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gem-Disubstituted heterocycles are rare in small molecule 
pharmaceuticals. However, they exhibit the potential to further 
enhance the drug-like properties of small molecules (Figure 1). 
For example, gem-disubstitution significantly increases 
molecular complexity, which is correlated with decreased 
promiscuity and enhanced binding affinity to desired targets.1-3    
Furthermore, depending on the chemical identity of the 
substitutions, properties such as metabolic stability and polarity 
may also be altered (Figure 1). 

Figure 1. Biological properties altered by hypothetical gem-disubstitution of 
the antibiotic linezolid

Given this potential, we sought to investigate the practical 
utility of gem-disubstituted heterocycles in bioactive small 
molecules. After surveying various N-heterocyclic drugs for cases 
in which physicochemical attributes could be improved by 

heterocyclic gem-disubstitution, we selected the morpholine-
containing oxazolidinone antibiotic linezolid (Zyvox) (Figure 1). 
Approved by the FDA in 2001, linezolid inhibits bacterial peptide  
synthesis. Co-crystal structures show that linezolid binds to the 
A-site of the 50S subunit of the ribosome, interacting with an 
RNA pocket at the ribosomal peptidyl transferase center.4,5 This 
binding mode suggests that linezolid inhibits binding of 
aminoacyl tRNA. Linezolid and the recently approved 
oxazolidinone Tedizolid are important last resort antibiotics that 
are active against drug-resistant pathogens like methicillin-
resistant Staphylococcus aureus (MRSA),6 vancomycin-resistant 
Enterococcus faecalis (VRE),7 and multi-drug resistant 
Mycobacterium tuberculosis (MDR-TB).8

Because the bacterial and human ribosomes are highly 
homologous, oxazolidinone antibiotics bind a commonly 
conserved site and thus also inhibit mitochondrial protein 
synthesis (MPS).9-12 This off-target binding is thought to be 
responsible for linezolid’s more significant side-effects, including 
myelosuppression, hyperlactatemia, and peripheral neuropathy.13 
Other ribosome-targeting antibiotics such as clindamycin and 
chloramphenicol also exhibit corresponding myelotoxic side 
effects.14,15 If a structure-activity-relationship (SAR) could be 
determined for linezolid’s mitochondrial binding ability, then 
new oxazolidinones could be designed with reduced MPS 
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gem-Disubstituted N-heterocycles  are rarely found in drugs, despite their potential to improve the 
drug-like properties of small molecule pharmaceuticals. Linezolid, a morpholine heterocycle-
containing oxazolidinone antibiotic, exhibits significant side effects associated with human 
mitochondrial protein synthesis inhibition. We synthesized a gem-disubstituted linezolid analogue 
that when compared to linezolid, maintains comparable (albeit slightly diminished) activity 
against bacteria, comparable in vitro physicochemical properties, and a decrease in undesired 
mitochondrial protein synthesis (MPS) inhibition.  This research contributes to the structure-
activity-relationship data surrounding oxazolidinone MPS inhibition, and may inspire 
investigations into the utility of gem-disubstituted N-heterocycles in medicinal chemistry.
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inhibition. Indeed, reducing myelotoxic side effects while 
maintaining antibacterial potency is often cited as one of the 
greatest challenges in new oxazolidinone design.16

Fortunately, the modular structure of oxazolidinones enables 
chemical modification of all three rings, A, B, and C, facilitating 
SAR studies for mitochondrial ribosome binding (Figure 1). 
Some data have already been emerged. In 2006, McKee identified 
several oxazolidinones that more potently inhibit MPS yet display 
MIC values comparable to that of linezolid (Table 1).17 In these 
cases, the morpholine ring was replaced with other heterocycles, 
suggesting the C-ring may be the greatest determinant of MPS 
inhibition. In spite of these initial results, there are no known 
reports of a potent oxazolidinone featuring reduced MPS 
inhibition.

Table 1. MIC and MPS IC50 values for linezolid analogues

a MIC (μg/mL) for S. aureus JC9213. b IC50 (μg/mL) for mitochondrial protein 
synthesis

We thus initiated a medicinal chemistry project seeking to 
modify the morpholine C-ring of linezolid with the goal of 
reducing MPS inhibition. Importantly, crystal structure studies 
note that the morpholine ring does not make significant 
interactions with the binding pocket, suggesting that the ring can 
be modified without compromising binding.5 Because increased 
molecular complexity is associated with reduced ligand 
promiscuity, we hypothesized that gem-disubstitution of the 
morpholine ring could potentially increase selectivity for the 
bacterial ribosome and reduce off-target side effects such as MPS 
inhibition (Figure 1). To test this hypothesis, we began by 
identifying a modular route to enable the synthesis of a library of 
gem-disubstituted linezolid analogs (Scheme 1). Cross-coupling 
of a gem-disubstituted morpholine with aryl halide 7 was 
identified as an efficient route. Thus, aryl halide 7 was 
synthesized by adapting a patent procedure.18 Briefly, (S)-
epichlorohydrin (2) was coupled with 4-chlorobenzaldehyde (1) 
and ammonia to give imine 3. To forge the oxazolidinone 
intermediate 5, imine 3 was then subjected to a base-catalyzed 
coupling reaction with carbamate 4,19 which itself was made by 
addition of benzyl chloroformate to 3-fluoroaniline. Finally, 
imine hydrolysis, N-acetylation, and iodination provided the aryl 
iodide 7. 7 was cross-coupled under copper-catalyzed Ullmann 

conditions20 with a variety of gem-disubstituted morpholines 
resulting in linezolid analogues 12-19 (Figure 2). Notably, this 
synthetic route will facilitate future efforts to modify the C 
morpholine ring of linezolid.

Scheme 1. Synthesis of gem-disubstituted linezolid analogues via Cu-
catalyzed Ullmann coupling. a. (S)-epichlorohydrin, NH4OH (aq). THF, 40 
°C, 12 h, 55% yield; b. LiOt-Bu, CH2Cl2, rt to 40 °C, 87% yield; c.1N HCl, 
H2O/EtOAc; d. Ac2O, CH2Cl2, 96% yield over 2 steps; e. NIS, TFA, rt, 92% 
yield; f. Substituted morpholine 11a-p, CuBr (10 mol %), BINOL (20 mol %), 
K3PO4, DMF, 80 °C.

Two analogues 13 and 14 were prepared using substituted 
morpholines 10 and 11, which were synthesized via a 
decarboxylative alkylation protocol and subsequent deprotective 
and reductive transformations (Scheme 2).20 Other analogues 
including the gem-dimethyl compound 12 and spiro compounds 
15-19 were prepared from commercially available di-substituted 
morpholines. We note that all analogs were synthesized as 
racemates. 

Scheme 2. Synthesis of gem-disubstituted morpholines by benzoyl cleavage 
and reduction of morpholinone decarboxylative alkylation products 

Figure 2. gem-Disubstituted linezolid analogues synthesized via Ullmann 
coupling

Additionally, analogues synthesized via Ullman coupling 
could be further derivatized (Scheme 3). Taking advantage of the 



  

versatile allyl handle of 13, hydroboration-oxidation afforded 
hydroxyl analogue 20, which could be acetyl-protected to give 
analogue 21.  Additionally, a Lemieux–Johnson oxidation 
provided the aldehyde intermediate, which was reductively 
aminated with dimethylamine to provide analogue 23. Catalytic 
hydrogenation afforded the reduced analogue 22. Similarly, the 
benzyloxy analogue 14 could also be hydrogenated using 
catalytic Pd(OH)2 on carbon to provide the hydroxyl analogue 24. 
Finally, Boc-spiro compound 16 was deprotected using HCl 
resulting in spiropiperidine 25; subsequent acetyl protection gave 
26. Similarly, acid-catalyzed Boc-cleavage of 15 afforded 
spiropyrrolidine 27. 

Scheme 3. Additional analogues synthesized by derivatization

With a diverse set of gem-disubstituted linezolid analogues 
in hand, we proceeded with broth microdilution assays against S. 
aureus to determine minimum inhibitory concentration (MIC) 
values (Table 2). The initial three compounds, 12, 13, 24, were 
noticeably less potent than linezolid, suggesting that bulky alkyl 
di-substitution on the morpholino ring reduces activity. Similarly, 

bulky hydroxyl-substituted analogue 20 and protected alcohols 21 
and 14 were also inactive. In contrast, hydroxyl analogue 24 
retained a moderate amount of activity, displaying 48% growth 
inhibition at the maximal tested concentration of 6 µg/mL. The 
amine-bearing derivatives, 23, 27, 17, and 25, featuring 
methylamino, dimethyl amino, and spiroamine functionalities, 
were uniformly inactive up to 32 µg/mL concentrations. 
Interestingly, when the basic nitrogen of 25 was masked as an 
amide as in 26, an 18% growth inhibition at the maximal tested 
concentration of 6 µg/mL was achieved, suggesting that 
positively charged substituted morpholines are not tolerated. 
Finally, we were excited to observe increased growth inhibition 
when the spirofuran 18 and spirotetrahydropyran 19 analogues 
were tested, with 19 displaying the greatest potency of all 
analogues examined. Since stereoisomers often exhibit differing 

biological activity, we used chiral HPLC to obtain both 
diastereomers of 19, and then assigned their absolute 
stereochemistry using vibrational circular dichroism (VCD) and 
optical rotation calculations, both of which were in agreement 
(see supporting information for details of synthesis and 
purification) (Figure 3). Notably a eudysmic difference between 
the two diastereomers 19a and 19b was observed, with the more 
active diastereomer 19a displaying an MIC of 6 μg/mL, roughly 
sixfold less potent than linezolid (Table 2).  

Table 2. MIC values against ATCC 8235-4 (MSSA) or ATCC 43300 
(MRSA)

Compound MIC (μg/mL) Compound MIC (μg/mL)

Linezolid 1a,b 23 > 32b

12 8a 27 > 32b

13 16a 17 > 32b

22 16a 25 > 32b

20 > 32a 26 6 μg/mL: 18% 
inhib.c

21 > 32b 18 6 μg/mL: 65% 
inhib.c

14 > 32b 19 7b

24 6 μg/mL: 48% 
inhib.b,c

19a 6b

19b 9b

MIC: the lowest concentration of molecule preventing visible growth. [a] 
Tested against S. aureus ATCC 43300. [b] Tested against S. aureus ATCC 
8235-4.  [c] 6 μg/mL was the maximal concentration tested.

We further investigated the bioactivity of 19a against other strains 
of S. aureus, determining the MIC values to be consistent against 
a range of MSSA and MRSA strains (Table 3). 

Table 3. MIC values of lead analogue 19a against various S. aureus strains

Strain Linezolid MIC (μg/mL) 19a MIC (μg/mL)

S. aureus ATCC 
8235-4 

1 6

S. aureus 43300 1 5

S. aureus 29213 1 5

S. aureus 25923 1 5

We next examined the pharmacokinetic properties of 19a 
and 19b, determining most properties were slightly lower but 
comparable to that of linezolid (Table 4). For instance, 19a and 
19b demonstrated slightly lower aqueous solubility and stability 
at low pH. Microsomal stability for was also lower than that of 
linezolid, perhaps due to the metabolic susceptibility of the 
tetrahydropyran ring. Initial safety data including cytotoxicity and 
cytochrome P450 isoform inhibition were satisfactory. One 
interesting difference was MPS inhibition, in which linezolid 
displayed a relatively potent 8 µM IC50. In contrast, 19a displayed 
an IC50 value of 30 µM. This finding correlates with the relative 
MIC values of linezolid and 19a; in this case, MPS inhibition is 
also roughly three-fold less potent, suggesting that the 
spirotetrahydropyran ring of 19a maintains moderate binding 



  

affinity to the bacterial ribosome while reducing inhibition of the 
mitochondrial ribosome.

Figure 3. Diastereomers of analogue 19. Absolute configuration of the 
spirocyclic stereocenter determined by both VCD and optical rotations (See 
supporting information for details). 

Table 4. Pharmacokinetic properties, inhibitory activity, and physicochemical 
properties 

Linezolid 19a 19b

Aq. Solubility (μg/mL) >67.47 >52.15 >48.49

Stability at gastric pH (% 
remaining 24 h)

98% 94% 89%

t1/2 microsomes (min)a >216.8 170.0 128.3

Cytotoxicity EC50 (μM)b >30 > 30 >30

CYP inhibition (μM)c >100 > 100 >100

Mt protein synthesis 
inhibition IC50 (μM)d

8.19 30 > 30

a Metabolic stability performed with mouse liver microsomes
b Cytotoxicity against HepG2 cells using CellTiter Glo
c Measured against CYP1A2, 2C9, 2C19, 2D6, 3A4
d MitoBiogenesis In-Cell ELISA assay for COXI and SDH-A mitochondrial 
proteins

In conclusion, we identified a gem-disubstituted morpholine 
analogue of linezolid bearing a spirotetrahydropyran substitution, 

19a, that displays slightly reduced potency compared to linezolid 
against various S. aureus strains while also having reduced 
mitochondrial inhibition. These results contribute to the existing 
SAR of MPS inhibition (Table 1). Although the mitochondrial 
and bacterial ribosomes share homology, they have structural 
differences that may be exploited to design molecules with 
reduced selectivity for the mitochondrial ribosome.9 Our research 
further contributes to the body of data suggesting that the 
morpholine ring is a key structural component whose 
modification can reduce mitochondrial inhibition while 
maintaining bacterial ribosome inhibition. Continued efforts are 
needed to identify a molecule as potent as linezolid but with 
reduced MPS inhibition. This ability of gem-disubstituted 
heterocycles to alter selectivity for a target such as the bacterial 
ribosome highlights one of the many useful properties of 
heterocyclic substitution. In recent years, powerful methods have 
been developed to stereoselectively synthesize gem-disubstituted 
heterocycles. For instance, our laboratory has pioneered the 
development of Pd-catalyzed decarboxylative asymmetric allylic 
alkylation methodologies to synthesize a range of gem-
disubstituted lactams of ring size 5 to 7.21–24 Such lactams can be 
deprotected and reductively transformed into the corresponding 
gem-disubstituted N-heterocycles. These methods and others to 
access gem-disubstituted heterocycles will greatly enable the 
investigation of the medicinal utility of such heterocycles. Efforts, 
such as those underway in our laboratory to incorporate gem-
disubstituted heterocycles into other small molecule scaffolds will 
undoubtedly shed light on the broader medicinal utility of gem-
disubstituted heterocycles. 
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