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Abstract: An efficient route to synthesize cycloalkyl substituted
purine nucleosides was developed. This metal-free C-H activation
was accomplished by tBuOOtBu initiated radical reaction. By
adjusting the amount of tBuOOtBu and reaction time, the
selective synthesis of C6-monocycloalkyl or C€6,C8-dicycloalkyl
substituted purine nucleosides could be realized. Furthermore,
uracil and related nucleosides were also suitable substrates, giving
the C5-cyclohexyl substituted uracil derivatives in good yields with
excellent regioselectivities.

Introduction

In recent years, the humanity infectious diseases, which are
caused by viruses, increased progressively because the
reproduction and propagation of viruses guest in human
beings.lTherefore, the modification of purine and pyrimidine
analogues have displayed extremely important due to their
outstanding antiviral activities.” Subsequently, great endeavors
have been devoted to search various purine or pyrimidine
analogues to study their biological activities.® In particular,
cycloalkyl substituted purine and pyrimidine derivatives
possess unique biological effects, such as antifolate (Figure 1,
A),4a adenosine receptor antagonists (Figure 1, B),“b cytostatic
(Figure 1, C and D), against herpes simplex (Figure 1, E),4d and
receptor modulation.”* 8 In view of the significant biological
activities exhibited by cycloalkyl substituted purine and
pyrimidine derivatives, searching for a useful method to
construct cycloalkyl substituted purine and pyrimidine
analogues is highly desirable.
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Figure 1. Selected examﬁ)les of the cycloalkyl substituted purine and pyrimidine
analogues with biological activities
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Scheme 1. Synthetic routes to cycloalkyl substituted purine derivatives.

Considering the importance of cycloalkyl substituted purine
analogues, numerous routes have been developed to
construct this class of heterocyclic compounds (Scheme 1). The
classic strategy is metal catalyzed coupling reactions, including:
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a) Copper mediated reactions of Grignard reagents with 6-
halopurines;5 b) Nickel catalyzed Negishi coupling reactions of
organozinc halides with 6—ha|opurines;6 c) Palladium catalyzed
coupling reactions of alkyl trifluoroborates with 6—ha|opurines7
(Scheme 1a). Whereas these reactions always need expensive
noble metals which would have residual toxic metals in the
final products. Meanwhile, these reactions also need leaving
groups at the C6 position of purine derivatives. The only
example of radical alkylation for C6-H purines was
accomplished with cycloalkyl iodo as an alkylating reagent
promoted by FeSO, and tBuOOH under strong acidic
conditions.? However, the current methods always suffered
from either expensive metal catalysts or harsh reaction
conditions. In the context of ongoing projects in modifying
purine and pyrimidine derivatives,”° thus, we wish to develop
a direct method to construct cycloalkyl substituted purine and
pyrimidine analogues with metal-free under mild conditions.

Initially, we used 6-H-2",3",5"-tri-O-acetylpurine riboside (1a)
and cyclohexane (2a) as model substrates to optimize the
reaction conditions (Table 1). When the reaction was
conducted with tBuOOtBu as a peroxide at 100 °C for 12 h, the
reaction did not occur and the substrates 1a was recovered
(entry 1). To our delight, increasing reaction temperature from
100 °C to 120 °C, the C6-monocyclohexyl substituted purine
product 3a was obtained with 24% yield (entry 2). However, a
mixture of C6-monocyclohexyl substituted purine 3a and C6,
C8-dicyclohexyl substituted purine 4a was afforded with 77%
total yield when the reaction temperature increased from 120
°C to 140 °C (entry 3). Therefore, how to obtain a single
cyclohexyl substituted purine product was the focus for the
following optimization of the conditions. When the reaction
time was shortened from 12 h to 1 h, the yield of product 3a
was increased from 45% to 56% while the purine 4a was not
formed (entries 3-4). Encouraged by the results, different
reaction times were further evaluated. When the reaction was
performed for 2 h, the product 3a was exclusively obtained
with 91% yield (entries 4-6). When other peroxides including
tert-butyl hydroperoxide (TBHP) and dicumyl peroxide (DCP)
were evaluated, no better results were obtained (entries 7-8).
Thus, the optimal reaction time is 2 h for the selective
generation of C6-monocyclohexyl substituted purine 3a.
Subsequently, we wish to realize the selective synthesis of
purine 4a. Then, the amount of peroxide tBuOOtBu was
examined, and the yield of purine 4a was increased to 10%
yield when 3.0 equiv tBuOOtBu was used (entries 9-10).
Prolonging the reaction time to 24 h, the yield of product 4a
increased greatly (entries 11-12). Therefore, when the reaction
was performed with 3.0 equiv of tBuOOtBu at 24 h, the purine
3a disappeared completely and the C6,C8-dicyclohexyl
substituted purine 4a was obtained with 89% vyield (entry 13).
Therefore, by adjusting the amount of tBuOOtBu and the
reaction time, we can realize the selective synthesis of C6-
monocyclohexyl or C6,C8-dicyclohexyl substituted purine
nucleosides with excellent yields.
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Table 1. The optimization of reaction conditions.”?!
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N2\ H N N
H_&(N ‘ /J\‘ + © peroxide (x equiv) H— /)N + <:>—</N lN/)N
AcO N Temp AcO N" a0
O O O
OAcOAc OAcOAc OAcOAc
1a 2a 3a 4a
X ) : 4a Yield
Ent Peroxide (equiv] T Time 3aYield [.;/]lbl
ntr roxi uiv o
Y a ca [9%]" °
1 tBuOOtBu 2.0 100 12 0 0
2 tBuOOtBu 2.0 120 12 24 0
3 tBuOOtBu 2.0 140 12 45 32
4 tBuOOtBu 2.0 140 1 56 0
5  tBuootBu 20 140 2 91 0
6  tBUOOtBU 20 140 3 85 5
79 TBHP 20 140 2 26 0
8 DCP 20 140 2 66 0
9 tBUOOtBU 1.0 140 2 73 0
10  tBuOOtBuU 3.0 140 2 83 10
11  tBuOOtBu 2.0 140 4 74 20
12 tBuOOtBu 2.0 140 24 37 55
13 tBuOOtBu 3.0 140 24 0 89

[a] Unless otherwise note, the reaction conditions were: 1a (0.25 mmol) and 2a
(2.5 mL) under air; [b] Isolated yields based on 1a; [c] 70% aqueous solution.

Subsequently, the substrate scope of the cycloalkylation
reaction was examined under the optimized conditions (Table
1, entry 5) for the selective generation of C6-monocyclohexyl
substituted purine derivative. When purine nucleosides
bearing different ribosyl substitution were tested, the
corresponding  C6-monocyclohexyl substituted purine
nucleosides were obtained with 78-91% yields (Scheme 2, 3a-
3d). To our delight, purine nucleosides containing
arabinoribosyl substitutions also were suitable substrates to
afford the desired C6-monocyclohexyl substituted purine
nucleosides with 75-87% vyields (Scheme 2, 3e-3f). In the case
of purine nucleosides bearing deoxyribosyl substitution, the
reaction proceeded well giving the C6-monocyclohexyl
substituted product 3g in 80% yield (Scheme 2, 3g).
Furthermore, 9-benzyl-9H-purine worked well to furnish the
target product 3h in 83% yield (Scheme 2, 3h).

Next, various cycloalkanes were employed to construct C6-
monocycloalkyl substituted purine nucleosides (Scheme 3).
Under the optimized conditions (Table 1, entry 5), the
cycloalkylation reactions worked well with different size of
rings in cycloalkanes, including cyclopentane (2b),
cycloheptane (2c), and cyclooctane (2d) (Scheme 3, 3a-3c). In
the case of decahydronaphthalene (2d), an inseparable
mixture was obtained (Scheme 3, 3d). When 1l-adamantane
(2e) was used, the corresponding C6-monocycloalkyl

This journal is © The Royal Society of Chemistry 20xx
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substituted purine nucleoside 3e was obtained with 80% yield
(Scheme 3, 3e).

Scheme 2. Substrate scope of purine derivatives for the C6-
monocycloalkylation.®?!
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[a] Reaction conditions: 1 (0.25 mmol), tBuOOtBu (0.5 mmol) and 2a (2.5 mL)
under air; [b] The yield referred to isolated yield based on substrate 1.
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nucleosides were obtained with 82-89% yield (Scheme. 4,4a;
4d). When decahydronaphthalene (2d)1owz®/Casadpsoan
inseparable mixture also was formed (Scheme 4, 4e). In the
case of 1-adamantane (2e), the C6,C8-dicycloalkyl substituted
purine nucleoside 4f was afforded with 70% yield (Scheme 4,
af).

Scheme 3. The C6-monocycloalkylation of 1a with various cycloalkanes fab]
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[a] Reaction conditions: 1a (0.25 mmol), tBuOOtBu (0.5 mmol) and 2 (2.5 mL)
under air; [b] The vyield referred to isolated yield based on substrate 1a. [c]
Benzene (2.0 mL), 2f (1.25 mmol).

Scheme 4. The C6,C8-dicycloalkylation of 1a with various cycloalkanes fa.b)
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[a] Reaction conditions: 1a (0.25 mmol), tBuOOtBu (0.75 mmol) and 2 (2.5 mL)
under air; [b] The yield referred to isolated yield based on substrate 1a. [c]
Benzene (2.0 mL), 2f (2.5 mmol).

Then, the substrate scope of the cycloalkylation reaction
was evaluated to afford C6,C8-dicycloalkyl substituted purine
nucleosides under the optimized conditions (Table 1, entry 13).
When different size of rings in cycloalkanes were examined,
the corresponding C6,C8-dicycloalkyl substituted purine

This journal is © The Royal Society of Chemistry 20xx

Scheme 5. The cycloalkylation of uracils derivatives 5 with cyclohexane 2.
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[a] Reaction conditions: 5 (0.25 mmol), tBuOOtBu (0.50 mmol) and 2a (2.50 mL) under
air and the isolated yields were given.

After a variety of cycloalkylated purine derivatives were
obtained, uracil and related nucleosides were evaluated in the
cycloalkylation reactions.* As shown in Scheme 5, N1 or N3
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alkyl-substituted uracil derivatives could afford C5-cyclohexyl
substituted uracil products 6a-6b with 80-95% yields, while the
C6-cyclohexyl substituted uracil products were not formed
(Scheme 5, 6a-6b). To our delight, uracil nucleosides bearing
N1-substitutions such as ribosyl and arabinoribosyl groups all
furnished the corresponding C5-cyclohexyl substituted uracil
nucleosides with good yields (Scheme 5, 6¢-6f). It is worth
mentioning that the cycloalkylation reactions could tolerate
free hydroxyl and amino groups (Scheme 5, 6b-6f). In all the
case, the cycloalkylation reactions exclusively afforded the C5-
cyclohexyl substituted uracil derivatives.

Subsequently, some experiments were performed to
evaluate the mechanism of the cycloalkylation reaction. First,
when the TEMPO, a radical scavenger, was added, the
cycloalkylation reaction was completely inhibited. The radical
trapping by-product 7a was isolated in 80% vyield, which
indicated that a radical process was involved in the
cycloalkylation reaction (Scheme 6a). Next, when the crude
product of the reaction was analyzed by GC-MS spectra, the
dimerization and three-component coupling products of
cyclohexane were detected, which proved the existence of a
cyclohexyl radical in the cycloalkylation reaction (see
supporting information for detail). Besides, the kinetic isotope
effect experiment was performed and a significant isotope
effect was observed with Ky/kp = 3.82, which suggested that
the C-H bond cleavage of cyclohexane is the rate-determining
step (Scheme 6b).*

Based on the above experiments, a plausible mechanism for
the cycloalkylation reaction was proposed (Scheme 7).12 In the
initiation step, the tert-butoxy radical was generated from
tBuOOtBu by heat. Then, the cyclohexyl radical was formed by
the hydrogen abstraction between tert-butoxy radical and
cyclohexane (Scheme 7a). Subsequently, the radical addition of
cyclohexyl radical to C6 position of purine nucleoside 1a
afforded the intermediate A, followed by hydrogen abstraction
with other radical to produce C6-monocyclohexyl substituted
product 3a. By prolonging the reaction time and increasing the
amount of peroxide tBuOOtBu, the radical addition of
cyclohexyl radical to C6-monocyclohexyl substituted purine
nucleoside 3a occurred, and the C6,C8-dicyclohexyl
substituted purine nucleoside 4a was formed via hydrogen
abstraction reaction (Scheme 7b).

Conclusions

We have developed a metal-free strategy for the synthesis of
cycloalkyl substituted purine and pyrimidine nucleosides. By
adjusting the amount of tBuOOtBu and reaction time, the
selective synthesis of C6-monocycloalkyl or C6,C8-dicycloalkyl
substituted purine nucleosides could be realized. Meanwhile, a
variety of purine nucleosides containing ribosyl, arabinoribosyl,
and deoxyribosyl substitutions worked well with different size
of rings in cycloalkanes, affording the corresponding products
with good results (19 examples, 70-92% vyields). Furthermore,
uracil and related nucleosides also were suitable substrates,
giving the C5-cyclohexyl substituted uracil derivatives in good

4| J. Name., 2012, 00, 1-3

yields with excellent regioselectivities (6 examples; .ZZ9%%
yields). DOI: 10.1039/C60B00596A
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Scheme 6. a) The radical trapping experiment; b) The kinetic isotope effect (KIE)
experiment

Scheme 7. The proposed mechanism for the cycloalkylation reaction.

Experimental Section

Monocycloalkylation reaction of 6-H-2’,3’,5’-tri-O-acetylpurine riboside (1a)
with cyclohexane (2a)

A reaction vessel was charged with 6-H-2’,3’,5'-tri-O-acetylpurine
riboside (1a, 94.5 mg, 0.25 mmol), tBuOOtBu (0.095 mL, 0.5 mmol)
and cyclohexane (2.5 mL). Then, the reaction vessel was sealed and
the resulting solution was stirred at 140 °C for 2 h. After cooling to
room temperature, the resulting mixture was removed in vacuo and
the residue was purified by column chromatography (SiO,, petro
ether/ethyl acetate = 1:2) to give 3a with 91% vyield.

Dicycloalkylation reaction of 6-H-2’,3’,5’-tri-O-acetylpurine riboside (1a)
with cyclohexane (2a)

A reaction vessel was charged with 6-H-2’,3’,5'-tri-O-acetylpurine
riboside (1a, 94.5 mg, 0.25 mmol), tBuOOtBu (0.143 mL, 0.75 mmol)
and cyclohexane (2.5 mL). Then, the reaction vessel was sealed and
the resulting solution was stirred at 140 °C for 24 h. After cooling to
room temperature, the resulting mixture was removed in vacuo and
the residue was purified by column chromatography (SiO,, petro
ether/ethyl acetate = 2:1) to give 4a with 89% yield.

This journal is © The Royal Society of Chemistry 20xx
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