Organic & Biomolecular Chemistry

PAPER

Cite this: Org. Biomol. Chem., 2013, 11, 3649

Received 28th March 2013, Accepted 30th March 2013 DOI: 10.1039/c3ob40619a

www.rsc.org/obc

Silver-catalyzed amidation of benzoylformic acids with tertiary amines *via* selective carbon–nitrogen bond cleavage†

Xiaobin Zhang,^a Wenchao Yang^a and Lei Wang^{*a,b}

A novel approach towards the synthesis of α -ketoamides using tertiary amines as nitrogen group sources via C–N bond cleavage has been developed. In the presence of Ag₂CO₃ and K₂S₂O₈, α -keto acids reacted with tertiary amines to afford the corresponding α -ketoamides in good yields.

α-Ketoamides are important intermediates in organic synthesis that are widely found in natural products, biological compounds and pharmaceuticals.¹ Owing to their importance and broad applications, a variety of synthetic methodologies for their synthesis have been developed. Traditional synthetic routes to α-ketoamides usually require multiple steps, harsh reaction conditions, and toxic or expensive reagents.² For these reasons, considerable effort has been made on developing mild, efficient and environmentally friendly methods, which are still highly desirable. Recently, transition-metalcatalyzed and metal-free methodologies offer particularly appealing approaches to α -ketoamides.³ In spite of the environmentally benign character and the high efficiency of these methods, the nitrogen group sources are only limited to primary and secondary amines, which narrowed the substrate scope of amines in the above processes. To our knowledge, the synthesis of a-ketoamides using tertiary amines as nitrogen group sources has not yet been reported.

The carbon-nitrogen bond (C–N) is difficult to cleave because it is stronger than the C–H bond in tertiary amines, and much work on α -H bond activation of tertiary amines has been reported.⁴ Despite the big challenge in controlling C–H bond activation for further C–N cleavage, great progress has been made with transition-metal-catalyzed approaches recently.⁵ For example, Zhang reported Pd-catalyzed allylic alkylation of carbonyl compounds through C–N bond cleavage of allylic amines.^{5*a*} Takai reported Fe-catalyzed synthesis of glycine derivatives *via* C–N bond cleavage using diazoacetate.^{5*d*}

RSCPublishing

View Article Online

Scheme 1 The amidation of α -keto acids with tertiary amines.

Then, Huang and coworkers reported a Cu-catalyzed oxidative amination of benzoxazoles using tertiary amines as nitrogen group sources.^{5*f*} As part of our ongoing efforts on the synthesis of α -ketoamides,⁶ we herein firstly report the Ag-catalyzed amidation reaction of α -keto acids with tertiary amines *via* C–N bond cleavage, which illustrates an alternative route to α -ketoamides (Scheme 1).

Results and discussion

Our initial investigation focused on the effect of transitionmetal catalysts on the model reaction of 2-oxo-2-phenylacetic acid (1a) with Et_3N (2a), and the results are summarized in Table 1. Several Ag-, Cu- and Fe-salts were screened in the presence of K₂S₂O₈ as an oxidant in CCl₄, and the reactivity of Agsalts (Ag_2CO_3, Ag_2O) is more than that of Cu-salts $(CuBr_2,$ CuBr, Cu(OTf)₂, Cu(OAc)₂, CuI, Cu(acac)₂), while Fe-salts (FeCl₃, Fe(acac)₃, FeCl₂) did not exhibit catalytic activity (Table 1, entries 1-12).^{5d,f} When 20 mol% of Cu(OTf)₂ was used, only 38% yield of 3a was obtained (Table 1, entry 5). Among the tested transition-metal catalysts, Ag₂CO₃ showed the highest catalytic reactivity and the desired product 3a was isolated in 46% yield when the model reaction was performed in CCl₄ at 120 °C for 12 h (Table 1, entry 12). Among additional oxidants, K2S2O8 was the best one in air. Other oxidants, such as TBHP, $(NH_4)_2S_2O_8$, PhI(OAc)₂ and BQ, were ineffective for the generation of **3a** (Table 1, entries 13–16). However, only 8% yield of 3a was obtained when the model reaction was performed under a nitrogen atmosphere (Table 1, entry 17). Next,

^aDepartment of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000,

P. R. China. E-mail: leiwang@chnu.edu.cn; Fax: +86-561-309-0518;

Tel: +86-561-380-2069

^bState Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China

[†]Electronic supplementary information (ESI) available: Detailed procedures, analytical data, and ¹H, ¹³C NMR and HRMS spectra of all intermediates and products. See DOI: 10.1039/c3ob40619a

 Table 1
 Optimization of the model reaction conditions^a

	Соон	+ Catalyst (10)	Catalyst (10% mol)	
	1a	2a /	3a	
Entry	Catal.	Solvent	Oxidant	$\operatorname{Yield}^{b}(\%)$
1	CuBr ₂	CCl_4	$K_2S_2O_8$	26
2	CuBr	CCl_4	$K_2S_2O_8$	23
3	CuI	CCl_4	$K_2S_2O_8$	25
4	$Cu(OTf)_2$	CCl_4	$K_2S_2O_8$	30
5	$Cu(OAc)_2$	CCl_4	$K_2S_2O_8$	38 ^c
6	$Cu(OAc)_2$	CCl_4	$K_2S_2O_8$	27
7	$Cu(acac)_2$	CCl_4	$K_2S_2O_8$	24
8	FeCl ₃	CCl_4	$K_2S_2O_8$	Trace
9	FeCl ₂	CCl_4	$K_2S_2O_8$	Trace
10	$Fe(acac)_3$	CCl_4	$K_2S_2O_8$	Trace
11	Ag ₂ O	CCl_4	$K_2S_2O_8$	38
12	Ag ₂ CO ₃	CCl_4	$K_2S_2O_8$	46
13	Ag ₂ CO ₃	CCl_4	$(NH_4)_2S_2O_8$	Trace
14	Ag ₂ CO ₃	CCl_4	TBHP	35
15	Ag ₂ CO ₃	CCl_4	$PhI(OAc)_2$	19
16	Ag ₂ CO ₃	CCl_4	BQ	18
17	Ag ₂ CO ₃	CCl_4	Ag ₂ CO ₃	8^d
18	AgOAc	CCl_4	$K_2S_2O_8$	21
19	$AgBF_4$	CCl ₄	$K_2S_2O_8$	13
20	AgNO ₃	CCl_4	$K_2S_2O_8$	9
21	Ag_2CO_3	Dioxane	$K_2S_2O_8$	NR
22	Ag_2CO_3	DMF	$K_2S_2O_8$	NR
23	Ag ₂ CO ₃	DMSO	$K_2S_2O_8$	NR
24	Ag ₂ CO ₃	CH ₃ CN	$K_2S_2O_8$	NR
25	Ag_2CO_3	Toluene	$K_2S_2O_8$	Trace
26	Ag_2CO_3	CCl_4 -DMF (1:1, v/v	$K_2S_2O_8$	48
27	Ag ₂ CO ₃	CCl_4 -DMF (2:1, v/v	$\tilde{K}_2 S_2 O_8$	50
28	Ag ₂ CO ₃	CCl_4 -DMF (4:1, v/v	$\tilde{K}_2 S_2 O_8$	54
29	Ag_2CO_3	CCl_4 -DMF (8:1, v/v	$\tilde{K}_2 S_2 O_8$	51
30	Ag ₂ CO ₃	CCl_4 -DMF (4:1, v/v	$\tilde{K}_2 S_2 O_8$	68^e
31	_	CCl_4 -DMF (4 : 1, v/v	$\tilde{\mathbf{K}}_{2}\mathbf{S}_{2}\mathbf{O}_{8}$	NR

^{*a*} Reaction conditions: **1a** (0.50 mmol), **2a** (1.50 mmol), catalyst (10 mol%), oxidant (1.0 mmol), solvent (3.0 mL), under air, 120 °C, 12 h. ^{*b*} Isolated yields. ^{*c*} Cu(OTf)₂ (20 mol%). ^{*d*} Under N₂ atmosphere. ^{*e*} Ag₂CO₃ (20 mol%).

some other silver salts were examined. The use of AgOAc, AgBF4 and AgNO3 showed relatively lower efficiency, and 9-21% yields of 3a were obtained (Table 1, entries 18-20). The effect of solvent on the model reaction was also examined in the presence of Ag₂CO₃ and K₂S₂O₈, and the solvent plays an important role in the reaction. When the model reaction was carried out in dioxane, DMF, DMSO, CH₃CN and toluene, no desired product 3a was detected by TLC (Table 1, entries 21-25). To our delight, when the model reaction was performed in a mixture of CCl_4 and DMF (4:1, v/v), 3a was isolated in 54% yield (Table 1, entry 28). By changing the volume ratios of CCl₄ to DMF, the yields of 3a were not increased (Table 1, entries 26-29). The ground-breaking result came with the use of 20% Ag_2CO_3 , affording the desired product 3a in 68% yield (Table 1, entry 30). It should be noted that no 3a was observed when the model reaction was carried out in the absence of Ag_2CO_3 (Table 1, entry 31).

With the optimized reaction conditions in hand, we next investigated the scope of the reaction with a series of α -keto

View Article Online

Table 2 Substrate scope of α -keto acids^a

^{*a*} Reaction conditions: **1** (0.50 mmol), **2a** (1.50 mmol), Ag_2CO_3 (0.10 mmol), $K_2S_2O_8$ (1.0 mmol), CCl_4 -DMF (4 : 1, v/v, 3.0 mL), under air, 120 °C, 12 h. ^{*b*} Isolated yield.

acids and Et₃N (2a). The results are summarized in Table 2. The results indicated that 2-oxo-2-arylacetic acids with both electron-rich and electron-deficient groups on the benzene rings underwent the reaction smoothly with Et₃N to generate the corresponding products in good yields. For example, 2-oxo-2-arylacetic acids with F, Cl, Br, Me, MeO, and tert-C4H9 at the para-positions of benzene rings reacted with Et₃N efficiently, and the corresponding products (3b-d, h-j) were isolated in 56-77% yields. Meanwhile, 2-oxo-2-arylacetic acids, bearing a sterically hindered group, such as Cl or Br or Me at their ortho-/meta-positions, also underwent the reaction with Et₃N smoothly, providing the corresponding products (3e, 3f, 3g and 3k) in slightly lower yields (54-69%) compared with their corresponding para-substituted ones. However, a weak orthoposition effect was observed in the reaction (3f, 3g and 3l). In addition, 2-(naphthalen-1-yl)-2-oxoacetic acid and 2-(furan-2-yl)-2-oxoacetic acid also underwent the reaction with Et₃N to generate 3l and 3m in 61% and 52% yields, respectively.

To expand the scope of amines, several tertiary amines were surveyed under the present reaction conditions, as shown in Table 3. When $(n-C_3H_7)_3N$ and $(n-C_4H_9)_3N$ reacted with 2-oxo-2-phenylacetic acid (**1a**), the desired α -ketoamides **4a** and **4b** were obtained in 55% and 43% yields respectively (Table 3,

^{*a*} Reaction conditions: **1a** (0.50 mmol), **2** (1.50 mmol), Ag₂CO₃ (0.10 mmol), K₂S₂O₈ (1.0 mmol), CCl₄-DMF (4:1, v/v, 3.0 mL), under air, 120 °C, 12 h. ^{*b*} Isolated yield.

entries 1 and 2). It should be noted that the yield of α-ketoamides was decreased along with the carbon chain increasing of tertiary amines (**3a** *vs.* **4a** *vs.* **4b**). Furthermore, a selective C–N bond cleavage of aliphatic tertiary amines, including tetramethylethylenediamine (TMEDA) and 1-benzylpiperidine, was observed in the reaction with 2-oxo-2-phenylacetic acid under current reaction conditions, providing the sole product **4c** and **4d** in 62% and 46% yields respectively (Table 3, entries 3 and 4). It is important to note that the α-H of the tertiary amine plays a key role in C–N cleavage under current conditions.^{5/} When *N*,*N*-diethylaniline as one of the substrates reacted with 2-oxo-2-phenylacetic acid, the corresponding product α-ketoamide **4e** was isolated in 41% yield (Table 3, entry 5), indicating that C–N bond cleavage took place at the carbon containing α-H.

When the reactions of **1a** with secondary amines, such as morpholine, piperidine and dibenzylamine, were performed under the present reaction conditions, only 18% yield, 12% yield, and trace amounts of the corresponding products were obtained. These results show the lower reactivity of secondary amines in this reaction system (Scheme 2).

Although the exact mechanism of this reaction is not clear till now, a possible amination pathway was proposed on the basis of the above experimental results and the literature, ^{5b,e,f,7} as shown in Scheme 3. Firstly, iminium ion **A** is generated in this reaction system *via* one-electron oxidation of nitrogen, deprotonation of C–H adjacent to a nitrogen atom, and further one-electron oxidation.⁸ Then hydrolysis of **A** leads to the key intermediate **B** by elimination of aldehyde. The origination of

Scheme 2 The reactions of 1a with secondary amines.

Scheme 3 Possible reaction mechanism

the oxygen atom in the aldehyde byproduct was possibly from H_2O in the system.⁹ The obtained **B** further undergoes reaction with α -keto acid to afford the final product α -ketoamide and regenerates Ag catalyst.¹⁰

Conclusion

In conclusion, we have demonstrated a novel protocol for the direct synthesis of α -ketoamides through an Ag-catalyzed amidation of benzoylformic acids with tertiary amines *via* selective C–N bond cleavage. Compared with other reported α -keto-amides preparation, the current approach shows that inactivated tertiary amines can be used as available nitrogen group sources, which make it more attractive for organic synthesis. Further investigation on the reaction is ongoing in our laboratory.

Experimental section

All ¹H NMR and ¹³C NMR spectra were recorded on 400 MHz Bruker FT-NMR spectrometers (400 MHz or 100 MHz, respectively). All chemical shifts are given as δ values (ppm) with reference to tetramethylsilane (TMS) as an internal standard. The peak patterns are indicated as follows: s, singlet; d, doublet; t, triplet; m, multiplet; q, quartet. The coupling constants, *J*, are reported in Hertz (Hz). High resolution mass spectroscopy data of the product were collected on a Waters Micromass GCT instrument. Products were purified by flash chromatography on 100–200 mesh silica gels, SiO₂. α -Keto acids were prepared from the oxidation of corresponding aryl methyl ketones with SeO₂ and pyridine according to the reported procedure (K. Wadhwa, C.-X. Yang, P. R. West, K. C. Deming, S. R. Chemburkar and R. E. Reddy, *Synth. Commun.*, 2008, **38**, 4434). Unless otherwise noted, the chemicals and solvents were purchased from commercial suppliers either from Aldrich, USA or Shanghai Chemical Company, China and were used without purification prior to use.

General procedure for the synthesis of α -ketoamides

A sealable reaction tube equipped with a magnetic stirrer bar was charged with α -keto acid (0.50 mmol), tertiary amine (1.50 mmol, 3.0 equiv.), Ag₂CO₃ (0.10 mmol, 20%), and K₂S₂O₈ (1.0 mmol, 2 equiv.) in a mixture of CCl₄-DMF (4:1, v/v, 3.0 mL). The reaction was carried out at 120 °C for 12 h. Then the mixture was cooled and diluted with ethyl acetate. The resulting solution was washed with brine (3 × 5.0 mL). The organic phase was dried over anhydrous MgSO₄, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (eluant: hexane–ethyl acetate 5:1) to afford the corresponding product.

N,*N*-Diethyl-2-oxo-2-phenylacetamide (3a): yellow oil.^{3*a*} ¹H NMR (400 MHz, CDCl₃): δ = 7.93 (d, *J* = 7.2 Hz, 2H), 7.63 (t, *J* = 7.2 Hz, 1H), 7.50 (t, *J* = 8.0 Hz, 2H), 3.56 (q, *J* = 7.2 Hz, 2H), 3.24 (q, *J* = 7.2 Hz, 2H), 1.28 (t, *J* = 7.2 Hz, 3H), 1.15 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ = 191.55, 166.76, 134.55, 133.25, 129.59, 128.95, 42.12, 38.82, 14.07, 12.80.

N,*N*-Diethyl-2-(4-fluorophenyl)-2-oxoacetamide (3b): yellow oil. ¹H NMR (400 MHz, CDCl₃): δ = 7.98–7.95 (m, 2H), 7.17 (t, J = 8.4 Hz, 2H), 3.55 (q, J = 7.2 Hz, 2H), 3.24 (q, J = 7.2 Hz, 2H), 1.27 (t, J = 7.2 Hz, 3H), 1.15 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ = 189.81, 166.56 (d, J_{CF} = 256.0 Hz), 166.42, 132.40 (d, J_{CF} = 9.6 Hz), 129.80 (d, J_{CF} = 2.6 Hz), 116.25 (d, J_{CF} = 22.1 Hz), 42.16, 38.92, 14.12, 12.79. HRMS (ESI) ([M] + H) Calcd for C₁₂H₁₅FNO₂: 224.1087, Found: 240.1084.

2-(4-Chlorophenyl)-*N*,*N*-diethyl-2-oxoacetamide (3c): yellow oil. ¹H NMR (400 MHz, CDCl₃): δ = 7.88 (d, *J* = 8.4 Hz, 2H), 7.47 (d, *J* = 8.4 Hz, 2H), 3.55 (q, *J* = 7.2 Hz, 2H), 3.23 (q, *J* = 7.2 Hz, 2H), 1.28 (t, *J* = 7.2 Hz, 3H), 1.15 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ = 190.10, 166.24, 141.15, 131.69,

130.95, 129.35, 42.16, 38.96, 14.15, 12.80. HRMS (ESI) ([M] + H) Calcd for $C_{12}H_{15}ClNO_2$: 240.0791, Found: 240.0788.

2-(4-Bromophenyl)-*N*,*N*-diethyl-2-oxoacetamide (3d): yellow oil. ¹H NMR (400 MHz, CDCl₃): δ = 7.81 (d, *J* = 8.4 Hz, 2H), 7.66 (d, *J* = 8.4 Hz, 2H), 3.56 (q, *J* = 7.2 Hz, 2H), 3.24 (q, *J* = 7.2 Hz, 2H), 1.28 (t, *J* = 7.2 Hz, 3H), 1.16 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ = 190.33, 166.17, 132.34, 132.10, 131.01, 130.00, 42.14, 38.94, 14.18, 12.82. HRMS (ESI) ([M] + H) Calcd for C₁₂H₁₅BrNO₂: 284.0286, Found: 283.0283.

2-(3-Bromophenyl)-*N*,*N*-diethyl-2-oxoacetamide (3e): yellow oil. ¹H NMR (400 MHz, CDCl₃): δ = 8.07 (s, 1H), 7.84 (d, *J* = 7.6 Hz, 1H), 7.75 (d, *J* = 8.0 Hz, 1H), 7.38 (t, *J* = 8.0 Hz, 1H), 3.55 (q, *J* = 7.2 Hz, 2H), 3.23 (q, *J* = 7.2 Hz, 2H), 1.28 (t, *J* = 7.2 Hz, 3H), 1.16 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ = 189.89, 165.95, 137.34, 135.08, 132.24, 130.51, 128.29, 123.22, 42.18, 39.01, 14.15, 12.80. HRMS (ESI) ([M] + H) Calcd for C₁₂H₁₅BrNO₂: 284.0286, Found: 283.0283.

2-(2-Chlorophenyl)-*N*,*N*-diethyl-2-oxoacetamide (3f): yellow oil. ¹H NMR (400 MHz, CDCl₃): δ = 7.88 (d, *J* = 7.6 Hz, 1H), 7.51–7.48 (m, 1H), 7.44–7.38 (m, 2H), 3.52 (q, *J* = 7.2 Hz, 2H), 3.35 (q, *J* = 7.2 Hz, 2H), 1.28–1.23 (m, 6H); ¹³C NMR (100 MHz, CDCl₃): δ = 190.14, 166.49, 134.14, 133.82, 133.44, 132.32, 130.84, 127.18, 42.18, 39.09, 13.61, 11.89. HRMS (ESI) ([M] + H) Calcd for C₁₂H₁₅ClNO₂: 240.0791, Found: 240.0788.

2-(2,5-Dichlorophenyl)-*N*,*N*-diethyl-2-oxoacetamide (3g): yellow oil. ¹H NMR (400 MHz, CDCl₃): δ = 7.85 (d, *J* = 2.0 Hz, 1H), 7.47–7.45 (m, 1H), 7.37 (d, *J* = 8.4 Hz, 1H), 3.52 (q, *J* = 7.2 Hz, 2H), 3.36 (q, *J* = 7.2 Hz, 2H), 1.28–1.23 (m, 6H); ¹³C NMR (100 MHz, CDCl₃): δ = 188.66, 165.79, 134.95, 133.89, 133.60, 131.89, 131.87, 131.80, 42.23, 39.26, 13.65, 11.85. HRMS (ESI) ([M] + H) Calcd for C₁₂H₁₂Cl₂NO₂: 274.0402, Found: 274.0405.

N,*N*-Diethyl-2-oxo-2-(*p*-tolyl)acetamide (3h): yellow oil.¹¹ ¹H NMR (400 MHz, CDCl₃): δ = 7.82 (d, *J* = 8.0 Hz, 2H), 7.29 (d, *J* = 8.0 Hz, 2H), 3.55 (q, *J* = 7.2 Hz, 2H), 3.23 (q, *J* = 7.2 Hz, 2H), 2.42 (s, 3H), 1.28 (t, *J* = 7.2 Hz, 3H), 1.14 (t, *J* = 7.2 Hz, 3H);

 $^{13}\mathrm{C}$ NMR (100 MHz, CDCl_3): δ = 191.33, 166.95, 145.74, 130.87, 129.71, 129.65, 42.08, 38.74, 21.83, 14.07, 12.80.

N,N-Diethyl-2-(4-methoxyphenyl)-2-oxoacetamide (3i): yellow oil.¹¹ ¹H NMR (400 MHz, CDCl₃): δ = 7.88 (d, J = 8.8 Hz, 2H), 6.95 (d, J = 8.8 Hz, 2H), 3.86 (s, 3H), 3.53 (q, J = 7.2 Hz, 2H), 3.22 (q, J = 7.2 Hz, 2H), 1.26 (t, J = 7.2 Hz, 3H), 1.13 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ = 190.34, 167.06, 164.70, 132.00, 126.34, 114.25, 55.58, 42.10, 38.70, 14.09, 12.81.

2-(4-(*tert***-Butyl)phenyl)-***N***,***N***-diethyl-2-oxoacetamide (3j): yellow oil.¹² ¹H NMR (400 MHz, CDCl₃): \delta = 7.46 (d,** *J* **= 8.4 Hz, 2H), 7.51 (d,** *J* **= 8.4 Hz, 2H), 3.56 (q,** *J* **= 7.2 Hz, 2H), 3.24 (q,** *J* **= 7.2 Hz, 2H), 1.34 (br, s, 9H), 1.28 (t,** *J* **= 7.2 Hz, 3H), 1.15 (t,** *J* **= 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): \delta = 191.29, 166.98, 158.59, 130.75, 129.57, 125.94, 42.12, 38.75, 35.31, 30.98, 14.09, 12.80.**

N,*N*-Diethyl-2-oxo-2-(*o*-tolyl)acetamide (3k): yellow oil. ¹H NMR (400 MHz, CDCl₃): δ = 7.69 (d, *J* = 7.6 Hz, 1H), 7.46 (t, *J* = 7.2 Hz, 1H), 7.30 (t, *J* = 7.2 Hz, 2H), 3.54 (q, *J* = 7.2 Hz, 2H), 3.25 (q, *J* = 7.2 Hz, 2H), 2.65 (s, 3H), 1.27 (t, *J* = 7.2 Hz, 3H), 1.16 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ = 193.57, 167.43, 141.37, 133.48, 132.58, 132.53, 131.74, 126.08, 42.10, 38.74, 21.73, 13.88, 12.65. HRMS (ESI) ([M] + H) Calcd for C₁₃H₁₈NO₂: 220.1338, Found: 220.1335.

N,*N*-Diethyl-2-(naphthalen-1-yl)-2-oxoacetamide (3l): yellow oil. ¹H NMR (400 MHz, CDCl₃): δ = 9.27 (d, *J* = 8.8 Hz, 1H), 8.10 (d, *J* = 8.0 Hz, 1H), 8.00 (d, *J* = 7.2 Hz, 1H), 7.91 (d, *J* = 8.0 Hz, 1H), 7.72–7.68 (m, 1H), 7.61–7.52 (m, 2H), 3.60 (q, *J* = 7.2 Hz, 2H), 3.31 (q, *J* = 7.2 Hz, 2H), 1.33 (t, *J* = 7.2 Hz, 3H), 1.18 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ = 194.06, 167.27, 135.70, 134.23, 134.08, 131.03, 129.21, 128.71, 128.65, 126.91, 125.85, 124.51, 42.26, 38.86, 13.93, 12.76. HRMS (ESI) ([M] + H) Calcd for C₁₆H₁₈NO₂: 256.1338, Found: 240.1343.

N,*N*-Diethyl-2-oxo-2-(thiophen-2-yl)acetamide (3m): yellow oil.¹³ ¹H NMR (400 MHz, CDCl₃): δ = 7.79–7.77 (m, 2H), 7.18

(t, J = 4.4 Hz, 1H), 3.54 (q, J = 7.2 Hz, 2H), 3.33 (q, J = 7.2 Hz, 3H), 1.27 (t, J = 7.2 Hz, 3H), 1.20 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 183.62$, 165.68, 140.60, 136.03, 135.84, 128.52, 42.38, 39.28, 14.25, 12.72.

2-Oxo-2-phenyl-*N*,*N*-dipropylacetamide (4a): yellow oil.¹¹ ¹H NMR (400 MHz, CDCl₃): δ = 7.95 (d, *J* = 7.6 Hz, 2H), 7.64 (t, *J* = 7.2 Hz, 1H), 7.51 (t, *J* = 7.6 Hz, 2H), 3.48 (t, *J* = 7.6 Hz, 2H), 3.14 (t, *J* = 7.6 Hz, 2H), 1.78–1.69 (m, 2H), 1.65–1.55 (m, 2H), 1.02 (t, *J* = 7.6 Hz, 3H), 0.80 (t, *J* = 7.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ = 191.52, 167.18, 134.46, 133.39, 129.63, 128.91, 49.32, 45.86, 21.81, 20.62, 11.40, 10.99.

N,N-Dibutyl-2-oxo-2-phenylacetamide (4b): yellow oil.^{3e} ¹H NMR (400 MHz, CDCl₃): δ = 7.93 (d, *J* = 7.2 Hz, 2H), 7.62 (t, *J* = 7.2 Hz, 1H), 7.50 (t, *J* = 7.6 Hz, 2H), 3.49 (t, *J* = 7.6 Hz, 2H), 3.14 (t, *J* = 7.6 Hz, 2H), 1.71–1.63 (m, 2H), 1.57–1.49 (m, 2H), 1.44–1.39 (m, 2H), 1.21–1.15 (m, 2H), 0.99 (t, *J* = 7.6 Hz, 3H), 0.81 (t, *J* = 7.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ = 191.56, 167.06, 134.44, 133.39, 129.56, 128.89, 47.41, 44.01, 30.61, 29.43, 20.22, 19.73, 13.80, 13.50.

N,*N*-Dimethyl-2-oxo-2-phenylacetamide (4c): yellow oil.¹¹ ¹H NMR (400 MHz, CDCl₃): δ = 7.95 (d, *J* = 7.6 Hz, 2H), 7.65 (t, *J* = 7.6 Hz, 1H), 7.52 (t, *J* = 7.6 Hz, 2H), 3.13 (s, 3H), 2.97 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ = 190.78, 167.04, 134.72, 133.06, 129.66, 129.01, 37.06, 34.01.

1-Phenyl-2-(piperidin-1-yl)ethane-1,2-dione (4d): yellow oil.^{3e} ¹H NMR (400 MHz, CDCl₃): δ = 7.96 (d, J = 7.2 Hz, 2H), 7.65 (t, J = 7.6 Hz, 1H), 7.52 (t, J = 7.6 Hz, 2H), 3.72 (br s, 2H), 3.30 (t, J = 5.6 Hz, 2H), 1.71–1.70 (m, 4H), 1.56 (br s, 2H); ¹³C NMR (100 MHz, CDCl₃): δ = 191.94, 165.47, 134.67, 133.25, 129.59, 129.01, 47.06, 42.18, 26.20, 25.45, 24.38.

N-Ethyl-2-oxo-*N*,2-diphenylacetamide (4e): yellow oil.^{3d} ¹H NMR (400 MHz, CDCl₃): δ = 7.84 (d, *J* = 7.2 Hz, 2H), 7.56 (t, *J* = 7.6 Hz, 1H), 7.43 (t, *J* = 8.0 Hz, 2H), 7.27–7.23 (m, 3H), 7.14–7.12 (m, 2H), 3.98 (q, *J* = 7.2 Hz, 2H), 1.28 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ = 190.79, 166.59, 139.31,

Acknowledgements

This work was financially supported by the National Science Foundation of China (No. 21172092).

Notes and references

- 1 (a) Y.-H. Chen, Y.-H. Zhang, H.-J. Zhang, D.-Z. Liu, M. Gu, J.-Y. Li, F. Wu, X.-Z. Zhu, J. Li and F.-J. Nan, J. Med. Chem., 2006, 49, 1613; (b) J. Holenz, R. Mercè, J. L. Díaz, X. Guitart, X. Codony, A. Dordal, G. Romero, A. Torrens, J. Mas, B. Andaluz, S. Hernández, X. Monroy, E. Sánchez, Hernández, R. Pérez, R. Cubí, O. Sanfeliu and E. Buschmann, J. Med. Chem., 2005, 48, 1781: H. (c) A. Natarajan, K. Wang, V. Ramamurthy, J. Scheffer and B. Patrick, Org. Lett., 2002, 4, 1443; (d) M. M. Sheha, N. M. Mahfouz, H. Y. Hassan, A. F. Youssef, T. Mimoto and Y. Kiso, Eur. J. Med. Chem., 2000, 35, 887; (e) S. Chatterjee, D. Dunn, M. Tao, G. Wells, Z.-Q. Gu, R. Bihovsky, M. A. Ator, R. Siman and J. P. Mallamo, Bioorg. Med. Chem. Lett., 1999, 9, 2371; (f) Z. Li, A.-C. Ortega-Vilain, G. S. Patil, D.-L. Chu, J. E. Foreman, D. D. Eveleth and J. C. Powers, I. Med. Chem., 1996, 39, 4089; (g) D. H. Slee, K. L. Laslo, J. H. Elder, I. R. Ollmann, A. Gustchina, J. Kervinen, A. Zdanov, A. Wlodawer and C.-H. Wong, J. Am. Chem. Soc., 1995, 117, 11867; (h) B. E. Maryanoff, M. N. Greco, Н.-С. Zhang, P. Andrade-Gordon, J. A. Kauffman, K. C. Nicolaou, A. Liu and P. H. Brungs, J. Am. Chem. Soc., 1995, 117, 1225; (i) M. Hagihara and S. L. Schreiber, J. Am. Chem. Soc., 1992, 114, 6570; (j) B. Munoz, C.-Z. Giam and C.-H. Wong, Bioorg. Med. Chem., 1994, 2, 1085.
- 2 (a) I. Ojima, N. Yoda, M. Yatabe, T. Tanaka and T. Kogure, *Tetrahedron*, 1984, 40, 1255; (b) A. Chiou, T. Markidis, V. Constantinou-Kokotou, R. Verger and G. Kokotos, *Org. Lett.*, 2000, 2, 347; (c) G. M. Dubowchik, J. L. Ditta, M. V. Vrudhula, B. DasGupta, J. Ditta, T. Chen, S. Sheriff, K. Sipman, M. Witmer, J. Tredup, D. M. Vyas, T. A. Verdoorn, S. Bollini and A. Vinitsky, *Org. Lett.*, 2001, 3, 3987.
- 3 For the synthesis of α -ketoamides by transition-metal-catalyzed approaches, see: (a) J. Liu, R. Zhang, S. Wang, W. Sun and C. Xia, Org. Lett., 2009, **11**, 1321; (b) C. Zhang and N. Jiao, J. Am. Chem. Soc., 2010, **132**, 28; (c) C. Zhang, Z. Xu, L. Zhang and N. Jiao, Angew. Chem., Int. Ed., 2011, **50**, 11088; (d) C. Zhang, X. Zong, L. Zhang and N. Jiao, Org. Lett., 2012, **14**, 3280; (e) F.-T. Du and J.-X. Ji, Chem. Sci., 2012, **3**, 460. For the synthesis of α -ketoamides by metalfree approaches, see: (f) W. Wei, Y. Shao, H. Hu, F. Zhang, C. Zhang, Y. Xu and X. Wan, J. Org. Chem., 2012, 77, 7157;

(g) W.-P. Mai, H.-H. Wang, Z.-C. Li, J.-W. Yuan, Y.-M. Xiao, L.-R. Yang, P. Mao and L.-B. Qu, *Chem. Commun.*, 2012, **48**, 10117; (h) M. Lamani and K. R. Prabhu, *Chem.-Eur. J.*, 2012, **18**, 14638.

- 4 For examples of α-H bond action of tertiary amines:
 (a) X. Xu and X. Li, Org. Lett., 2009, 11, 1027;
 (b) T. Yoshimitsu, K. Matsuda, H. Nagaoka, K. Tsukamoto and T. Tanaka, Org. Lett., 2007, 9, 5115;
 (c) M. Niu, Z. Yin, H. Fu, Y. Jiang and Y. Zhao, J. Org. Chem., 2008, 73, 3961;
 (d) S.-I. Murahashi, T. Nakae, H. Terai and N. Komiya, J. Am. Chem. Soc., 2008, 130, 11005;
 (e) T. Sugiishi and H. Nakamura, J. Am. Chem. Soc., 2012, 134, 2504;
 (f) L. Chu, X. Zhang and F. Qing, Org. Lett., 2009, 11, 2197;
 (g) F. Yang, J. Li, J. Xie and Z.-Z. Huang, Org. Lett., 2010, 12, 5214;
 (h) X. Ye, C. Xie, Y. Pan, L. Han and T. Xie, Org. Lett., 2010, 12, 4240;
 (i) Y. Zhang, H. Peng, M. Zhang, Y. Cheng and C. Zhu, Chem. Commun., 2011, 47, 2354;
 (j) L. Liu, Z. Wang, X. Fu and C.-H. Yan, Org. Lett., 2012, 14, 5692.
- 5 (a) X. Zhao, D. Liu, H. Guo, Y. Liu and W. Zhang, J. Am. Chem. Soc., 2011, 133, 19354; (b) Y. Liu, B. Yao, C.-L. Deng, R.-Y. Tang, X.-G. Zhang and J.-H. Li, Org. Lett., 2011, 13, 2184; (c) S. Li and J. Wu, Org. Lett., 2011, 13, 712; (d) Y. Kuninobu, M. Nishi and K. Takai, Chem. Commun., 2010, 46, 1350; (e) W. Liu, J. Liu, D. Ogawa, Y. Nishihara, X. Guo and Z. Li, Org. Lett., 2011, 13, 6272; (f) S. Guo, B. Qian, Y. Xie, C. Xia and H. Huang, Org. Lett., 2011, 13, 522.
- 6 X. Zhang and L. Wang, Green Chem., 2012, 14, 2141.
- 7 For recent examples on silver-mediated reactions, see:
 (a) J. M. Weibel, A. Blanc and P. Pale, *Chem. Rev.*, 2008, 108, 3149;
 (b) M. Alvarez-Corral, M. Munoz-Dorado and I. Rodriguez-Garcoa, *Chem. Rev.*, 2008, 108, 3174;
 (c) K. Chen, J. M. Richter and P. S. Baran, *J. Am. Chem. Soc.*, 2008, 130, 7247;
 (d) T. Furuya, A. E. Strom and T. Ritter, *J. Am. Chem. Soc.*, 2009, 131, 1662.
- 8 (a) K. McCamley, J. A. Ripper, R. D. Singer and P. J. Scammells, *J. Org. Chem.*, 2003, 68, 9847;
 (b) F. Minisci, F. Fontana, S. Araneo, F. Recupero and L. Zhao, *Synlett*, 1996, 119; (c) S. H. Cho, J. Y. Kim, S. Y. Lee and S. Chang, *Angew. Chem., Int. Ed.*, 2009, 48, 9127.
- 9 (a) Y. Liu, B. Yao, C.-L. Deng, R.-Y. Tang, X.-G. Zhang and J.-H. Li, Org. Lett., 2011, 13, 2184; (b) G.-W. Wang, X.-P. Chen and X. Cheng, Chem.-Eur. J., 2006, 12, 7246.
- 10 J. Li, K. Subramaniam, D. Smith, J. X. Qiao, J. J. Li, J. Qian-Cutrone, J. F. Kadow, G. D. Vite and B.-C. Chen, *Org. Lett.*, 2012, 14, 214.
- F. Ozawa, H. Soyama, H. Yanagihara, I. Aoyama, H. Takino, K. Izawa, T. Yamamoto and A. Yamamoto, *J. Am. Chem.* Soc., 1985, 107, 3235.
- 12 Z. Yang, Z. Zhang, N. A. Meanwell, J. F. Kadow and T. Wang, *Org. Lett.*, 2002, 4, 1103.
- 13 R. P. Singh and J. M. Shreeve, J. Org. Chem., 2003, 68, 6063.

Published on 08 April 2013 on http://pubs.rsc.org | doi:10.1039/C3OB40619A

Downloaded by Acadia University on 14/05/2013 20:11:10.