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Asymmetric Alkylation of Nitroalkanes**

Barry M. Trost* and Jean-Philippe Surivet

The utility of nitro compounds as synthetic intermediates
stems from the versatility of the reactivity of the nitro group.!!
One feature arises from the ease of formation of nitronate
anions; however, their low reactivity generally limits the
reactions they undergo to carbonyl and conjugate addition.?
Alkylations do not normally proceed well. On the other hand,
Pd-catalyzed allylic alkylations have had some success.P! This
success stimulates the search for an asymmetric allylic
alkylation (AAA) which has had good results in only one
case (the 1,3-diphenylallyl system) and when nitromethane
was used as solvent.! We here report that the Pd-catalyzed
AAA reactionl of nitroalkanes with cyclic allyl esters can
proceed in high yields and enantioselectivities and provide a
short asymmetric synthesis of a carbanucleoside.

Our initial studies focused on desymmetrization of meso
diesters [Eq. (1)].1) Our earlier results suggested the diben-
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3 chain has been converted to a hydroxymethyl side chain in
o one step,”) this constitutes a rapid asymmetric synthesis of

(0] Q
o o NH HN such carbanucleosides.
I I
PPh, PhyP

RCO. OCR
\Q’ . R,CHNO, N cl

2 [(dba)sPd2]CHCI5 4 o NZ~N-N N7 N\
1 ; R s | D
N ” N N

a: R=Ph a: R'=H RCO

b: R=CHs b: R'=CH, ™ \QANOZ pP—— \Q/\N02 3)
¢: R=0CHj aP)a

ﬁ . DMF, RT 9
R' 75% 25 o
RCO NO. 1) NH4OH <5a R =CHj [a]p = —46° (c = 1.3, CHClI3)
2
2)CHy0:CCl \g  R-OCH,
5 58%

a: R=Ph,R'=H
b: R=CHs, R'=H
c: R=R'=CHj3

zoate 1a would be superior for enantiodiscrimination. Sur-
prisingly, using nitromethane (24, 5 equiv) with the S,S-ligand
3 and a Pd° complex 4 in DMSO with cesium carbonate as
base led to no reaction. Similar results were obtained with the
diacetate 1b and dicarbonate 1ec. Switching the solvent to
methylene chloride (but not THF nor acetonitrile) with the
diacetate 1b led to some reaction to produce 5b"l (18 % yield)
but, gratifyingly, with excellent enantioselectivity (99 %).
Remarkably, changing the base from cesium carbonate to
BSA (BSA = O, N-bis-trimethylsilylacetamide) in methylene
chloride now led to smooth reaction producing 5b in 75%
yield while maintaining high ee (99%).[®! Identical results
were obtained with the dibenzoate 1a to give 5a;ll however,
the dicarbonate led to very low conversions.

The complete reverse behavior was observed with 2-nitro-
propane (2b). Neither the dibenzoate 1a nor the diacetate 1b
reacted to any appreciable extent in methylene chloride. On
the other hand, the use of cesium carbonate in DMSO with
the diacetate 1b gave a 92% yield of 5S¢’ having 95% ee.

The same trend was observed for nitromethane with the
larger ring meso diesters 6a,b. Using the optimal conditions
established for 5b [Eq. (2)], the corresponding monoalky-
lated products 7al’l and 7bl"! were obtained in 82 -84 % yield
with near perfect enantioselectivity (99 % ee).

2mol % 4
In 6 mol % 3 Jn NO
AcO OAc + CH3NO; AcO (2)
BSA, CH.Cl»
6 2a 7
a: n=1 a: n=1
b: n=2 b: n=2

The absolute configuration is assigned by analogy.l> ¢l
Further support derives from conversion of §b to a known
carbanucleoside intermediate 9 [Eq. (3)].0¢ A (+) rotation is
reported for the enantiomer corresponding to the “normal”
enantiomeric series of the carbanucleosides, thus the (—)
rotation observed for our synthetic sample indicates the
absolute configuration as depicted. Since the nitromethyl side
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The success of the desymmetrization led to our investiga-
tion of the cycloalkenyl substrates [Eq.(4)].'”! For the
alkylations with nitromethane, the carbonates 10 proved

2 mol% 4
), O 6 mol% 3 )
n n
Q [ + CHgNO, (CaHolaNCI_ Q\/No2 ()

OCOCH;, BSA, CH,Cl,
10 2a 1

a n=1 a: n=1

b: n=2 b: n=2

c: n=3 c:n=3

superior to the corresponding acetates. The conditions that
proved successful in the desymmetrization with nitromethane
also proved to be successful here. For the cyclopentenyl
system 10a, the alkylated product 11al”! was obtained in 94 %
yield (97 % ee). Equally satisfactory results were obtained for
the six- (99 % yield, 99 % ee for 11b) and seven-membered
ring systems (94 % yield, 95% ee for 11¢). The lactone 12
also followed the same pattern to provide, after esterification,
the nitroester 1371 in 74 % yield [99 % ee; Eq. (5)].

0 conditions

asin
[Ea. (4)]
then NO. ®)
2a CH2N;
12 13

CO,CHs

O + CH3NO,

Use of 2-nitropropane allowed use of the allyl acetates as
substrates [Eq. (6)]. The reactions performed in DMSO at
room temperature with tetra-n-butylammonium acetate (for
14b) or cesium carbonate (for 14a and 14¢) as base gave

2mol% 4
@1 CHs 6 mol% 3 @n\é}'
+ )—NO2 3 (6)
OAc CHs (C4Hg)sNOAC CHs
14 2 DMSO, RT N
a: n=1 15
b: n=2 a: n=1
c:n=3 b: n=2
c:n=3
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excellent results (1521, 74% yield, 97 % ee; 15b"), 79%
yield, 94 % ee; 15¢l1, 50 % yield, 96 % ee).

The absolute configuration was established by correlation
as depicted in Equation (7). Alkylation of the allyl carbonates
10a - c using methyl nitroacetate proceeds with no added base
to give the desired products (16,80 %; 16b,1, 93 %; 16 ¢,
87%). Radical denitronation"! gave the known cycloalkenyl

2 mol% 4

6 mol% 3
10a-c +

O,N_ _CO,CHs
~ CH,Clp, RT

(C4Hg)3SnH

AIBN, PhCH )
A/3 @n\/COZCH3 ™
17

)n
CO,CHs

a:n=1
b: n=2
NO, N o e
1 NaOH ¢ n=3
CoHsOH -
a n=1 22 11a-c
b: n=2
c: n=3

acetates 17a—cl'% thereby establishing the absolute config-
uration of 16a—c. Alternatively, hydrolysis with concomitant
decarboxylation gave the nitroalkenes (11a, 64 % yield, 85 %
ee; 11b, 65% yield, 95% ee; 11¢, 72% yield, >99% ee)
thereby establishing their absolute configurations as depicted.

The utility of nitroalkanes as building blocks makes a
significant step forward as a result of the ability to effect AAA
reactions using cyclic allyl esters. It is clear that the nitro-
alkane significantly influences the catalyst. The significantly
different reactivity between nitromethane and 2-nitropropane
highlight this fact. A possible explanation suggests that the
nitronate derived from nitromethane may serve as a com-
petitive ligand to palladium. The lack of polyalkylation of
nitromethane is noteworthy especially considering that the
higher nitroalkanes are better nucleophiles and the reported
significance of this problem in another system. The current
method provides a practical approach to these chiral nitro-
alkanes that enhances their utility as useful building blocks.
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Enantiomeric Self-Recognition:
Cation-Templated Formation of Homochiral
Isoguanosine Pentamers**

Xiaodong Shi, James C. Fettinger, Mangmang Cai, and
Jeffery T. Davis*

Stereochemical information embedded within the building
blocks of biopolymers is often translated into higher organ-
ization. Both the protein a-helix and the DNA duplex,
structures that require homochiral chains, rely on such a
hierarchy.l'l To illustrate the impact of stereochemistry in
controlling the structure of noncovalent aggregates, we
describe the enantiomeric self-recognition of the racemic 5'-
tert-butyldimethylsilyl-2'-3'-di-O-isopropylidene-substituted
isoguanosine, isoG 1, to give homochiral, hydrogen-bonded
pentamers.

Self-recognition is a process whereby a compound selec-
tively associates with its own kind. Self-recognition relies on:
1) reversible processes? and 2) a subunit’s “pre-disposition”!
towards self-assembly. Stereochemistry can be crucial for self-
recognition. Enantiomeric self-recognition in supramolecular
systems has been achieved using metal ion coordination!* 3! or
hydrogen bonds.[*-$!
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