituted and β,β-disubstituted nitrolefins by employing 
catalytic amount of CuCl with TBN in the presence of air.14   
 β,β-Disubstituted nitrolefins are synthetically valuable 
precursors, which cannot be easily synthesized by conventional 
Henry reaction.9,7a,7c Due to this consideration, the preliminary 70 
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investigations were undertaken by reacting 3,3-diphenylacrylic 
acid (1a) with Cu catalysts using TBN as a nitrating agent in the 
presence of air or oxygen (Table 1). As revealed by these studies, 
the combination of catalytic amount of CuCl with TBN, in the 
presence of air was good choice to affect this transformation 5 

(entries 1-5, Table 1).  The optimal reaction conditions for this 
transformation was achieved by performing the reaction of 1a 
with TBN (2 equiv) and CuCl (10 mol%), in CH3CN at 80 °C 
(entry 6, Table 1). Lowering the catalyst (CuCl) loading to 5 mol 
% resulted in decreasing the yield of the product (entry 7). 10 

Interestingly, the reaction also proceeded in the absence of copper 
catalyst to furnish the product 2a in low yield (44%, entry 8). 
Further, it was also found that other copper catalysts such as CuI, 
CuCl2 ·2H2O, Cu(ClO)4·6H2O, Cu(OTf)2 were useful for this 
transformation, as these reactions resulted in the formation of 2a 15 

in good yields (77-90%, entries 9-12). The solvent screening 
studies indicated that the solvents such as THF, toluene and 
dichloromethane were useful but resulted in formation of product 
in low yields (entries 13-15) while the reaction did not proceed in 
DMF or water (entries 16-17).  20 

Table 2  Nitrodecarboxylation of β-alkyl cinnamic acids to β-alkyl 
nitroolefins 

 
a Reaction conditions: acid (0.50 mmol), TBN (1.0 mmol),  CuCl (0.05 
mmol), air, CH3CN (2 ml). b Isolated yield. 25 

 The scope of the copper catalyzed nitrodecarboxylation was 
further examined with β,β-disubstituted acrylic acid derivatives 
Table 2). (E)-3-Phenylbut-2-enoic acid on treatment with 2 equiv 
of TBN in the presence of 10 mol% CuCl in CH3CN underwent a 
smooth transformation to (E)-(1-nitroprop-1-en-2-yl)benzene 30 

(2b) in 71% isolated yield. (E)-1-methyl-4-(1-nitroprop-1-en-2-
yl)benzene furnished the corresponding nitroolefin 2c in 74%. 
While, (E)-3-(4-methoxyphenyl)but-2-enoic acid and (E)-3-(4-
bromophenyl)but-2-enoic acid under the similar reaction 
conditions resulted in the formation 2d and 2e in moderate yields 35 

(52%). β-Alkyl substituted naphthalene derivative such as (E)-3-
(naphthalen-2-yl)but-2-enoic acid underwent the 
nitrodecarboxylation reaction to form the corresponding nitro 
derivative 2f in 70%. The heterocyclic α, β-unsaturated acid such 
as (E)-3-(thiophen-2-yl)but-2-enoic acid was successfully 40 

transformed in to its nitroolefin 2g in moderate yield (52 %). The 
reaction of (E)-3-(pyridin-2-yl)but-3-enoic acid with TBN and 
CuCl was interesting, as the reaction produced the mixture of 2-
(3- nitroprop-1-en-2-yl)pyridine (2ha) and (E)-2-(1-nitroprop-1-
en-2-yl)pyridine (2hb) in 80% yield with 2ha in major amount 45 

(60:40 ratio of 2ha and 2hb). The formation of  2-(3-nitroprop-1-
en-2-yl)pyridine (2ha) as a major product can be explained on the 
basis of isomerization of 2hb  to 2ha, which can be attributed to 
the coordination of copper metal to the adjacent methyl group to 
form 5 membered complex. Additionally, the 50 

nitrodecarboxylation reaction is selective as E-isomer of acids 
resulted in the formation of the corresponding E-nitroolefins. 

Table 3  Nitrodecarboxylation of α, β-unsaturated acid to nitroolefins 
 

NO2

S

NO2

NO2

3a, 92 % 3b, 82 %

NO2

O

NO2

O

O

NO2PhO

NO2

NO2

F

NO2

Cl

NO2

Br

NO2

O

NO2

NO2

NO2

F3C

NO2

NC

3c, 52 %

3d, 91 % 3e, 69 %

3g, 84%c (45 %)

3k, 68 % 3l, 50 %3j, 45 %

3h, 46%c (38%)

3n,41%3m, 72 %

BnO

3f, 60 %

N
Bz

COOH NO2

1 3

+ TBN

air

CH3CN, 80 °C

CuCl

3i, 36%c (32 %)

3o, 75 %

NO2

3p, 34%

R R

 55 
a Reaction conditions: acid (0.50 mmol), TBN (1.0 mmol),  CuCl (0.05 
mmol), air, CH3CN (2 ml). b Isolated yield. c used 4 equiv of TBN 

 The scope of this reaction was further expanded by 
investigating the reaction of a variety of cinnamic acid 
derivatives and results are compiled in Table 3. As can be seen in 60 

Table 3, a variety of substituted cinnamic acid derivatives such as 
(E)-3-(4-methoxyphenyl)acrylic acid, and (E)-cinnamic acid 
reacted well with TBN in the presence of CuCl to furnish 
corresponding nitro derivatives 3a and 3b in excellent yields 
(92% and 82% respectively). (E)-3-(p-tolyl)acrylic acid under the 65 

similar reaction conditions afforded 3c in moderate yield (52%). 
Similarly, (E)-3-(naphthalen-1-yl)acrylic acid reacted well to 
furnish the product 3d in 91% yield, whereas (E)-3-(3,4-
dimethoxyphenyl)acrylic acid and (E)-3-(4-
(benzyloxy)phenyl)acrylic acid furnished 3e and 3f in 69% and 70 

60% respectively. As can be seen, the reaction of (E)-3-(3-
phenoxyphenyl)acrylic acid needed excess of TBN (4 equiv) to 
furnish (E)-1-(2-nitrovinyl)-3-phenoxybenzene 3g in 84%. 
Whereas the reaction of (E)-3-(4-(trifluoromethyl)phenyl)acrylic 
acid, and (E)-3-(4-cyanophenyl)acrylic acid with excess of TBN 75 

(4 equiv) did not affect the yields of the products (E)-1-(2-
nitrovinyl)-4-(trifluoromethyl)benzene (3h, 46%) and  (E)-4-(2-
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nitrovinyl)benzonitrile (3i, 36%). Further, (E)-3-(2-
bromophenyl)acrylic acid, (E)-3-(2-fluorophenyl)acrylic acid, 
and (E)-3-(4-chlorophenyl)acrylic acid under the optimized 
conditions furnished the corresponding nitroolefins 3j, 3k and 3l 
in moderate to good yields (45%, 68%, and 50% respectively, 5 

Table 3). It worth noting that acid sensitive substrates such as 
furan and thiophene derivatives sustained very well under the 
reaction conditions. As can be seen, the reaction was facile with 
heterocyclic α, β-unsaturated acids, (E)-  3-(Thiophen-2-
yl)acrylic acid to furnish corresponding nitro derivative, (E)-2-(2-10 

nitrovinyl)thiophene (3m, 72% yield), whereas the similar 
reaction with (E)-3-(furan-2-yl)acrylic acid resulted in the 
formation of (E)-2-(2-nitrovinyl)furan (3n) in 41%. These 
nitration reaction catalysed by CuCl appears to be versatile as 
indole acrylic acid such as (E)-3-(1-benzoyl-1H-indol-2-15 

yl)acrylic acid under the optimal reaction conditions furnished the 
corresponding nitroolefin 3o in good yield (75%). As the reaction 
was proceeding readily with cinnamic acid, we thought it would 
be interesting to subject dienoic acid for the nitrodecarboxylation 
reaction. Hence, the reaction of (2E,4E)-5-phenylpenta-2,4-20 

dienoic acid under optimal conditions resulted in the formation of 
corresponding nitroolefin, ((1E,3E)-4-nitrobuta-1,3-dien-1-
yl)benzene 3p in 34%. Our attempts to convert (E)-4-(2-
carboxyvinyl)benzoic acid, 2-cyclohexylideneacetic acid, 4-
methoxybenzoic acid to their corresponding nitroolefins did not 25 

meet with success and the starting materials were recovered 
unchanged. The inertness of these acids for nitrodecarboxylation 
can be attributed to the inability of carboxylic acid salts of 
aromatic and aliphatic acids to undergo decarboxylation under the 
present reaction conditions.  30 

Ph
COOH

Ph
NO2

1a 2a

+
Ph Ph

air, CH3CN, 80 °C

TBN (2 equiv)

TEMPO
CuCl (10 mol %)

Ph
COOH

Ph
NO2

1a 2a

+
Ph Ph

air, CH3CN, 80 °C

TBN (2 equiv)

CuCl (10 mol %)
BHT

(1.1 equiv)

(1.1 equiv) no reaction

40 %

Scheme 1 Control experiments. 
 
 To follow the reaction pathway, few control experiments were 
performed (Scheme 1). The reaction of 3,3-diphenylacrylic acid 35 

(1a) with CuCl (10 mol %), and TBN (2 equiv) in CH3CN was 
performed under the optimal conditions in the presence of radical 
inhibitors such as TEMPO (2,2,6,6-tetramethylpiperidin-1-
yl)oxyl) and BHT (butylated hydroxytoluene). As can be seen, 
the reaction in the presence of TEMPO has drastically reduced 40 

the yield of 2a, whereas the similar reaction in the presence of 
BHT did not proceed. These observations indicate that the 
reaction may be proceeding through a radical intermediate. Based 
on this information, and literature precedence,3d a tentative 
mechanism is proposed (Scheme 2). α, β-Unsaturated acid reacts 45 

with CuX to form the corresponding Cu (II) salt, which further 
reacts with nitro radical, (which is generated by the reaction of 
TBN in the presence of air) to form  radical I. Further I 

undergoes decarboxylation to form the corresponding nitroolefin.  

 50 

Scheme 2. Tentative Mechanism 

Conclusions 

In conclusion, we report a novel, mild and a convenient method 
for the nitrodecarboxylation of substituted cinnamic acid 
derivatives to their correponding nitroolefins catalyzed by CuCl 55 

in the presence of air. This nitrodecarboxylation reaction uses 
TBN as a nitrating source. Besides these advantages, the reaction 
provides a useful method for the synthesis of β,β-disubstituted 
nitroolefin derivatives, which are generally difficult to access 
from other conventional methods. Additionally, this  reaction is 60 

selective as E-isomer of acid derivatives resulted in the formation 
of the corresponding E-nitroolefins. Apart from these advantages, 
metal nitrates or HNO3 are not employed for the transformation. 
One more salient feature of this reaction is that the acid sensitive 
functionalities or compounds such as nitrile functionality and 65 

thiophene and furan derivatives are well tolerated under the 
reaction conditions. 
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