Organic & Biomolecular Chemistry

RSCPublishing

View Article Online View Journal | View Issue

Synergistic effect of additives on cyclopropanation of olefins†

Cite this: Org. Biomol. Chem., 2013, 11, 5588

Received 15th April 2013, Accepted 21st June 2013

DOI: 10.1039/c3ob40751a

www.rsc.org/obc

Donghao Cheng,^a Deshun Huang^a and Yian Shi*^{a,b}

An efficient cyclopropanation of olefins with $Zn(CH_2I)_2$, a catalytic amount of CCI_3CO_2H , and 1,2-dimethoxyethane at room temperature is described. A wide variety of olefins, including acidsensitive substrates, can be cyclopropanated in 71–99% yield.

Cyclopropanes are present in many biological and medicinal molecules,¹ and are synthetically useful intermediates.² The Simmons–Smith reaction is a very effective method to synthesize cyclopropanes from olefins (Scheme 1).³ Since the initial report of the Simmons–Smith reaction,⁴ lots of modifications have been reported.⁵ A variety of strategies have also been developed to generate various zinc species, including XZnCH₂X,^{6a,b} RZnCH₂I or Zn(CH₂I)₂,^{6c-g} Zn(CH₂CI)₂,^{6h} RCO₂CH₂ZnR,^{6i,j} ArOZnCH₂I,^{6k} and (RO)₂P(O)OZnCH₂I.^{6l-n} In 1998, we reported a novel class of tunable cyclopropanation zinc species (RXZnCH₂I) generated by reacting appropriate zinc reagents with RXH ranging from alcohols to acids (Scheme 2).^{7,8} The zinc species, derived from acids like CF₃CO₂H, display very high reactivities for the cyclopropanation of olefins

^aBeijing National Laboratory of Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China and have found a variety of applications in synthesis.⁸ However, one of the drawbacks of our earlier procedures is that stoichiometric amounts of CF_3CO_2H are usually used. For some unreactive substrates such as stilbenes, excess CF_3CO_2H is frequently needed to obtain high conversions.⁸ Therefore, the development of a cyclopropanation procedure requiring only substoichiometric amounts of RXH is highly desirable.^{9,10} Herein, we wish to report our preliminary studies on this subject.

Initial studies were carried out with relatively unreactive *trans*-stilbene (**1a**) as the substrate. As shown in Fig. 1, a poor conversion of *trans*-stilbene was observed with no additive (Fig. 1, curve A). The conversion only slightly increased with the addition of 0.2 equiv. of CF_3CO_2H or $CCl_3CO_2H^{7b,11}$ (Fig. 1, curves B and C). However, in the case of CCl_3CO_2H , the conversion greatly increased when 1 equiv. of 1,2-dimethoxyethane

Fig. 1 Plot of the conversion of *trans*-stilbene against time (h). All reactions were carried out with *trans*-stilbene (0.50 mmol), Et₂Zn (1.0 mmol, 1.0 M in *n*-hexane), CH_2I_2 (2.0 mmol), and additives in CH_2CI_2 (2.5 mL) at 30 °C for 24 h. The conversions were determined using GC analysis. The curves presented are: (A) no additive, (B) CF_3CO_2H (0.10 mmol), (C) CCI_3CO_2H (0.10 mmol), (D) CF_3CO_2H (0.10 mmol), DME (0.50 mmol), (E) CCI_3CO_2H (0.10 mmol), DME (0.50 mmol), (G) CCI_3CO_2H (0.10 mmol), DME (0.50 mmol), (G) CCI_3CO_2H (0.10 mmol), DME (0.50 mmol), (G) CCI_3CO_2H (0.10 mmol), DME (0.50 mmol), (J) 2,4,6-trichlorophenol (0.10 mmol), DME (0.50 mmol), (J) CF_3CH_2OH (0.10 mmol), and DME (0.50 mmol).

^bDepartment of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA. E-mail: yian@lamar.colostate.edu; Fax: +001-970-4911801; Tel: +001-970-4917424

[†]Electronic supplementary information (ESI) available: Experimental procedures, characterization data, and NMR spectra. See DOI: 10.1039/c30b40751a

Entry	Additive	Solvent	Conv. ^{b} (%)
1	None	CH_2Cl_2	29
2	TMEDA (1.0 equiv.)	CH_2Cl_2	6
3	2,2'-Bipyridine (1.0 equiv.)	CH_2Cl_2	52
4	Et_2O (1.0 equiv.)	CH_2Cl_2	64
5	^t BuOMe (1.0 equiv.)	CH_2Cl_2	55
6	THF (1.0 equiv.)	CH_2Cl_2	82
7	Dioxane (1.0 equiv.)	CH_2Cl_2	84
8	MeO OAc (1.0 equiv.)	$\mathrm{CH}_2\mathrm{Cl}_2$	77
9	MeO OEt (1.0 equiv.)	CH_2Cl_2	70
10	DME (1.0 equiv.)	CH ₂ Cl ₂	85
11	DME (0.2 equiv.)	CH_2Cl_2	64
12	DME (0.5 equiv.)	CH_2Cl_2	73
13	DME (2.0 equiv.)	CH_2Cl_2	56
14	DME (5.0 equiv.)	CH_2Cl_2	8
15	DME (1.0 equiv.)	DCE	75
16	DME (1.0 equiv.)	Toluene	47
17	DME (1.0 equiv.)	<i>n</i> -Hexane	66

^a All reactions were carried out with *trans*-stilbene (1a) (0.50 mmol), Et₂Zn (1.0 mmol, 1.0 M in n-hexane), CH₂I₂ (2.0 mmol), CCl₃CO₂H (0.10 mmol), and additive in solvent (2.5 mL) at 30 °C for 18 h. ^b The conversions were determined using GC analysis.

(DME)^{6l,9,12} was added (Fig. 1, curve E). This result was comparable to the conversion obtained with 2 equiv. of CCl₃CO₂H (Fig. 1, curve G). A similar synergistic effect of additives on the cyclopropanation of olefins was also observed with MeCOCO₂H (Fig. 1, curve H).

The observed beneficial effect of DME on the cyclopropanation prompted us to systematically examine various other additives. As shown in Table 1, TMEDA was found to be detrimental to the reaction (Table 1, entry 2).¹³ The ether-type additives were favorable for the reaction, with DME being the best (Table 1, entries 4-10). Further studies showed that the amount of DME was important for the reaction conversion, with 1 equiv. being optimal (Table 1, entries 10-14). While a precise understanding of the beneficial effect of additives like DME on the cyclopropanation awaits further study, the additives could coordinate with the zinc carbenoids to increase their stabilities and/or disrupt inactive aggregates.¹² At the same time, the additives could also reduce the reactivity of the zinc carbenoids. As a result, the reaction conversion is dependent on the amount of the additives added. Among the solvents examined (Table 1, entries 10 and 15-17), the highest conversion was obtained with CH₂Cl₂.

The cyclopropanation procedure with 0.2 equiv. of CCl₃CO₂H and 1 equiv. of DME can be extended to a wide variety of olefins, giving the corresponding cyclopropanes in 71-99% yield (Table 2). The effective substrates include trans-, cis-, terminal, and trisubstituted olefins. Various functional groups, such as OH, OTBS, and CO2R, can be tolerated (Table 2, entries 3, 4, 6, 7, 10, and 11). For acid-sensitive silyl

Table 🛛	2 Cvc	loprop	anation	of	olefins ^a
		op.op	annacioni	<u> </u>	0101110

11

	R_2	CCl ₃ CO ₂ H (0.2 equiv) Zn(CH ₂ I) ₂ (2.0 equiv)	R_2	
	R ₃ – R ₃	DME (1.0 equiv) DCM, 25 °C	R ₁ R ₃ R ₃	
Entry	Substrate	Time (h)	$\operatorname{Conv.}^{b}(\%)$	Yield ^c (%)
1	Ph Ph 1a	48	86	77
2	Ph 1b	18	100	77
3	Ph OH 1c	2	100	97
4	Ph OTBS 1d	18	100	95
5	p-MeO-Ph	18	99	94
6	n-C ₅ H ₁₁	18 ^{OEt} 1f	100	88
7	n-C ₈ H ₁₇	18 ^{DMe} 1g	97	96
8	Ph 1h	18	100	84
9	Ph Ph 1i	24	87	71
10	Он п-С ₆ Н ₁₃ 1ј	4	100	99
11	ОН <i>п</i> -С ₅ Н ₁₁ 1k	18	100	77
12		18	100	94
13	p-MeO-Ph 1m	18	100	72
14	p-Br-Ph 1n	18	99	71
15	Ph 10	18	100	82
16	Ph Ph 1p	18	100	76
17	Ph 1q	18	100	93
18	Ir	20	100	90
19	Ph 1s	18	100	91
20	Ph 1t	3	100	90
21	OTMS 1u	3	100	84

^a All reactions were carried out with olefins (0.50 mmol), Et₂Zn (1.0 mmol, 1.0 M in n-hexane), CH2I2 (2.0 mmol), CCl3CO2H (0.10 mmol), and DME (0.50 mmol) in CH₂Cl₂ (2.5 mL) at 25 °C unless otherwise noted. For entries 1 and 2, reactions were carried out with olefins (1.0 mmol), Et₂Zn (2.0 mmol), CH₂I₂ (4.0 mmol), CCl₃CO₂H (0.20 mmol), and DME (1.0 mmol) in CH₂Cl₂ (5.0 mL). ^{*b*} The conversions were determined from the crude reaction mixture either using GC or ¹H NMR analysis. ^c Isolated yield.

enol ethers **1t** and **1u**, the cyclopropane products were obtained in high yields without desilylation (Table 2, entries 20 and 21).^{7b} The cyclopropanation of dienol **1v** afforded the corresponding bicyclopropane **2v** in 82% yield with good diastereoselectivity (dr = 87 : 13) (Scheme 3).¹⁴ For geraniol **1w**, the allylic alcohol can be selectively cyclopropanated in 93% yield along with bicyclopropane **2w** (Scheme 4).¹⁵

As illustrated in the case of compound **5**, the cyclopropanation is amenable to the gram scale, giving cyclopropane **6** in 89% yield (Scheme 5). Compound **6** is a key intermediate towards Roflumilast, a selective long-acting PDE-4 inhibitor for the treatment of inflammatory conditions of lungs.¹⁶

Conclusion

In summary, we have developed an efficient cyclopropanation procedure for olefins with a catalytic amount of CCl_3CO_2H and one equiv. of DME. A wide variety of olefins including acidsensitive substrates have been cyclopropanated in 71–99% yield. The synergistic effect of CCl_3CO_2H and DME dramatically reduces the amount of acid used, which makes this cyclopropanation procedure milder and more practical. Further understanding the mechanism and developing more effective catalytic systems with high reactivity and selectivity are currently under way.

Acknowledgements

The authors gratefully acknowledge the National Basic Research Program of China (973 program, 2011CB808600) and the Chinese Academy of Sciences for financial support.

Notes and references

- For leading reviews, see: (a) J. Salaün, in *Topics in Current Chemistry*, ed. A. de Meijere, Springer-Verlag, Berlin, 2000, vol. 207, ch. 1, pp. 1–67; (b) W. A. Donaldson, *Tetrahedron*, 2001, 57, 8589; (c) R. Faust, *Angew. Chem., Int. Ed.*, 2001, 40, 2251; (d) J. Pietruszka, *Chem. Rev.*, 2003, 103, 1051; (e) A. Reichelt and S. F. Martin, *Acc. Chem. Res.*, 2006, 39, 433; (f) D. Y.-K. Chen, R. H. Pouwer and J.-A. Richard, *Chem. Soc. Rev.*, 2012, 41, 4631.
- 2 For leading reviews, see: (a) H. N. C. Wong, M.-Y. Hon, C.-W. Tse, Y.-C. Yip, J. Tanko and T. Hudlicky, Chem. Rev., 1989, 89, 165; (b) J. Salaün, Chem. Rev., 1989, 89, 1247; (c) The Chemistry of the Cyclopropyl Group, ed. Z. Rappoport, Wiley, Chichester, 1995; (d) H.-U. Reissig and R. Zimmer, Chem. Rev., 2003, 103, 1151; (e) M. Yu and B. L. Pagenkopf, Tetrahedron, 2005, 61, 321; (f) C. A. Carson and M. A. Kerr, Chem. Soc. Rev., 2009, 38, 3051; (g) S. R. Goudreau and A. B. Charette, Angew. Chem., Int. Ed., 2010, 49, 486; (h) T. P. Lebold and M. A. Kerr, Pure Appl. Chem., 2010, 82, 1797; (i) M.-N. Roy, V. N. G. Lindsay and A. B. Charette, in Science of Synthesis, Stereoselective Synthesis, ed. J. G. de Vries, Thieme, 2011, vol. 1, ch. 14, pp. 731-817; (*j*) D. Zhang, H. Song and Y. Qin, Acc. Chem. Res., 2011, 44, 447; (k) P. Tang and Y. Qin, Synthesis, 2012, 2969; (l) Z. Wang, Synlett, 2012, 2311; (m) D. J. Mack and J. T. Njardarson, ACS Catal., 2013, 3, 272.
- 3 For leading reviews, see: (a) H. E. Simmons, T. L. Cairns, S. A. Vladuchick and C. M. Hoiness, Org. React., 1973, 20, 1; (b) A. H. Hoveyda, D. A. Evans and G. C. Fu, Chem. Rev., 1993, 93, 1307; (c) A. B. Charette and J.-F. Marcoux, Synlett, 1995, 1197; (d) M. Lautens, W. Klute and W. Tam, Chem. Rev., 1996, 96, 49; (e) A. B. Charette and A. Beauchemin, Org. React., 2001, 58, 1; (f) S. E. Denmark and G. Beutner, in Cycloaddition Reactions in Organic Synthesis, ed. S. Kobayashi and K. A. Jørgensen, Wiley-VCH, Weinheim, 2002, ch. 3, pp. 85–150; (g) H. Lebel, J.-F. Marcoux, C. Molinaro and A. B. Charette, Chem. Rev., 2003, 103, 977; (h) A. B. Charette, in The Chemistry of Organozinc Compounds, ed. Z. Rappoport and I. Marek, John Wiley & Sons, West Sussex, UK, 2006, ch. 7, pp. 237-286; (i) H. Pellissier, Tetrahedron, 2008, 64, 7041; (j) A. Maleki, Synlett, 2009, 1690; (k) H. Y. Kim and P. J. Walsh, Acc. Chem. Res., 2012, 45, 1533; (l) M. Pasco, N. Gilboa, T. Mejuch and I. Marek, Organometallics, 2013, 32, 942.
- 4 (a) H. E. Simmons and R. D. Smith, J. Am. Chem. Soc., 1958, 80, 5323; (b) H. E. Simmons and R. D. Smith, J. Am. Chem. Soc., 1959, 81, 4256.

- 5 For leading references on modifications of Simmons-Smith cyclopropanations, see: (a) R. S. Shank and H. Shechter, J. Org. Chem., 1959, 24, 1825; (b) E. LeGoff, J. Org. Chem., 1964, 29, 2048; (c) R. J. Rawson and I. T. Harrison, J. Org. Chem., 1970, 35, 2057; (d) J. M. Denis, C. Girard and J. M. Conia, Synthesis, 1972, 549; (e) J. M. Conia, Pure Appl. Chem., 1975, 43, 317; (f) R. D. Rieke, P. T.-J. Li, T. P. Burns and S. T. Uhm, J. Org. Chem., 1981, 46, 4323; (g) O. Repič and S. Vogt, Tetrahedron Lett., 1982, 23, 2729; (h) E. C. Friedrich, J. M. Domek and R. Y. Pong, J. Org. Chem., 1985, 50, 4640; (i) E. C. Friedrich, S. E. Lunetta and E. J. Lewis, J. Org. Chem., 1989, 54, 2388; (j) E. C. Friedrich and E. J. Lewis, J. Org. Chem., 1990, 55, 2491; (k) Y. Stenstrøm, Synth. Commun., 1992, 22, 2801; (1) K. Takai, T. Kakiuchi and K. Utimoto, J. Org. Chem., 1994, 59, 2671.
- 6 For leading references, see: $XZnCH_2X$: (a) G. Wittig and Schwarzenbach, Angew. Chem., 1959, 71, 652; Κ. (b) G. Wittig and K. Schwarzenbach, Justus Liebigs Ann. Chem., 1961, 650, 1. RZnCH₂I or $Zn(CH_2I)_2$: (c) J. Furukawa, N. Kawabata and J. Nishimura, Tetrahedron Lett., 1966, 7, 3353; (d) J. Furukawa, N. Kawabata and J. Nishimura, Tetrahedron, 1968, 24, 53; (e) S. Sawada and Y. Inouye, Bull. Chem. Soc. Jpn., 1969, 42, 2669: Nishimura, J. Furukawa, N. Kawabata (f)I. and M. Kitayama, Tetrahedron, 1971, 27, 1799; (g) A. B. Charrete, A. Beauchemin and J.-F. Marcoux, Tetrahedron Lett., 1999, 40, 33. Zn(CH₂Cl)₂: (h) S. E. Denmark and J. P. Edwards, J. Org. Chem., 1991, 56, 6974. RCO_2CH_2ZnR : (i) G. Wittig and M. Jautelat, Justus Liebigs Chem., 1967, 702, 24; (j) A. B. Charette, Ann. A. Beauchemin and S. Francoeur, J. Am. Chem. Soc., 2001, 123, 8139. ArOZnCH₂I: (k) A. B. Charette, S. Francoeur, J. Martel and N. Wilb, Angew. Chem., Int. Ed., 2000, 39, 4539. (RO)₂P(O)OZnCH₂I: (l) M.-C. Lacasse, C. Poulard and A. B. Charette, J. Am. Chem. Soc., 2005, 127, 12440; (m) A. Voituriez and A. B. Charette, Adv. Synth. Catal., 2006, **348**, 2363; (*n*) A. Voituriez, L. E. Zimmer and A. B. Charette, J. Org. Chem., 2010, 75, 1244.
- 7 (a) Z. Yang, J. C. Lorenz and Y. Shi, *Tetrahedron Lett.*, 1998, 39, 8621; (b) J. C. Lorenz, J. Long, Z. Yang, S. Xue, Y. Xie and Y. Shi, *J. Org. Chem.*, 2004, 69, 327.
- 8 For a leading review, see: R. G. Cornwall, O. A. Wong,
 H. Du, T. A. Ramirez and Y. Shi, *Org. Biomol. Chem.*, 2012,
 10, 5498.
- 9 For leading references on catalytic asymmetric cyclopropanations with chiral dipeptide, see: (a) J. Long, H. Du, K. Li and Y. Shi, *Tetrahedron Lett.*, 2005, 46, 2737; (b) H. Du, J. Long and Y. Shi, *Org. Lett.*, 2006, 8, 2827; (c) J. Long, L. Xu, H. Du, K. Li and Y. Shi, *Org. Lett.*, 2009, 11, 5226.
- 10 For leading references on catalytic asymmetric cyclopropanations, see: (a) H. Takahashi, M. Yoshioka, M. Ohno and S. Kobayashi, *Tetrahedron Lett.*, 1992, 33, 2575; (b) N. Imai, H. Takahashi and S. Kobayashi, *Chem. Lett.*, 1994, 177; (c) N. Imai, K. Sakamoto, H. Takahashi and S. Kobayashi, *Tetrahedron Lett.*, 1994, 35, 7045; (d) S. E. Denmark,

B. L. Christenson, D. M. Coe and S. P. O'Connor, Tetrahedron Lett., 1995, 36, 2215; (e) S. E. Denmark, B. L. Christenson and S. P. O'Connor, Tetrahedron Lett., 1995. **36**, 2219; (f) H. Takahashi, M. Yoshioka, M. Shibasaki, M. Ohno, N. Imai and S. Kobayashi, Tetrahedron, 1995, 51, 12013; (g) A. B. Charette and C. Brochu, J. Am. Chem. Soc., 1995, 117, 11367; (h) S. E. Denmark and S. P. O'Connor, J. Org. Chem., 1997, 62, 584; (i) N. Imai, K. Sakamoto, M. Maeda, K. Kouge, K. Yoshizane and Nokami, Tetrahedron Lett., 1997, 38, 1423: J. (j) S. E. Denmark and S. P. O'Connor, J. Org. Chem., 1997, 62, 3390; (k) S. E. Denmark, S. P. O'Conner and S. R. Wilson, Angew. Chem., Int. Ed., 1998, 37, 1149; (l) J. Balsells and P. J. Walsh, J. Org. Chem., 2000, 65, 5005; (m) A. B. Charette, C. Molinaro and C. Brochu, J. Am. Chem. Soc., 2001, 123, 12168; (n) T. Miura, Y. Murakami and N. Imai, Tetrahedron: Asymmetry, 2006, 17, 3067; (o) H. Shitama and T. Katsuki, Angew. Chem., Int. Ed., 2008, 47, 2450.

- L. F. Frey, K. M. Marcantonio, C.-Y. Chen, D. J. Wallace, J. A. Murry, L. Tan, W. Chen, U. H. Dolling and E. J. J. Grabowski, *Tetrahedron*, 2003, **59**, 6363.
- 12 For leading references on ether-coordinated Simmons-Smith cyclopropanation reagents, see: (a) S. E. Denmark, J. P. Edwards and S. R. Wilson, J. Am. Chem. Soc., 1991, 113, 723; (b) S. E. Denmark, J. P. Edwards and S. R. Wilson, J. Am. Chem. Soc., 1992, 114, 2592; (c) A. B. Charette, S. Prescott and C. Brochu, J. Org. Chem., 1995, 60, 1081; (d) A. B. Charette and J.-F. Marcoux, J. Am. Chem. Soc., 1996, 118, 4539; (e) A. B. Charette, J.-F. Marcoux and F. Bélanger-Gariépy, J. Am. Chem. Soc., 1996, 118, 6792; (f) A. B. Charette, H. Juteau, H. Lebel and C. Molinaro, J. Am. Chem. Soc., 1998, 120, 11943; (g) A. B. Charette, E. Jolicoeur and G. A. S. Bydlinski, Org. Lett., 2001, 3, 3293; (h) A. B. Charette and N. Wilb, Synlett, 2002, 176.
- 13 For a leading reference on amine-coordinated Simmons-Smith cyclopropanation reagents, see: A. B. Charette, J.-F. Marcoux, C. Molinaro, A. Beauchemin, C. Brochu and É. Isabel, J. Am. Chem. Soc., 2000, 122, 4508.
- 14 (a) A. G. M. Barrett and G. J. Tustin, J. Chem. Soc., Chem. Commun., 1995, 355; (b) A. G. M. Barrett, W. W. Doubleday and G. J. Tustin, Tetrahedron, 1996, 52, 15325.
- (a) K. Maruoka, Y. Fukutani and H. Yamamoto, J. Org. Chem., 1985, 50, 4414; (b) H. Sakauchi, H. Asao, T. Hasaba, S. Kuwahara and H. Kiyota, Chem. Biodiversity, 2006, 3, 544;
 (c) G. Brunner, L. Eberhard, J. Oetiker and F. Schröder, J. Org. Chem., 2008, 73, 7543; (d) G. Brunner, S. Elmer and F. Schröder, Eur. J. Org. Chem., 2011, 4623.
- 16 For leading references on the synthesis of Roflumilast, see:
 (*a*) E. L. Williams and T.-C. Wu, *PCT Int. Appl. WO* 2004033430, 2004; (*b*) B. Kohl, B. Mueller and W. Palosch, *PCT Int. Appl. WO* 2004080967, 2004; (*c*) P. Bose, Y. P. Sachdeva, R. S. Bathore and Y. Kumar, *PCT Int. Appl. WO* 2005026095, 2005; (*d*) M. Liao, R. Li, S. Yang, L. Zhang and L. Ding, *Faming Zhuanli Shenqing CN* 102093194, 2011; (*e*) Y. Zhong, G. Chen, A. Li and S. Li, *Chin. J. Pharm.*, 2011, 42, 884; (*f*) F. Ni and J. Li, *Synthesis*, 2012, 3598.