ChemComm

COMMUNICATION

RSCPublishing

View Article Online View Journal | View Issue

Cite this: Chem. Commun., 2013, 49, 7747

Received 15th May 2013, Accepted 1st July 2013

DOI: 10.1039/c3cc43640c

www.rsc.org/chemcomm

Nickel-catalyzed manipulation of tertiary phosphines via highly selective C–P bond cleavage[†]

Jian Cao,^a Xian Huang^{+ab} and Luling Wu*^a

A catalytic cycle involving oxidative addition of nickel(0) with a carboncarbon single bond in the three-membered ring of diarylmethylenecyclopropa[*b*]naphthalenes, highly selective cleavage of the C–P bond, and migration of the aryl group of phosphine consequently provides a new type of bulky phosphine in excellent yields.

As a challenging topic, the cleavage of C–P bonds has attracted much attention in the past few decades.¹ Particularly, the C–P bond cleavage of tertiary phosphines has attracted much attention because many tertiary phosphines act as important ligands for transition metals and as versatile intermediates in organic synthesis.² Reports on C–P bond activation of tertiary phosphines with transition metals have been disclosed in the past years.³ Most of these reports show C–P bond activation of tertiary phosphines with a stoichiometric amount of transition metal to provide stable metal compounds (Scheme 1, eqn (1)).^{3a-f} However, very few examples of C–P activation of tertiary phosphines with a catalytic amount of transition metal have been reported. For example, Chan and coworkers have reported a catalytic user-friendly phosphination of aryltriflates and triarylphosphines providing a variety of substituted phosphines *via* C–P bond cleavage.^{3g,h}

Scheme 1 C–P cleavage reactions reported previously and in this report.

^a Department of Chemistry, Zhejiang University, Hangzhou 310028, P. R. China. E-mail: wululing@zju.edu.cn In many transition-metal-catalyzed reactions, bulky phosphines show better reactivity than ordinary phosphines.⁴ Thus, much attention has been focused on the synthesis of bulky phosphines in recent years. However, the methods are mostly limited to the reaction of a chlorophosphine with bulky organometallic reagents⁵ and the transitionmetal-catalyzed phosphination or phosphinylation of a bulky aryl halide.⁶ We envisioned that selective cleavage of a C–P bond may provide a potential efficient synthesis of bulky phosphines. In this communication we wish to disclose an unprecedented nickel-catalyzed atom-economical and highly selective C–P bond cleavage of phosphines 1 coupled with a ring-opening reaction of diarylmethylenecyclopropa[b]naphthalenes 2,⁷ leading to an efficient synthesis of a new type of bulky phosphine (Scheme 1, eqn (2)).

During our studies on the synthetic utility of diarylmethylenecyclopropa[b]naphthalenes 2, we recently reported a highly regioselective Pd(0)-catalyzed [3+2] cycloaddition reaction of diarylmethylenecyclopropa[b]naphthalenes with alkenes, alkynes or arynes to produce 1(3)-alkylidene-2,3-dihydro-1H-cyclopenta[b]naphthalene, 1-alkylidene-1H-cyclo-penta[b]naphthalene and 11-diarylmethylene-11H-benzo[b]fluorine derivatives, respectively.8 We proposed a mechanism in which the reaction is initiated by the oxidative addition of a Pd(0) species to the three-membered ring of compound 2. As a further exploration of the reaction mechanism, we recently tried to prepare the nickelacyclobutene A. We envisaged that the reaction of 1-(diphenylmethylene)-1H-cyclopropa[b]naphthalene (2a) with Ni(PPh₃)₂ generated in situ from Ni(PPh₃)₂Cl₂ and Zn would give A via oxidative addition. However, the expected nickelacyclobutene A was not isolated and a new product 3a was obtained instead (Scheme 2). Through spectroscopic (¹H, ¹³C, ³¹P NMR, MS) and X-ray diffraction analysis,⁹ we identified the structure of this new product, which is shown in Fig. S1 (ESI⁺). Obviously, the reaction showed an unexpected Ni-mediated ring-opening coupling of 2a

Scheme 2 Our proposal and our observation.

^b State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China

 $[\]dagger$ Electronic supplementary information (ESI) available: Experimental details and $^1H,\,^{13}C$ NMR spectra of new compounds. CCDC 903816, 917493 and 917494. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/ c3cc43640c

[‡] Prof. Huang passed away on March 6, 2010. He had been fully in charge of this project. At this moment, Prof. Luling Wu is helping in completing all his projects with the help from Prof. Shengming Ma.

with the ligand, *i.e.*, triphenylphosphine, *via* a C–P bond cleavage reaction with a unique regioselectivity, serving as a direct and efficient synthesis of a new type of bulky tertiary phosphine.

We then focused our attention on realizing a catalytic reaction of triphenylphosphine (1a) with 2a to produce 3a using just a catalytic amount of NiCl₂·6H₂O and Zn. In a preliminary experiment, we observed that treatment of triphenylphosphine (1a) with 1-(diphenylmethylene)-1*H*-cyclopropa[b]naphthalene (2a) in the presence of NiCl₂·6H₂O (10 mol%) and Zn (30 mol%) in dioxane at 110 °C for 2 hours gave diphenyl[3-(1,2,2-triphenylvinyl)naphthalen-2-yl]phosphine (3a) in 96% yield (entry 2, Table S1, ESI⁺). When we reduced the amount of NiCl₂:6H₂O and Zn to 2 mol% and 6 mol%, respectively, the vield of 3a was still maintained at 96%, although 10 hours were required (entries 3 and 4, Table S1, ESI⁺). To shorten the reaction time, the concentration was adjusted to 0.2 M and 0.4 M, with the best concentration being 0.2 M, which provided 96% of 3a within 0.5 h (entries 5 and 6, Table S1, ESI⁺). Among the solvents examined, we found that dioxane was the best (entries 7-12, Table S1, ESI⁺). Therefore, a reaction in the presence of 2 mol% of NiCl₂·6H₂O and 6 mol% of Zn in dioxane at 110 °C at a concentration of 0.2 M was established as standard conditions to explore the reaction scope (entry 5, Table S1, ESI[†]). Here it should, of course, be noted that the reaction did not occur in the absence of the nickel catalyst (entry 1, Table S1, ESI⁺).

With the optimized conditions in hand, the scope of the reaction of **1a** with a variety of **2** was examined. The results summarized in Table 1 show that different products (3) could be obtained smoothly in high yields (entries 1–9, Table 1). (Diarylmethylene) cyclopropa[*b*]naphthalenes with *p*-tolyl (**2b**), *m*-tolyl (**2c**) and *o*-tolyl (**2d**) as the aryl groups gave their corresponding products in good yields in 1 hour, 3 hours and 48 hours, respectively (entries 2–4, Table 1). The prolonged reaction time for **3d** might result from the steric hindrance of the *ortho*-methyl groups. When (diarylmethylene) cyclopropa[*b*]naphthalenes bearing other electron-donating or electronwithdrawing aryl groups were employed, the reactions all gave the corresponding products **3** in good yields (entries 5–9, Table 1). The reaction of **2i** and **2j** needed longer times and were completed

Table 1Nickel-catalyzed ring-opening coupling of triphenylphosphine (1a)with diarylmethylenecyclopropa[b]naphthalenes (2)^a

PPh ₃ 1.2 equiv 1a	+	NiCl ₂ •6H ₂ O, 2 mol% Zn, 6 mol% dioxane,110°C, t	Ar Ar Ph PPh ₂ 3
Entry	Ar	Time (h)	Isolated yield (%)
1	Ph (2a)	0.5	96 (3a)
2	$4 - MeC_6H_4$ (2b)	1	96 (3b)
3	$3-\text{MeC}_6\text{H}_4(2\mathbf{c})$	3	85 (3c)
4	$2 - MeC_6H_4$ (2d)	48	86 (3d)
5	$4 - MeOC_6H_4$ (2e)	0.5	98 (3e)
6	$3,5-MeO-C_6H_3$ (2f)	0.5	95 (3f)
7	$4 - FC_6 H_4 (2g)$	0.5	91 (3g)
8	$4 - ClC_6H_4$ (2h)	1	98 (3h)
9	4-BrC ₆ H ₄ (2i)	7	95 (3i)
10	(2)	18	87 (3j)

 a The reaction was conducted with 0.24 mmol of 1a, 0.2 mmol of 2, 0.004 mmol of NiCl_2·6H_2O, 0.012 mmol of Zn and 1 mL of solvent at 110 $^\circ C.$

within 7 h and 18 h, respectively, because of the poor solubility of the substrates (entries 9 and 10, Table 1). The unsymmetrical substrate 2k, upon reacting with 1a, gave the desired compounds 3k and 3k' that were easily separated *via* chromatography on a silica gel and isolated in yields of 49% and 22% (eqn (1), Scheme 3). Similarly, the reaction of 1a and 2l produced 3l and 3l' in isolated yields of 46% and 17% (eqn (2), Scheme 3). The structures of 3k and 3l were confirmed by X-ray diffraction analysis (Fig. S1, ESI[†]).⁹

Next, we investigated the reaction of a variety of phosphines with substrate 2a (Table 2). The reaction may be conducted with electrondonating, electron-withdrawing group-substituted aryl phosphines, tri(β-naphthyl)phosphine and tri(furan-2-yl)phosphine (Table 2). When Ar was the 2-methylphenyl group, no reaction was observed, which might result from the steric hindrance of the methyl group (entry 3, Table 2). The reaction gave a complex mixture when applying tri(n-butyl)phosphine 1k (entry 10, Table 2). Noteworthily, when phosphines bearing only one phenyl, such as dibutyl(phenyl)phosphine (11) and dicyclohexyl(phenyl)phosphine (1m), were used, the corresponding products 3u and 3v were obtained in 92% and 94%, respectively (eqn (1), Scheme 4), which showed that only the phenyl group migrated, exclusively.5c,d,10 Furthermore, even triphenylarsine could react with 2a to give its ring-opening coupling product 3w in 95% yield in the presence of 10 mol% of NiCl₂·6H₂O and 30 mol% of Zn in 36 hours (eqn (2), Scheme 4).¹¹

On the basis of the above observations, we propose a plausible mechanism for this reaction (Scheme 5). Firstly, the reduction reaction of Ni(PPh₃)₂Cl₂ with Zn affords Ni⁰(PPh₃)₂. Subsequently, oxidative addition of Ni⁰(PPh₃)₂ with the cyclopropane C–C bond of

Table 2 Nickel-catalyzed ring-opening coupling of phosphines (1a) with

1-(diphenylmethylene)-1H-cyclopropa[b]naphthalene (2a)^a

PAr ₃ + 1.2 equiv 1	Ph Ph 2a	NiCl ₂ ·6H ₂ O, 2 mol% Zn, 6 mol% dioxane,110°C, t	Ph Ph Ar PAr ₂ 3
Entry	Ar	Time (h)	Isolated yield (%)
1	$3-MeC_{6}H_{4}$ (1b)	4	92 (3m)
2	$4 - MeC_6H_4$ (1c)	4	98 (3n)
3	$2 - MeC_6H_4$ (1d)	24	NR
4	$4 - MeOC_6H_4$ (1e)	5	94 (30)
5	$4 - FC_6H_4$ (1f)	0.5	98 (3p)
6	$4 - ClC_6H_4$ (1g)	1	95 (3q)
7	$4\text{-BrC}_6\text{H}_4$ (1h)	1	96 (3r)
8	2-Naphthyl (1i)	0.5	96 (3s)
9	2-Furayl (1j)	12	94 (3t)
10	<i>n</i> -Bu (1 k)	24	Complex

 a The reaction was conducted with 0.24 mmol of 1, 0.2 mmol of 2a, 0.004 mmol of NiCl_2·6H_2O, 0.012 mmol of Zn and 1 mL of solvent at 110 $^\circ\text{C}$.

Scheme 4 Nickel-catalyzed ring-opening coupling of 1l, 1m and 1n with 2a.

Scheme 5 Plausible mechanism of the nickel-catalyzed ring-opening coupling reaction.

2a generates a metallacyclobutane A^{7d} Then the phenyl ring migrates from phosphorus to nickel and the phosphorus migrates to the naphthyl ring to produce C *via* a four-membered transition structure **B** (path a).^{3/} After that, intermediate C undergoes reductive elimination affording **3a** while accepting another equivalent of phosphine **1a** to regenerate the catalytically active Ni⁰ catalyst. In principle, the formation of **3a**' *via* the intermediate C' is possible (path b). Interestingly, the formation of **3a**' was not observed, which is probably due to the steric hindrance in intermediate **B**'.

In conclusion, we have developed a nickel-catalyzed highly selective C–P bond cleavage of tertiary phosphines involving a ring-opening coupling reaction of diarylmethylenecyclopropa[*b*]-naphthalenes to atom-economically provide differently substituted bulky phosphines in excellent yields. The reactions are applicable to a wide range of both phosphines and diarylmethylenecyclopropa[*b*]naphthalenes with different functionalities. Further studies on the scope, mechanism, and synthetic applications of this transformation are being carried out in our laboratory.

We are grateful to the National Natural Science Foundation of China (Project No. 20872127, 20732005 and J0830431), and National Basic Research Program of China (2009CB825300), and CAS Academician Foundation of Zhejiang Province, and the Fundamental Research Funds for the Central Universities for financial support.

Notes and references

 (a) P. E. Garrou, Chem. Rev., 1985, 85, 171; (b) J. V. Ortiz, Z. Havlas and R. Hoffmann, Helv. Chim. Acta, 1984, 67, 1; (c) A. Inoue, H. Shinokubo and K. Oshima, J. Am. Chem. Soc., 2003, 125, 1484; (d) K. Masuda, N. Sakiyama, R. Tanaka, K. Noguchi and K. Tanaka, J. Am. Chem. Soc., 2011, **133**, 6918; (e) M. Sakamoto, I. Shimizu and A. Yamamoto, Chem. Lett., 1995, 1101; (f) B. E. Segelstein, T. W. Butler and B. L. Chenard, J. Org. Chem., 1995, **60**, 12; (g) D. K. Morita, J. K. Stille and J. R. Norton, J. Am. Chem. Soc., 1995, **117**, 8576; (h) F. E. Goodson, T. I. Wallow and B. M. Novak, J. Am. Chem. Soc., 1997, **119**, 12441.

- 2 (a) G. M. Kosolapoff and L. Maier, Organic Phosphorous Compounds, Wiley-Interscience, New York, 2nd edn, 1972, vol. 1; (b) D. W. Hutchinson, B. J. Walker, J. A. Miller and S. Trippett, Organophosphorous Chemistry, The Royal Society of Chemistry, London, 1969–1983, vol. 1–15.
- 3 (a) A. R. Chakravarty and F. A. Cotton, *Inorg. Chem.*, 1985, 24, 3584;
 (b) M. I. Bruce, P. A. Humphrey, S. Okucu, R. Schmutzler, B. W. Skelton and A. H. White, *Inorg. Chim. Acta*, 2004, 357, 1805;
 (c) W. Yeh and K. Tsai, *Organometallics*, 2010, 29, 604; (d) C. Gracia, G. Marco, R. Navarro, P. Romero, T. Soler and E. P. Urriolabeitia, *Organometallics*, 2003, 22, 4910; (e) S. E. Kabir, F. Ahmed, S. Ghosh, M. R. Hassan, M. S. Islam, A. Sharmin, D. A. Tocher, D. T. Haworth, S. V. Lindeman, T. A. Siddiquee, D. W. Bennett and K. I. Hardcastle, *J. Organomet. Chem.*, 2008, 693, 2657; (f) W. Keirn, A. Behr, B. Gruber, B. Hoffrnann, F. H. Kowaldt, U. Kurschner, B. Limbacker and F. P. Sistig, *Organometallics*, 1986, 5, 2356; (g) F. Kwong, C. Lai, M. Yu, Y. Tian and K. Chan, *Tetrahedron*, 2003, 59, 10295; (h) F. Kwong and K. Chan, *Organometallics*, 2000, 19, 2058.
- 4 (a) Metal-Catalyzed Cross-Coupling Reactions, ed. A. de Meijere and F. Diederich, Wiley-VCH, Weinheim, Germany, 2nd edn, 2004;
 (b) J. Tsuji, Palladium Reagents and Catalysts, Wiley-VCH, Weinheim, Germany, 2004; (c) Handbook of Organopalladium Chemistry for Organic Synthesis, ed. E. Negishi, John Wiley & Sons, New York, 2002; (d) M. Miura, Angew. Chem., Int. Ed., 2004, 43, 2201;
 (e) U. Christmann and R. Vilar, Angew. Chem., Int. Ed., 2005, 44, 366; (f) S. L. Buchwald, C. Mauger, G. Mignani and U. Scholz, Adv. Synth. Catal., 2006, 348, 23; (g) B. Schlummer and U. Scholz, Adv. Synth. Catal., 2004, 346, 1599.
- 5 (a) H. Tomori, J. M. Fox and S. L. Buchwald, J. Org. Chem., 2000,
 65, 5334; (b) J. Keller, C. Schlierf, C. Nolte, P. Mayer and B. F. Straub,
 Synthesis, 2006, 354; (c) B. Lü, C. Fu and S. Ma, Tetrahedron Lett.,
 2010, 51, 1284; (d) B. Lü, C. Fu and S. Ma, Chem.-Eur. J., 2010,
 16, 6434.
- 6 (a) T. Hayashi, Acc. Chem. Res., 2000, 33, 354; (b) P. Kocovsky,
 S. Vyskocil and M. Smrcina, Chem. Rev., 2003, 103, 3213;
 (c) M. Murata and S. L. Buchwald, Tetrahedron, 2004, 60, 7397;
 (d) D. V. Allen and D. Venkataraman, J. Org. Chem., 2003, 68, 4590;
 (e) C. Korff and G. Helmchen, Chem. Commun., 2004, 530.
- 7 (a) B. Halton, Chem. Rev., 2003, 103, 1327; (b) B. Halton, Chem. Rev., 1989, 89, 1161; (c) W. E. Billups, W. A. Rodin and M. M. Haley, Tetrahedron, 1988, 44, 1305; (d) P. J. Stang, L. Song, Q. Lu and B. Halton, Organometallics, 1990, 9, 2149; (e) B. Halton, C. J. Randall, G. J. Gainsford and P. J. Stang, J. Am. Chem. Soc., 1986, 108, 5949; (f) B. Halton, S. J. Buckland, Q. Lu, Q. Mei and P. J. Stang, J. Org. Chem., 1988, 53, 2418; (g) B. Halton, Q. Lu and P. J. Stang, Aust. J. Chem., 1990, 43, 1277; (h) B. Halton, A. J. Kay, Z. Zhi-mei, R. Boese and T. Haumann, J. Chem. Soc., Perkin Trans. 1, 1996, 1445.
- 8 (a) W. Chen, J. Cao and X. Huang, Org. Lett., 2008, 10, 5537;
 (b) Y. Lin, L. Wu and X. Huang, Eur. J. Org. Chem., 2011, 2993;
 (c) J. Cao, M. Miao, W. Chen, L. Wu and X. Huang, J. Org. Chem., 2011, 76, 9329; (d) J. Cao, L. Wu and X. Huang, Chem. Commun., 2013, 49, 4788.
- 9 X-ray crystal data for 3a, 3k, 3l see ESI[†].
- 10 (a) W. Shen, *Tetrahedron Lett.*, 1997, **38**, 5575; (b) A. F. Littke and G. C. Fu, *Angew. Chem., Int. Ed.*, 1998, **37**, 3387; (c) J. Lemo, K. Heuzé and D. Astruc, *Chem. Commun.*, 2007, 4351; (d) D. W. Old, J. P. Wolfe and S. L. Buchwald, *J. Am. Chem. Soc.*, 1998, **120**, 9722; (e) J. E. Milne and S. L. Buchwald, *J. Am. Chem. Soc.*, 2004, **126**, 13028.
- 11 For the importance of arsines: (a) N. C. Norman, Chemistry of Arsenic, Antimony and Bismuth, Academic and Professional, London, 1998;
 (b) V. Farina and B. Krishnan, J. Am. Chem. Soc., 1991, 113, 9585;
 (c) K. C. Y. Lau and P. Chiu, Tetrahedron Lett., 2007, 48, 1813;
 (d) C. R. Johnson and M. P. Braun, J. Am. Chem. Soc., 1993, 115, 11014; (e) K. C. Y. Lau, H. S. He, P. Chiu and P. H. Toy, J. Comb. Chem., 2004, 6, 955; (f) R. Rossi, F. Bellina and D. Ciucci, J. Organomet. Chem., 1997, 542, 113; (g) S. E. Denmark and M. H. Ober, Adv. Synth. Catal., 2004, 346, 1703; (h) D. D. Hennings, T. Iwama and V. H. Rawai, Org. Lett., 1999, 1, 1205.