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ABSTRACT: Synthesis of a bifunctional allylboron
reagent via Ni-catalyzed borylation of allylic acetate is
reported. Subsequent allylation of aldehydes gave
homoallylic alcohols in good yields. The allylsilane moiety
in the alcohol product serves as a useful handle for
subsequent transformations.

KEYWORDS: bifunctional allylation reagent,
Ni-catalyzed allylic borylation, allylboronate,
homoallylic alcohol

Allylic organometallics (I, Scheme 1) are useful bifunc-
tional allylation reagents in organic synthesis.1,2 The

addition of reagent I to carbonyl compounds, aldehyde for
instance, produces homoallylic alcohols and simultaneously
unveils an allylmetal unit that is poised for a second allyl
addition event. However, complications may arise when the
chemical reactivities of two allylmetal units in reagent I are
similar to each other, and as a result, a mixture of products
(e.g., II and III) can be generated. Therefore, when designing
such reagents, two allylmetal units often need to have
orthogonal reactivities to eliminate such complications.
Toward this end, several bifunctional allylation reagents I,

which meet such a requirement, have been developed. For
example, the allylstannane unit in reagent B [2-(trimethylsilyl-
methyl) allyltri-n-butylstannane] selectively reacted with
aldehydes to give homoallylic alcohols 3 in the presence of a
Lewis acid (eq 1, Scheme 2).3,4 By taking advantage of the
different reactivities of allylboron and allylsilane toward
carbonyl addition, Williams and co-workers developed a
bifunctional allylation reagent C from organotin reagent B.5

The reaction of C with aldehydes produced the same alcohol
products 3 (eq 2, Scheme 2). More recently, 2-(trimethylsilyl-
methyl) allylborane reagent E was synthesized from the
allylselenium precursor D by the Kadota group (eq 3, Scheme
2).6 Addition of E to aldehydes also afforded alcohols 3.
However, these important achievements are not without any
drawback. Organoboron reagent E is known to be moisture
and oxygen sensitive, while preparation of reagent C requires

organotin reagent B. The development of a nontoxic, air- and
moisture-stable reagent to address these disadvantages is
therefore valuable.
With our continuing interest in allylation chemistry, we set a

goal to develop a reagent to solve this problem. We chose
allylboronate 2 (Scheme 2) as the targeted reagent because it is
not toxic and, moreover, should be stable to air and moisture.
It is quite surprising that such a simple allylboronate reagent
has not been synthesized previously. We report herein the
preparation of this reagent via Ni-catalyzed borylation of the
commercially available allylic acetate 1 (eq 4, Scheme 2).
Reagent 2 readily reacts with aldehyde to give homoallylic
alcohol 3 that has an allylic silane moiety as a useful handle for
subsequent transformations.
We began our studies by developing the reaction conditions

for borylation of allylic acetate 1. The initial experiments were
conducted with CuCl as the catalyst for allylic borylation.7

While the reaction did not occur in the absence of a ligand, 1H
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Scheme 1. Reaction of Aldehyde with Bifunctional
Allylation Reagent I

Scheme 2. Approaches to Homoallylic Alcohol 3 via
Bifunctional Allylation Reagents
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NMR spectroscopy indicated that allylic acetate 1 was fully
converted to reagent 2 with 5 mol % of Xantphos or dppbz as
the ligand in 24 h at ambient temperature. In addition, the
combination of Ni(cod)2 and PPh3 is also an effective catalytic
system to convert allylic acetate 1 to 2.8 However, although
reagent 2 is not moisture and oxygen sensitive, it is not stable
enough toward flash column chromatography purification.
Therefore, subsequent experiments were conducted to probe
whether the aldehyde allylation step can be carried out in a
one-pot manner. After full consumption of allylic acetate 1,
benzaldehyde was added to the same reaction vessel.
Gratifyingly, the allylation was complete in 30 min at ambient
temperature, and homoallylic alcohol 3a was generated from
the reaction. The reaction catalyzed by CuCl and Xantphos
gave product 3a in 83% yield. In the case of CuCl and dppbz,
3a was isolated in a much lower yield. The reaction under the
Ni system provided homoallylic alcohol 3a in 73% yield (Table
1). In the absence of B2pin2, however, the Ni-catalyzed

reaction did not produce any 3a. The Ni catalyst can be
removed by simply filtering the crude reaction mixture through
a short pad of Celite after completion of the reaction. The
obtained stock solution of reagent 2 can be stored at −20 °C
over 2 weeks with only minimal decomposition (<10%; please
see Supporting Information for details). By contrast, it was not
feasible to obtain a stock solution of reagent 2 in the cases of
Cu-catalyzed reactions. Therefore, we chose the catalytic
system of Ni(cod)2 and PPh3 to explore the scope of aldehyde
for this reaction.
The reaction conditions developed for the synthesis of 3a

were then applied to reactions with a variety of aldehydes, and
the results are summarized in Scheme 3. Allylation of aromatic
aldehydes bearing an electron-donating or electron-with-
drawing substituent at the para-position of the arene provided
products 3b−d in 77−92% yields. Halogen-substituted
aromatic aldehydes reacted to afford alcohols 3e−h in 79−
98% yields. Similar results were obtained with α,β-unsaturated
aldehydes, and alcohols 3i−k were formed in 67−82% yields.
Reactions with heteroaromatic aldehydes occurred smoothly to
furnish products 3l−n in 67−95% yields. Finally, aliphatic
aldehydes are also suitable reaction partners, and alcohols 3o−
r were obtained in 67−97% yields. It should be noted that the
allylsilane moiety in homoallylic alcohols 3 is sensitive to acidic

Table 1. Evaluation of the Reaction Conditions for Allylic
Borylation and Aldehyde Allylation Reaction Sequencea

entry catalyst ligand base yield (3a) (%)b

1 CuCl no ligand KOt-Bu NR
2 CuCl Xantphos KOt-Bu 83
3 CuCl dppbz KOt-Bu 17
4c Ni(cod)2 PPh3 no base 73

aReaction conditions: allylic acetate 1 (0.15 mmol, 1.5 equiv), CuCl
(10 mol %), ligand (10 mol %), KOt-Bu (0.18 mmol, 1.8 equiv),
B2pin2 (0.18 mmol, 1.8 equiv), THF (0.3 mL), rt, 24 h; then
benzaldehyde (0.1 mmol, 1.0 equiv), rt, 2 h. bYields of isolated
products are listed. cAllylic acetate 1 (0.15 mmol, 1.5 equiv),
Ni(cod)2 (5 mol %), PPh3 (5 mol %), B2pin2 (0.18 mmol, 1.8 equiv),
toluene (0.3 mL), 60 °C, 2 h; then benzaldehyde (0.1 mmol, 1.0
equiv), rt.

Scheme 3. Synthesis of Homoallylic Alcohols 3 via Allylic
Borylation and Aldehyde Allylationa,b

aAllylic acetate 1 (0.15 mmol, 1.5 equiv), Ni(cod)2 (5 mol %), PPh3
(5 mol %), B2pin2 (0.18 mmol, 1.8 equiv), toluene (0.3 mL), 60 °C, 2
h; then aldehyde (0.1 mmol, 1.0 equiv), rt. bYields of isolated
products are listed.
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conditions. For instance, homoallylic alcohols 3 were slowly
decomposed in deuterated chloroform.9 However, they are
perfectly stable in d6-acteone or d8-toluene.
cis-2,6-Disubstituted tetrahydropyran is a common scaffold

in numerous natural products (Figure 1).10 As many strategies

have been developed to construct such a structural entity,
homoallylic alcohols 3 can also be utilized to synthesize
tetrahydropyrans.3 As shown in Scheme 4, in the presence of

TMSOTf, reactions of alcohol 3p with a few representative
aldehydes gave cis-2,6-disubstituted tetrahydropyran products
4a−c in 70−96% yields with >20:1 diastereoselectivities
(determined by NOE studies). In addition, 4-hydroxyl-
tetrahydropyran 5 was obtained in 98% yield via a one-pot
ozonolysis and reduction reaction sequence from 4a. The
stereochemistry of the newly formed hydroxyl group was
assigned by NOE studies.
In summary, we developed a Ni-catalyzed borylation of

allylic acetate to access bifunctional allylation reagent 2.
Reagent 2 readily reacted with a variety of aldehydes to give

homoallylic alcohols 3 in good yields. The allylsilane unit
embedded in product 3 serves as a useful handle for additional
functional group transformations, as illustrated by diaster-
eoselective synthesis of cis-2,6-disubstituted tetrahydropyrans.
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