Green Chemistry

Accepted Manuscript

This article can be cited before page numbers have been issued, to do this please use: X. Li, J. Choo and Y. Zhang, *Green Chem.*, 2018, DOI: 10.1039/C8GC00949J.

This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the **author guidelines**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the ethical guidelines, outlined in our <u>author and reviewer resource centre</u>, still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.

rsc.li/green-chem

Published on 05 July 2018. Downloaded by University of Sussex on 7/5/2018 10:38:10 AM

YAL SOCIETY CHEMISTRY

Journal Name

ARTICLE

Received 00th January 20xx, Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

www.rsc.org/

Sodium Stannate Promoted Double Bond Cleavage of Oleic Acid by Hydrogen Peroxide over Heterogeneous WO₃ Catalyst

Xiukai Li, Joel Choo Ping Syong and Yugen Zhang^{*}

The production of valuable mono- and dicarboxylic acids from abundant and renewable vegetable oil sources is of great industrial interest. It is demonstrated a simple and eco-friendly heterogeneous catalytic system for direct oleic acid (OA) cleavage by hydrogen peroxide to produce azelaic acid (AA) and nonanoic acid (NA). Commercially available tungsten oxide was used as the heterogeneous catalyst without any modification or pretreatment, and sodium stannate was used as an H_2O_2 stabilizer to improve the efficiency of the oxidant. The sodium stannate additive notably improved the product yields and it could be recycled together with the tungsten oxide catalyst. Isolated product yields up to 89% for azelaic acid and 65% for nonanoic acid were achieved from oleic acid in this simple system, which should be among the best results for oleic acid cleavage in heterogeneous systems. This strategy is also applicable for other catalytic systems for the cleavage of OA or its derivatives. This work provides a potential method for the large scale upgrading of oleic acid.

Renewable biomass feedstock is a potential alternative to fossil resources for the production of chemicals and fuels. Oils from vegetable origins are abundant, nontoxic, and biodegradable, making them very promising candidates for the sustainable chemical industry. In fact, the nonfood consumption of vegetable oils has increased steadily in the past two decades.^[1] The hydrolysis of triglycerides (the main constituents of vegetable oils and animal fats) generates glycerol and various saturated and unsaturated fatty acids such as palmitic acid, oleic acid, and linolenic acid. The fatty acid products as well as glycerol have functional groups possible for further derivatization and chemical modification. The oxidative cleavage of unsaturated fatty acid at the C=C bond for the production of shorter-carbon-chain monocarboxylic acids and dicarboxylic acids is of particlular interest.^[1a, 2] For instance, the ozonolysis of oleic acid enables the production of azelaic acid (C9 dicarboxylic acid) and nonanoic acid (C9 monocarboxylic acid) (Scheme 1),^[2d-f] both acid products being useful intermediates for the manufacture of polymers and a variety of materials.

Scheme 1. Oxidative cleavage of oleic acid into aldehydes and carboxylic acids.

Dr. X. Li, Joel Choo Ping Syong, Dr. Y.G. Zhang.

Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, Singapore 138669, Singapore. E-mail: ygzhang@ibn.a-star.edu.sg Electronic Supplementary Information (ESI) available: [details of ar

Though the ozonolysis of oleic acid (OA) into azelaic acid (AA) and nonanoic acid (NA) is efficient and has already been industrialized on a large scale, the use of hazardous ozone as an oxidant is obviously a big challenge for safety and environmental management. As such, safer, greener, and economically viable processes for oleic acid cleavage are highly sought-after. Noncatalytic and catalytic systems with oxidants alternative to ozone have therefore been explored extensively. Reagents such as nitric acid, organic peracids, potassium monopersulfate, potassium permanganate, sodium periodate, and sodium hypochlorite were used as strong oxidants for oleic acid cleavage in homogeneous systems with or without the aid of a catalyst;^[1a, 2a, c, 3] however, these oxidants are not eco-friendly. Transition metal-based catalytic systems with molecular oxygen and hydrogen peroxide as green oxidants are more attractive. Fe, W, Mo, and Ru organometallic complexes are homogeneous catalysts, activating O2 or H2O2 for oleic acid cleavage.^[1a, 2a, 4] Among those, the quaternary ammonium salts of W-based heteropoly acids gave the best product yield varying from 80-97% in two phase reaction systems.^[4d-h] Besides the direct cleavage of oleic acid, there have also been trials on the two-step conversions of oleic acid via 9,10-dihydroxysteric acid (DSA) as an intermediate.^[5] Oleic acid was first dihydroxylated to DSA by H_2O_2 in the presence of H_2WO_4 , then DSA was further cleaved by sodium hypochlorite^[5b] or molecular oxygen in the presence of homogeneous cobalt catalysts.^[5a, c, d] A heterogeneous Au/AlO₃ catalyst could cleave DSA to afford a high yield of azelaic acid (86%) and nonanoic acid (99%) under 5 bar of O₂; however, the catalyst recyclability suffered from the problem of Au leaching.^[5e, f] Compared with the one-step processes, the two-step processes were more complicated and afforded comparable or even lower product vield.

Electronic Supplementary Information (ESI) available: [details of any supplementary information available should be included here]. See DOI: 10.1039/x0xx00000x

Journal Name

ARTICLE

The direct cleavage of oleic acid in heterogeneous catalytic systems is preferred for better simplicity of the system and easier post-treatment. However, so far there have been guite limited reports on such heterogeneous systems probably because of the poor catalyst performances.^[6] About 80% product yield was achieved from methyl oleate cleavage over ruthenium nanoparticles supported on hydroxyapatite, however, with NaIO₄ as the oxidant instead of greener O_2 and H_2O_2 .^[7] Using Cr/Co/Mndoped MCM-41 molecular sieves^[6c] and supported/unsupported WO₃^[6e] as catalysts, only 30% yield of azelaic acid and nonanoic acid were produced from oleic acid oxidation by molecular oxygen or hydrogen peroxide. Surfactant-functionalized WO₃ and MoO₃ nanoparticles afforded higher product yield (near 80%) due to the better compatibility of catalysts in the reaction system.^[6a, d, 8] Sophisticated procedures were carried out to synthesize such nanoparticles with hydrophobic surfaces. Thus, all the current catalytic sytems are restricted for the large-scale cleavage of oleic acid.

In this work, we report a simple system for direct oleic acid cleavage by hydrogen peroxide employing commercial tungsten oxide as a catalyst and sodium stannate as an additive. The tungsten oxide is easily available in large amounts and it was used without any modification or pretreatment. Sodium stannate served as an H_2O_2 stabilizer and it promoted the reaction notably. An isolated yield up to 89% for AA was achieved from this simple system, in contrast to the 30–80% yield for AA from other heterogeneous systems.^[6a, 6c-e, 8] Moreover, both the tungsten oxide catalyst and the sodium stannate additive could be recycled. This work provides a possible strategy for improving product yields from oleic acid and its derivatives by H_2O_2 oxidation. This work may also open up the study of new W/Sn-based catalysts for this reaction.

Tungsten-based catalysts are attractive for oleic acid cleavage in both the homogeneous and heterogeneous systems.^[4d-h, 6a, e, 8] The use of tungsten oxide as a solid catalyst for oleic acid cleavage by hydrogen peroxide usually requires a reaction temperature above 100 °C to achieve high OA conversion. [6a, e, 8] Table 1 (Entries 2-4) reports the results of OA cleavage by hydrogen peroxide in the presence of commercial WO3 catalyst under different reaction tempratures. The WO₃ was in a monoclinic crystal structure and had micron particle sizes. A rapid sample derivatization method (esterification in BF₃-methanol)^[9] was used to speed up GC analysis in our preliminary catalyst screening and reaction optimization, with the extents of esterification at 70% for AA and 85% for NA, respectively. One can see that both OA conversion and the apparent yields for NA and AA increased with the reaction temperature. Full OA conversion was achieved at the reaction temperature of 130 °C, and the apparent yields for NA and AA were 38.1% and 22.9%, respectively. Octanoic acid, suberic acid, nonanal and 9-oxononanoate were observed as the major side products. As the decomposition of hydrogen peroxide at above 130 °C is rapid and dangerous,^[10] reaction temperatures should be capped at 130 °C. As we envision that suppressing the rapid decomposition of hydrogen peroxide might improve reaction efficiency, we added H_2O_2 stabilizers into the system. Different types of stabilizers were screened (Table 1 & S1), including inorganic acids, inorganic salts, metal oxides, and chelating agents.^[11] Most of the stabilizers did not give positive effects except sodium stannate. The combination

of sodium stannate with the tungsten oxide catalyst resulted in product yields improving to 51.1% for NA and 42.0% for AA (Entry 5, Table 1). It is also noted that the addition of sodium stannate did not change the product distribution. Other tin-containing compounds were not as effective as sodium stannate (Entries 6-8). Our control reaction (Entry 9, Table 1) revealed that sodium stannate itself is inactive for oleic acid cleavage. To study the thermal decomposition of H₂O₂ in the presence of sodium stannate stabilizer, we carried out the tests at 130 °C without oleic acid and WO_3 in the system (Figure 1). It turned out that 91% of H_2O_2 remained in 4 h and 66% of H₂O₂ remained in 16 h. This is a sharp contrast to the fact that H₂O₂ was almost fully decomposed in 4 h at 130 °C in the absence of sodium stannate. Thus, it is feasible to improve OA cleavage by adding sodium stannate as a H₂O₂ stabilizer into the reaction system. Similar positive effects of adding H₂O₂ stabilizer were also observed in Fenton oxidations.^[12]

Table 1 The oxidative cleavage of OA by H_2O_2 in the presence of commercial WO_3 catalyst and tin additives.

	Catalyst	Additive	Yield	(%) ^[a]				Conv
Entry			C ₈ - acid	C ₉ -al	NA	C ₉ -al∙ acid	AA	(%)
1	-	-	1.8	4.7	3.6	2.7	1.2	60.0
2	WO ₃ ^[b]	-	3.2	2.9	14.6	1.5	10.6	53.2
3	WO ₃ ^[c]	-	4.6	11.7	28.1	10.8	20.9	76.1
4	WO ₃	-	5.0	3.9	38.1	2.0	22.9	100.0
5	WO ₃	Na_2SnO_3	2.4	1.3	51.1	2.6	42.0	100.0
6	WO ₃	Sn(OH) ₄	0.0	0.0	37.2	0.0	27.1	100.0
7	WO ₃	SnO ₂	7.1	7.5	32.2	6.7	24.7	100.0
8	WO ₃	SnCl ₄	5.0	7.6	24.4	6.0	17.0	100.0
9	-	Na_2SnO_3	2.7	0.6	5.4	0.0	3.9	52.7

OA 283 mg (1 mmol), WO₃ 30 mg, Na₂SnO₃ 10 mg, *tert*-butanol 4 mL, 31% H₂O₂ 1 mL, 130 °C 4 h. [a] GC yield; [b] 60 °C 4 h; [c] 100 °C 4 h. C₈-acid: octanoic acid; C₉-al: nonanal; NA: nonanoic acid; C₉-al-acid: 9-oxononanoate: AA: azelaic acid.

Figure 1. Rate of H_2O_2 decomposition in the presence or absence of Na₂SnO₃. Na₂SnO₃ 10 mg, *tert*-butanol 4 mL, 31% H₂O₂ 1 mL, 130 °C.

Published on 05 July 2018. Downloaded by University of Sussex on 7/5/2018 10:38:10 AM.

Journal Name

We further applied the sodium stannate additive to similar systems for OA cleavage by H_2O_2 but with tungstic acids and molybdenum oxide as the catalysts (Figure 2A). In the absence of sodium stannate, the WO₃ catalyst enabled the best NA (38.1%) and AA (22.9%) yields and the MoO₃ catalyst gave the lowest NA (24.1%) and AA (14.3%) yields. The two tungstic acids afforded only modest product yields among the four catalysts. With sodium stannate addition, the product yields improved notably for all the four catalytic systems. The yield for AA was enhanced by 34-77% and the yield for NA was enhanced by 84-127%. The H₂W₂O₇ catalyst in combination with Na2SnO3 additive afforded product yields comparable to that from the system of WO₃ and Na₂SnO₃. However, H₂W₂O₇ is an unstable heterogeneous catalyst because it reacts with H_2O_2 to form water-soluble pertungstic acid.^[5b-d] The bestperforming system with WO₃ as a catalyst and Na₂SnO₃ as an additive was applied to other substrates such as technical grade oleic acid (TOA), 9,10-epoxyoctadecanoic acid (EOA), and 9,10dihydroxysteric acid (DSA), with the results shown in Figure 2B. The technical grade OA contains 90% oleic acid, with stearic acid as the major impurity, and it is much cheaper than refined OA. EOA and DSA are possible intermediates in OA oxidative cleavage by H_2O_2 .^{[4f,} ^{5]} Similarly, the addition of Na₂SnO₃ as a hydrogen peroxide stabilizer improved the product yields for all substrates including OA, TOA, EOA, and DSA. These results also provide information for the understanding of the reaction mechanism. In the current work, the use of Na₂SnO₃ did not change the product distribution from OA cleavage, as shown in Table 1. The epoxidation of OA to EOA and the subsequent hydrolysis of EOA to DSA are rather straightforward in the presence of H_2O_2 .^[13] Product yields similar to those from OA cleavage could be achieved from EOA and DSA under the same conditions. Thus, we propose that the reactions of OA cleavage with or without the Na₂SnO₃ additive proceed by the same pathway (Scheme 2). However, adding Na₂SnO₃ as a H₂O₂ stabilizer made better utilization of the oxidant and enabled higher reaction efficiency. Thus, adding Na₂SnO₃ as a H₂O₂ stabilizer is a general strategy to improve the cleavage of OA and its derivatives by H_2O_2 .

The reaction conditions were optimized for the system with WO3 catalyst and Na2SnO3 additive, including the reaction temperature, the reaction time, and the loading amounts of WO₃, Na₂SnO₃, and H₂O₂. Figure 3A shows the temperature dependence of OA cleavage by H_2O_2 in the presence of WO_3 and Na_2SnO_3 . In the presence of Na2SnO3, the fast decomposition of H2O2 was suppressed and a reaction temperature higher than 130 °C could therefore be applied. The product yields increased with the reaction temperature and maximized at 130 °C, then dropped at higher temperature. In view that similar temperature dependence was observed for the system without Na₂SnO₃ (Entries 2-4, Table 1), it is deduced that the Na2SnO3 addition does not decrease the activation energy for OA cleavage. However, Na2SnO3 affects the reaction efficiency significantly even at a very small quantity. The addition of several milligrams of Na₂SnO₃ resulted in notable improvement in the product yields (Figure 3B), and the loading amount of 10 mg was the most optimal. From Figure 3C, the product yields increased remarkably with WO₃ loading and the rate slowed down when the loading amount exceeded 30 mg. Thus, the minimum loading amount for WO3 is 30 mg. It is noted that the optimal loading amount of WO₃ for the current system (10.6 wt%) is

much lower than that (45 wt%) of surfactant-functionalized WO₃.^[8] The reaction time was studied for different loading amounts of H_2O_2 (Figure 3D). For each loading amount of H_2O_2 , the product yields increased quickly in the first 4 h, then changed slowly after 4 h. At the same reaction time, the best product yields were achieved at 1.5 mL of H_2O_2 and reached 61.4% yield for NA and 56.3% yield for AA at 12 h.

Figure 2. (A) The oxidative cleavage of OA over various catalysts w/wo Na_2SnO_3 additive. (B) The oxidative cleavage of various substrates over WO₃ catalyst w/wo Na_2SnO_3 additive. Substrate 1 mmol, catalyst 30 mg, Na_2SnO_3 10 mg, *tert*-butanol 4 mL, 31% H_2O_2 1 mL, 130 °C 4 h. NA: nonanoic acid; AA: azelaic acid; TOA: technical grade OA (90%); EOA: 9,10-epoxyoctadecanoic acid; DSA: 9,10-dihydroxysteric acid. GC yields.

Scheme 2. The proposed reaction pathway for OA cleavage by ${\rm H_2O_2}$ in the presence of WO_3 and Na_2SnO_3.

Published on 05 July 2018. Downloaded by University of Sussex on 7/5/2018 10:38:10 AM.

Journal Name

DOI: 10.1039/C8GC00949J

Figure 3. Deferred reaction conditions: OA 283 mg (1 mmol), WO₃ 30 mg, Na₂SnO₃ 10 mg, *tert*-butanol 4 mL, H₂O₂ 1 mL, 130 $^{\circ}$ C, reaction time 12 h. (A) The temperature dependence of OA cleavage by H₂O₂ in the presence of WO₃ and Na₂SnO₃. (B) The changing of loading amount of Na₂SnO₃ at 4 h reaction time. (C) The changing of loading amount of WO₃. (D) The loading amount of H₂O₂ and the reaction time.

Figure 4. The recyclability tests for WO₃ and Na₂SnO₃. OA 283 mg (1 mmol), catalyst 30 mg, Na₂SnO₃ 10 mg, *tert*-butanol 4 mL, H₂O₂ 1 mL, 130 °C 4 h. Catalyst was separated by centrifuge and washed with *tert*-butanol twice for the next test.

Catalyst recyclability was tested for OA cleavage with the results reported in Figure 4. In seven runs of use and reuse of the catalyst, the product yields dropped slightly for NA and AA. Since the product yields in the recycled reactions are higher than that in the reaction with WO₃ catalyst alone (Entry 4, Table 1), we assumed that the Na₂SnO₃ additive was recycled together with WO₃. The fresh and the used catalysts were characterized by scanning electron microscopy (SEM). The fresh WO₃ catalyst contains cubes

in micron sizes (Figure 5A). After the first round of catalytic reaction, the cubes broke into smaller irregular particles (Figure 5B). After seven rounds of recyclability testing, the catalyst morphology changed into uniform nanoparticles (Figure 5C). The XRD analysis (Figure S1) shows that the fresh WO₃ catalyst is in a monoclinic crystal structure. After several runs of reaction for OA cleavage, the catalyst gradually changed to monoclinic $WO_{2.72}$.^[14] The interaction between WO_3 and aqueous H_2O_2 is profound under solvothermal conditions. WO₃ could be converted to various hydrates and tungsten-peroxo complexes under the conditions,^[8] and this would induce the restacking and phase transition of the crystals, and also the changes in sample morphology. Because the tungsten-peroxo complexes are the active oxidants for OA cleavage and their formation is independent of the crystal structure of WO₃, WO₃ with various crystal structures can activate H_2O_2 for this reaction.^[8] The tungsten-peroxo complexes are unstable and gradually decomposed, converting to the oxygen-deficient metal oxide after prolonged reaction. The catalyst after the seventh reaction was subjected to the energy dispersive X-ray analysis (EDXA). The elemental mapping spectra (Figure 5D & E) for the used catalyst show that both W and Sn were uniformly dispersed over the sample, confirming that the tin additive was recovered together with the WO₃ catalyst. The elemental emission spectrum (Figure 5F) indicates that the W/Sn ratio (2.1 in molar) in the used catalyst is close to the initial ratio (2.7) in the first round of reaction. It is noteworthy that Na₂SnO₃ is soluble in tert-butanol/water mixture but it can be recycled together with the WO₃ catalyst. We presume

Published on 05 July 2018. Downloaded by University of Sussex on 7/5/2018 10:38:10 AM

Journal Name

Figure 5. The SEM image and the EDX mapping. (A) Fresh WO₃ catalyst. (B) Catalyst after the first round of reaction shown in Figure 4. (C) Catalyst after the seventh round of reaction shown in Figure 4. (D - F) The energy dispersive X-ray analysis (EDXA) for the catalyst after the seventh round of reaction shown in Figure 4.

that there might be certain interactions between the WO₃ hydrate and the Na₂SnO₃ hydrate. For instance, the intermolecular dehydration between the Na₂SnO₃ hydrate and the WO₃ hydrate could graft Na₂SnO₃ onto the surface of WO₃ (Scheme S1). Such binding between WO₃ and Na₂SnO₃ enabled the recyclability of Na₂SnO₃ together with WO₃. The WO₃-Na₂SnO₃ composite (W/Sn \cong 2.1–2.7) is a bifunctional material; WO₃ is the active phase to activate H₂O₂ for oleic acid cleavage, while the Na₂SnO₃ species attached to the WO₃ surface serves as a H₂O₂ stabilizer. This observation may open the door for the design of new W-Sn based compounds as bifunctional catalysts for OA cleavage.

As we have demonstrated that adding Na₂SnO₃ could improve the yield for AA and NA from oleic acid cleavage, we further scaled up the reaction (8 mmol of OA) to verify the efficiency of this protocol (Supporting Information). After product isolation and purification, AA was achieved at 89% yield as a white solid (Figure S2), and NA was achieved at 65% yield as a clear liquid (Figure S3); the results should be among the best for oleic acid cleavage in heterogeneous systems.^[6a, 6c-e, 8] The isolated yields, especially that for AA, are higher than those from GC analysis, because the extent of esterification for a dicarboxylic acid is lower than that for a monocarboxylic acid by the rapid sample derivatization method.^[9]

Conclusions

In conclusion, we have demonstrated a very simple heterogeneous catalytic system for direct oleic acid cleavage to produce shorter carbon chain carboxylic acids by H_2O_2 . Commercially available WO₃ was used as the catalyst and Na₂SnO₃ was used as an additive to stabilize H_2O_2 . The Na₂SnO₃ additive did not change the reaction pathway but notably improved efficiency of the oxidant and product yield. This strategy is also applicable for other catalytic systems for the cleavage of OA and its derivatives. In a scale-up reaction, azelaic acid and nonanoic acid were produced at isolated yields of 89% and 65% from this system. The WO₃

catalyst and the Na₂SnO₃ additive can be recycled without remarkable loss in activity. It is proposed that the interaction between the WO₃ hydrate and the Na₂SnO₃ hydrate enabled the good recyclability of the catalyst and the additive.

Acknowledgements

This work was supported by the Institute of Bioengineering and Nanotechnology (Biomedical Research Council, Agency for Science, Technology and Research (A*STAR), Singapore).

Notes and references

a) A. E. Kerenkan, F. Beland and T. O. Do, *Catal. Sci. Technol.* **2016**, *6*, 971-987. b) M. Wang, J. Ma, H. Liu, N. Luo, Z. Zhao and F. Wang, *ACS Catal.* 2018, *8*, 2129–2165.

[2] a) P. Spannring, P. C. A. Bruijnincx, B. M. Weckhuysen and R. Gebbink, Catal. Sci. Technol. 2014, 4, 2182-2209; b) A. Kockritz and A. Martin, Eur. J. Lipid Sci. Technol. 2011, 113, 83-91; c) P. Spannring, P. C. A. Bruijnincx, B. M. Weckhuysen and R. Gebbink, Rsc Adv. 2013, 3, 6606-6613; d) B. G. Khadijeh, A. Nilofar and M. A. Yarmo in V₂O₅-Polyaniline Nanocomposite as A Catalyst for Heterogeneous Ozonolysis of Oleic Acid, Vol. 364 Eds.: Z. A. Ahmad, M. A. Yarmo, F. Haji, A. Aziz, M. Y. M. Sulaiman, B. Ahmad, K. N. Ismail, A. R. Jamaludin, M. A. Sulaiman and M. F. A. Rahman), 2012, pp. 217; e) C. Pfrang, F. Sebastiani, C. O. M. Lucas, M. D. King, I. D. Hoare, D. Chang and R. A. Campbell, Phys. Chem. Chem. Phys. 2014, 16, 13220-13228; f) A. Kockritz and A. Martin, Eur. J. Lipid Sci. Technol. 2008, 110, 812-824; g) K. Kawasaki, F. Jin, A. Kishita, K. Tohji and H. Enomoto in Partial hydrothermal oxidation of high molecular weight unsaturated carboxylic acids for upgrading of biodiesel fuel. Vol. 898 Eds.: K. Tohji, N. Tsuchiya and B. Jeyadevan), 2007, pp. 159.

[3] a) A. Kockritz, M. Blumenstein and A. Martin, *Eur. J. Lipid Sci. Technol.* 2010, *112*, 58-63; b) P. Spannring, I. Prat, M. Costas, M. Lutz, P. C. A. Bruijnincx, B. M. Weckhuysen and R. Gebbink, *Catal. Sci. Technol.* 2014, *4*, 708-716; c) F. O. Zimmermann, E. Meux, J. L. Mieloszynski, J. M. Lecuire and N. Oget, *Tetrahedron Lett.* 2005, *46*, 3201-3203.

ARTICLE

[4] a) A. Behr, N. Tenhumberg and A. Wintzer, *Rsc Adv.* 2013, *3*, 172-180; b) P. Spannring, V. Yazerski, P. C. A. Bruijnincx, B. M. Weckhuysen and R. J. M. KleinGebbink, *Chem. Eur. J.* 2013, *19*, 15012-15018; c) S. E. Turnwald, M. A. Lorier, L. J. Wright and M. R. Mucalo, *J. Mater. Sci. Lett.* 1998, *17*, 1305-1307; d) A. Haimov, H. Cohen and R. Neumann, *J. Am. Chem. Soc.* 2004, *126*, 11762-11763; e) L. C. de la Garza, K. D. Vigier, G. Chatel and A. Moores, *Green Chem.* 2017, *19*, 2855-2862; f) A. Godard, P. De Caro, S. Thiebaud-Roux, E. Vedrenne and Z. Mouloungui, *J. Am. Oil Chem. Soc.* 2013, *90*, 133-140; g) E. Antonelli, R. D'Aloisio, M. Gambaro, T. Fiorani and C. Venturello, *J. Org. Chem.* 1998, *63*, 7190-7206; h) Z. P. Pai, A. G. Tolstikov, P. V. Berdnikova, G. N. Kustova, T. B. Khlebnikova, N. V. Selivanova, A. B. Shangina and V. G. Kostrovskii, *Russ. Chem. Bull.* 2005, *54*, 1847-1854.

[5] a) M. A. Oakley, S. Woodward, K. Coupland, D. Parker and C. Temple-Heald, J. Mol. Catal. a-Chem. 1999, 150, 105-111; b) V. Benessere, M. E. Cucciolito, A. De Santis, M. Di Serio, R. Esposito, F. Ruffo and R. Turco, J. Am. Oil Chem. Soc. 2015, 92, 1701-1707; c) E. Santacesaria, M. Ambrosio, A. Sorrentino, R. Tesser and M. Di Serio, Catal. Today 2003, 79, 59-65; d) E. Santacesaria, A. Sorrentino, F. Rainone, M. Di Serio and F. Speranza, Ind. Eng. Chem. Res. 2000, 39, 2766-2771; e) A. Kulik, A. Martin, M. M. Pohl, C. Fischer and A. Kockritz, Green Chem. 2014, 16, 1799-1806; f) A. Kulik, A. Janz, M. M. Pohl, A. Martin and A. Kockritz, Eur. J. Lipid Sci. Technol. 2012, 114, 1327-1332.

[6] a) A. E. Kerenkan, A. S. Ello, B. Echchahed and T. O. Do, *Int. J. Chem. Reactor Eng.* 2016, *14*, 899-907; b) P. H. Hoang, N. T. Nhung and L. Q. Dien, *Aip Adv.* 2017, *7*; c) S. E. Dapurkar, H. Kawanami, T. Yokoyama and Y. Ikushima, *Topics Catal.* 2009, *52*, 707-713; d) A. S. Ello, A. Enferadi-Kerenkan, A. Trokourey and T. O. Do, *J. Am. Oil Chem. Soc.* 2017, *94*, 1451-1461; e) H. Noureddini and M. Kanabur, *J. Am. Oil Chem. Soc.* 1999, *76*, 305-312.

[7] C. M. Ho, W. Y. Yu and C. M. Che, *Angew. Chem. Int. Ed.* **2004**, *43*, 3303-3307.

[8] A. Enferadi-Kerenkan, A. S. Ello and T. O. Do, *Ind. Eng. Chem. Res.* **2017**, *56*, 10639-10647.

[9] a) K. Ichihara and Y. Fukubayashi, J. Lipid Res. 2010, 51, 635-640;
b) L. D. Metcalfe and A. A. Schmitz, Ana. Chem. 1961, 33, 363.

[10] W. C. Schumb, Ind. Eng. Chem. **1949**, 41, 992-1003.

[11] a) W. C. Schumb, *Ind. Eng. Chem.* 1957, *49*, 1759-1762; b) P. Jones, M. L. Tobe and W. F. K. Wynnejones, *Trans. Faraday Soc.* 1959, *55*, 91-97; c) V. F. Gromov, M. G. Voronkov and V. M. Beltsov, *Zhurnal Prikladnoi Khimii* 1970, *43*, 2767-&; d) M. Y. Kanter, I. K. Raskina, G. A. Bogdanov and F. I. Sadov, *Zhurnal Prikladnoi Khimii* 1970, *43*, 447-&; e) G. W. Kutney, *Pulp & Paper-Canada* 1985, *86*, 182-189; f) J. Abbot and D. G. Brown, *Cana. J. Chem. Revue Cana. De Chimie* 1990, *68*, 1537-1543; g) S. Croft, B. C. Gilbert, J. R. L. Smith, J. K. Stell and W. R. Sanderson, *J. Chem. Soc. Perkin Trans.* 2 1992, 153-160.

[12] a) Y. H. Kim, W. S. Shin, S. J. Choi, I. Hwang, J. Y. Park and M. C. Kim, *Abs. Papers Am. Chem. Soc.* **2008**, *236*; b) Y. Jung, J. Y. Park, S. O. Ko and Y. H. Kim, *Chemosphere* **2013**, *90*, 812-819.

[13] D. Swern, G. N. Billen, T. W. Findley and J. T. Scanlan, J. Am. Chem. Soc. **1945**, 67, 1786-1789.

[14] a) X. X. Guo, X. Y. Qin, Z. J. Xue, C. B. Zhang, X. H. Sun, J. Hou and T. Wang, *Rsc Adv.* **2016**, *6*, 48537-48542; b) Z. F. Huang, J. J. Song, L. Pan, F. L. Lv, Q. F. Wang, J. J. Zou, X. W. Zhang and L. Wang, *Chem. Commun.* **2014**, *50*, 10959-10962. Journal Name

View Article Online DOI: 10.1039/C8GC00949J ARTICLE

Green Chemistry Accepted Manuscript

