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Aerobic Oxidative α-Arylation of Furans with Boronic Acids via 

Pd(II)-Catalyzed C–C Bond Cleavage of Primary Furfuryl Alcohols: 

Sustainable Access to Arylfurans 

Guanghao Huang, Lin Lu, Huanfeng Jiang and Biaolin Yin
*

Aerobic oxidative α-arylation of furans with boronic acids via 

Pd(II)-catalyzed C–C bond cleavage of primary furfuryl alcohols 

provides sustainable access to arylfurans. The protocol opens a 

new avenue for the transformation of readily available furans into 

other useful compounds. 

Transition-metal-catalyzed cleavage of C–C bonds allows 

reorganization of bond connections and thus can facilitate the 

synthesis of complex molecules of interest.
1
 However, cleaving 

C–C bonds is usually difficult due to their inherent stability.
2
 

Cleavage of C–C bonds in unstrained molecules is particularly 

difficult because of the lack of a driving force for the reaction. 

For unstrained molecules, a driving force can be provided by 

incorporating a good leaving group into the substrate
3
 or by 

using a chelation auxiliary that stabilizes the reaction 

intermediate.
4
 For example, tertiary alcohols can undergo 

catalytic selective C–C bond cleavage via β-carbon elimination 

to form an organometallic intermediate and a ketone. Such 

organometallic intermediates can be coupled with organic 

halides,
5
 alkenes,

6
 aldehydes,

7
 or imines

8
 to produce a variety 

of molecules (Scheme 1). In addition, Shi et al. recently 

reported Rh(III)-catalyzed C–C bond cleavage reactions of 

secondary alcohols by means of β-carbon elimination directed 

by a pyridinyl group to form a five-membered rhodacycle 

intermediate, which underwent further alkenylation with 

various olefins.
6b

 However, transition-metal-catalyzed C–C 

bond cleavage reactions of primary alcohols have rarely been 

reported.
4j

 

Substituted furfuryl alcohols are readily accessible from 

furfural, which is produced on a large scale by acid hydrolysis 

of polysaccharide-containing plant materials, and these 

alcohols are excellent five-carbon building blocks with unique 

reactivities that allow the construction of numerous molecules 

of interest.
9
 For example, acid-catalyzed hydrolysis of furfuryl 

alcohols affords furan oxonium ion intermediates, which can 

be transformed into an array of structures.
10

 In addition, 

oxidative cleavage of furfuryl alcohols produces synthetically 

useful hydroxyl-substituted Z-enediones.
11

 Considering that 

the furan ring is a good leaving group, we hypothesized that 

Pd(II)-catalyzed C–C bond cleavage reactions of furfuryl 

alcohols 1 to form 2-furyl palladium compounds 2 would be an 

excellent method for the synthesis of furan derivatives. As part 

of our ongoing work on the synthetic applications of furans,
12

 

we herein report a method for sustainable access to arylfurans 

3 via aerobic oxidative α-arylation of furans with boronic acids 

(Scheme 1). Arylfurans, which have interesting bioactivities 

and physical properties,
13

 are usually synthesized via Suzuki 

coupling of the corresponding halides and boronic acids.
14
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Scheme 1. Transition-metal-catalyzed C–C bond cleavage reactions of alcohols. 

The success of this oxidative coupling relies on the use of 

suitable substrates 1 to guarantee formation of palladium 

compounds 2 and the development of reaction conditions to 

suppress side reactions such as oxidation of the electron-rich 

furan ring, oxidation of the primary hydroxyl group, oxidation 

of phenylboronic acid, β-arylation, and oligomerization of the 

furan rings. We began by exploring the reaction of (5-phenyl-

furan-2-yl)-methanol (1a) with phenylboronic acid (Table 1). 

Gratifyingly, in the presence of Pd(OAc)2 (10 mol %) as the 

catalyst, 1,10-phenanthroline (L
1
, 12 mol %) as the ligand, KF 

(200 mol %) as an additive, and DCE (1.5 mL) as the solvent, 

reaction of 1a at 70 °C for 15 h afforded desired product 3a in 

63% yield (entry 1). Screening of various other palladium 
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catalysts (entries 1–8) indicated the Pd(OAc)2 was optimal. 

Examination of several bidentate nitrogen ligands (entries 9–

14) revealed that the electronic and steric properties of the 

ligand apparently influenced the reaction outcome. 2,9-

Dimethyl-1,10-phenanthroline (L
2
), which was sterically bulkier 

than L
1
, gave only a trace of 3a (entry 9). The electron-

deficient ligand 1,10-phen-5,6-dione (L
3
) gave 3a in a very low 

yield (27%, entry 10). The use of several 2,2'-bipyridine ligands 

led to good yields (entries 11–14), and 4,4'-dimethyl-2,2'-

bipyridyl (L
7
) provided the best yield (69%). Replacing KF with 

other additives (K2CO3, KOAc, K3PO4, or CsF) did not improve 

the yield (entries 15–18). We were pleased to find that when 

the Pd(OAc)2 loading was reduced to 5 mol %, the yield 

improved slightly to 73% (entry 19). However, further 

decreasing the Pd(OAc)2 loading to 2 mol % diminished the 

yield to 47% (entry 20). In the absence of either Pd(OAc)2 or 

the ligand, none of the desired product was obtained (entries 

21 and 22); and in the absence of KF, the yield of 3a was only 

21% (entry 23). Thus, we concluded that the optimal 

conditions for this reaction involved the use of Pd(OAc)2 (5 mol 

%) as the catalyst, L
7
 (12 mol %) as the ligand, KF (200 mol %) 

as the additive, DCE as the solvent, and 70 °C as the reaction 

temperature (entry 19). 

Table 1 Optimization of reaction conditions
a 

 

a
Reaction conditions, unless otherwise noted: 1a (0.2 mmol), PhB(OH)2 (0.5 

mmol), Pd catalyst (10 mol %), ligand (12 mol %), additive (200 mol %), O2 (in a 

balloon), DCE (1.5 mL), 70 °C, 15 h. 
b
Isolated yield. 

c
5 mol % Pd catalyst was used. 

d
2 mol % Pd catalyst was used. 

 

Using the optimized conditions, we explored the substrate 

scope of the reaction by coupling 1a with various arylboronic 

acids (Table 2). Reaction of 1a with an arylboronic acid bearing 

an electron-donating group at the meta- or para-position 

afforded the corresponding products (3b–3f) in good yields 

(60–70%, entries 2–6). However, the reaction of 1a with 2-

methyl phenylboronic acid gave 3g in a very low yield (31%, 

entry 7), which indicated that the reaction was sensitive to the 

steric bulk of the arylboronic acid. 3,5-Dimethyl and 3,5-

dimethoxyl phenylboronic acids afforded 3h and 3i in 71% and 

66% yields, respectively (entries 8 and 9). Arylboronic acids 

that were para-substituted with an electron-withdrawing 

group, such as a halogen atom, COOEt, CF3, CHO, CN, or NO2, 

reacted with 1a to give the corresponding coupling products in 

moderate to trace yields (entries 10–17). Reaction of 1a with 

1-naphthylboronic acid gave 3r in a low yield (29%, entry 18), 

whereas reaction with 2-naphthylboronic, which was less 

sterically bulky, afforded 3s in a higher yield (52%, entry 19); 

this result confirmed again that steric hindrance had a marked 

impact on the reaction outcome. 

Table 2 Coupling of 1a with arylboronic acids
a
 

 

entry Ar 3 (yield [%]
b
) 

1 Ph 3a (69) 

2 3-MeC6H4 3b (68) 

3 4-MeC6H4 3c (64) 

4 3-MeOC6H4 3d (70) 

5 4-MeOC6H4 3e (66) 

6
c
 4-t-BuC6H4 3f (60) 

7 2-MeC6H4 3g (31) 

8 3,5-diMeC6H4 3h (71) 

9 3,5-diMeOC6H4 3i (66) 

10 4-FC6H4 3j (55) 

11 4-BrC6H4 3k (58) 

12 4-ClC6H4 3l (33) 

13 4-COOEtC6H4 3m (44) 

14 4-CF3C6H4 3n (21) 

15 4-CHOC6H4 3o (18) 

16 4-CNC6H4 3p (9) 

17 4-NO2C6H4 3q (trace) 

18 1-Naphthyl 3r (29) 

19 2-Naphthyl 3s (52) 

a
Reaction conditions, unless otherwise noted: 1a (0.5 mmol), ArB(OH)2 (1.25 

mmol), Pd(OAc)2 (5 mol %), L
7
 (12 mol %), KF (200 mol %), O2 (in a balloon), DCE 

(1.5 mL), 70 °C, 15 h. 
b
Isolated yield. 

c
2.5 mL of DCE. 

We explored the substrate scope of the reaction further by 

coupling 3,5-dimethylphenylboronic acid with furfuryl alcohols 

1 bearing various substituents (R
1
–R

3
, Table 3). The nature of 

the substituents played an important role in the reaction 

outcome. When R
2
 and R

3
 were H and R1 was a phenyl group 

with an electron-donating para-methyl or para-methoxyl 

group, the corresponding products (3t and 3u) were obtained 

entry [Pd] ligand additive yield (%)
b
 

1 Pd(OAc)2 L
1
 KF 63 

2 PdBr2 L
1
 KF 62 

3 PdCl2 L
1
 KF 10 

4 Pd(dppf)2Cl2 L
1
 KF 15 

5 Pd(CH3CN)2Cl2 L
1
 KF 58 

6 Pd2(dba)3 L
1
 KF 44 

7 Pd(CF3COO)2 L
1
 KF 17 

8 Pd[O2C(CH3)3]2 L
1
 KF 56 

9 Pd(OAc)2 L
2
 KF trace 

10 Pd(OAc)2 L
3
 KF 27 

11 Pd(OAc)2 L
4
 KF 67 

12 Pd(OAc)2 L
5
 KF 65 

13 Pd(OAc)2 L
6
 KF 60 

14 Pd(OAc)2 L
7
 KF 69 

15 Pd(OAc)2 L
7
 K2CO3 52 

16 Pd(OAc)2 L
7
 KOAc 50 

17 Pd(OAc)2 L
7
 K3PO4 35 

18 Pd(OAc)2 L
7
 CsF 21 

19
c
 Pd(OAc)2 L

7
 KF 73 

20
d
 Pd(OAc)2 L

7
 KF 47 

21
c
 — L

7
 KF 0 

22
c
 Pd(OAc)2 — KF 0 

23
c
 Pd(OAc)2 L

7
 — 21 
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in good yields (76% and 82%, respectively; entries 1 and 2). In 

contrast, when R
1
 had an electron-withdrawing para-nitro 

group or para-fluorine atom, the yields of the corresponding 

products were lower (entries 3 and 4), presumably as a result 

of the lower electron density of the furan rings. A substrate 

with a thienyl group at R
1
 afforded 3x in 47% yield, and when 

R
1
 was methyl or ethyl, 3y or 3z, respectively, was produced in 

a relatively low yield (entries 6 and 7). Notably, when furfuryl 

alcohol itself (R
1
–R

3
 = H) was employed as the substrate, a 

complicated mixture of products formed, and only a trace 

amount of 3a’ was isolated (entry 8). Compound 1j, with an 

electron-withdrawing methoxycarbonyl substituent at R
1
 failed 

to give the corresponding product (3b’, entry 9), perhaps 

because of the low electron density of the furan ring.  

With R
1
 = Ph, substrates with various R

2
 and R

3
 groups (1k–

1o) were also examined (entries 10–14). In the reactions of 

secondary alcohols, increasing the steric bulk around the 

hydroxyl group decreased the yield (1k > 1l > 1m > 1n). 

Tertiary alcohol 1o gave only a very low yield of 3h (8%). 

Table 3 Coupling of 3,5-dimethylphenylboronic acid with furfuryl alcohols 1
a
 

  

entry 1 

3 

(yield 

(%)
b
) 

entry 1 

3 

(yield 

(%)
b
) 

1 

 

3t 

(76) 
8 

 

3a´ 

(trace

) 

2 
 

3u 

(82) 
9 

 

3b´ 

(ND
d
) 

3 

 

3v 

(62) 
10 

 

3h 

(55) 

4 

 

3w 

(63) 
11 

 

3h 

(51) 

5 

 

3x 

(47) 
12 

 

3h 

(17) 

6 

 

3y 

(43)
c
 

13 

 

3h 

(ND
d
) 

7 

 

3z 

(27)
c
 

14 

 

3h 

(8) 

a
Reaction conditions, unless otherwise noted: 1 (0.5 mmol), 3,5-diMeC6H4B(OH)2 

(1.25 mmol), Pd(OAc)2 (5 mol %), L
7
 (12 mol %), KF (200 mol %), O2 (in a balloon), 

DCE (1.5 mL), 70 °C, 15 h. 
b
Isolated yield. 

c
Yield determined by 

1
H NMR 

spectroscopy of the crude products with dibromomethane as an internal 

standard. 
d
ND = not detected. 

To gain insight into the mechanism of the oxidative 

coupling, three control experiments was conducted (Scheme 

2). Specifically, under the standard conditions, coupling of the 

aldehyde 4 or acid 5 with 3,5-dimethylphenylboronic acid did 

not afford product 3h in considerable yields (reaction a and b),  

which indicated that 4 and 5 were not the main intermediate. 

Substrate 1p, which lacked a hydroxyl group, afforded only a 

low yield (9%) of the C–C bond cleavage product 3h (reaction 

c), indicating that the hydroxyl group facilitated the C-C bond 

cleavage.  

3h (7%)

3h (9%)

standard conditions

B(OH)2

Me Me

OPh COOH
5

(a)

(b)

(c)
OPh

3h (7%))

4

1p

OPh CHO

OMe

Standard conditions: 4 or 5, or 1p (0.2 mmol), PhB(OH)2 (0.5 mmol), Pd(OAc)2 (5 

mol %), L7 (12 mol %), KF (200 mol %), O2 (in a balloon), DCE (1.5 mL), 70 oC,

15 h. Isolated yield based on 4 or 5, or 1p.  
Scheme 2 Control experiments. 

On the basis of the results reported above, as well as 

previously reported results on C–C bond cleavage reactions of 

alcohols via β-carbon elimination,
5–8

 we propose the 

mechanism shown in Scheme 3. The palladation of furfuryl 

alcohols 1 with Pd(OAc)2 produces Pd complexes 6, which 

react with the boronic acid via release of HOAc to give 7. 

Transmetallation of 7 followed by electrophilic palladation of 

the furan ring leads to 9, which then undergoes aromatization-

driven C–C bond cleavage to afford 10. A reductive elimination 

reaction of 10 leads to products 3 and Pd(0). Oxidation of Pd(0) 

to Pd(II) by O2 completes the catalytic cycle.
15

 

 
Scheme 3 Proposed reaction mechanism. 

In summary, we have developed a simple, practical 

protocol for the synthesis of arylfurans from sustainably 

produced substituted furfuryl alcohols. This protocol involves a 

novel palladium-catalyzed oxidative coupling reaction between 

commercially available boronic acids and α-hydroxyalkylfurans 

with O2 as the terminal oxidant, as well as a C–C bond cleavage 

reaction, which may be induced by aromatization. The 

protocol opens a new avenue for the transformation of readily 

available furans into other useful compounds and may 

facilitate the design of new reactions of furans. Further 

exploration of the reaction scope, coupling partners, and 

mechanism are underway in our laboratory. 
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O
R2

OH
R3 +

O Ar
Pd(OAc)2 (5 mol %), L (12 mol %)

KF (2.0 equiv), DCE, O2 (balloon), 70 oC
R1 R1

(2.5 equiv)

ArB(OH)2

33 examples
yields up to 82% 

Aerobic oxidative α-arylation of furans with boronic acids via Pd(II)-catalyzed C–C 

bond cleavage of primary furfuryl alcohol provides sustainable access to arylfurans. 
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