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Asymmetric Total Synthesis of (+)-Ovafolinins A and B 

Xianhe Fang,
a
 Lei Shen,

 a
 Xiangdong Hu*

 a
 

 (+)-Ovafolinins A and B are two homologous lignans containing 

unique polycyclic skeletons. Benefiting from a high 

diastereoselective alkylation of (S)-Taniguchi lactone, a double 

Friedel-Crafts reaction, a global debenzylation and a Cu(OAc)2-

enabled benzylic oxidative cyclization, we present herein an 

efficient synthetic approach to  (+)-ovafolinins A and B. 

Lignans are a large family of natural products widely existing in 

plants and our food sources, such as wheat, soybeans, broccoli 

and strawberry.
1
 Many important biological properties 

including anticancer,
2
 antiviral,

3
 antioxidant activities

4
 and 

alleviating menopausal symptoms, reducing the risk of 

cardiovascular disease
5
 have been disclosed from biological 

evaluations of this family. In 2010, ovafolinin A, ovafolinin B 

and other three lignans were discovered during Yun and 

coworkers’ explorations on Lyonia ovalifolia var. elliptica, a 

deciduous tree growing in China and Japan.
6
 Ovafolinin B was 

also found in Sinocalamus affinis (Rendle) McClure (Poaceae),
7
 

a widely cultivated traditional Chinese medicine named “Ci Zhu 

Li” and applied in treatments for various diseases including 

cough and phlegm in China.
8
 Structurally, ovafolinin A has a 

particular polycyclic skeleton containing an aryl tetralin unit 

with a tetrahydrofuran motif and a seven-membered 

benzoxepin bridged-ring. Ovafolinin B possesses very similar 

framework except the opening of the tetrahydrofuran ring. 

The first asymmetric synthesis of (+)-ovafolinins A and B was 

achieved by Barker and co-workers
9
 employing an acyl-Claisen 

rearrangement developed in their laboratory.
10

 The unique 

polycyclic skeleton was achieved through an interesting 

cascade cyclization enabled by a bulky protecting group. As the 

pioneering work, Barker and coworkers’ synthesis 

demonstrated an expedient pathway to the unique skeleton of 

(+)-ovafolinins A and B. Furthermore, based on optical rotation 

comparisons between the synthetic compounds ( +154.8 (c = 

0.16, MeOH) for (+)-ovafolinin A, +150.0 (c = 0.26, MeOH) for 

(+)-ovafolinin B) 
9
 and the natural samples (-37.3 (c = 0.36, 

MeOH) for ovafolinin A, +52.0 (c = 0.26, MeOH) 
6
 and +43.3 (c 

= 0.12, MeOH)
7
 for ovafolinin B), the exploration convincingly 

suggested that natural ovafolinins A and B were both isolated 

in scalemic mixtures. Attracted by their architectural 

complexity, we started our synthesis with the purpose to 

devise a new, efficient, and asymmetric route to these lignans. 

Based on our retrosynthetic analysis (Figure 1), (+)-

ovafolinin A (1) and (+)-ovafolinin B (2) could be constructed 

from three building blocks: phenol 5, bromide 8 and (S)-

Taniguchi lactone (9). The diastereoselective alkylation 

between 9 and 8 will be a feasible strategy to set up initially 

two stereogenic centers of 1 and 2. For introduction of the 

top-right aromatic ring and formation of the central six-

membered ring, a double Friedel-Crafts reaction process 

between 5 and 6 was originally proposed. An intramolecular 

Friedel-Crafts hydroxyalkylation of 6 could furnish the central 

six-membered ring first. Subsequently, intermediate 4 could be 

formed from a diastereoselectively intermolecular Friedel-

Crafts alkylation with 5. As a related precedent, Takayama and 

coworkers reported a gentle construction of complex bridged 

ring frames through a double Friedel-Crafts reaction between 

acetal and two different aromatic rings.
11

 Regarding the 

construction of the seven-membered benzoxepin bridged-ring 

unit, we imagined that a dehydration cyclization in 4 could be 

a reasonable solution. Three benzyl protecting groups were 

designed in 3 for the convenience of synthesis. In light of the 

close structural relationship of 1 and 2 and their simultaneous 

generation in synthesis of Barker and coworkers, we envisaged 

that 1 could be reached through a benzylic oxidative 

cyclization of 2. 

    Our synthesis started with the preparation of bromide 8 

(Scheme 1). The starting material was the commercially 

available syringaldehyde (10). After the benzyl protection, 

reduction and bromination, 8 can be obtained in 66% overall 

yield. The diastereoselective alkylation of (S)-Taniguchi lactone 

(9) is a reliable strategy to introduce two adjacent stereogenic 

centers with defined absolute and relative configurations in 

synthesis of natural products.
12

 According to Kieseritzky’s 

approach,
13

 9 can be prepared in enantiomerically pure form 

over three steps. The alkylation process between 8 and 9 

successfully afforded 7 in excellent stereoselectivity. The 

treatment of 7 with excess amount of benzyl bromide under 

basic conditions opened the lactone unit smoothly,
14
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Figure 1. Our original retrosynthetic analysis of (+)-ovafolinins A and B 
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generating ester 12 in 78% yield. After the subsequent 

reduction, product 13 was subjected to the vinyl oxidation. 

The product was hemiacetal 14 generated from the addition of 

hydroxy to the aldehyde group. The originally proposed double 

Friedel-Crafts reaction between 5
15 

and 14 was then examined 

with various Lewis acids. However, no consumption of 5 was 

Scheme 1. Attempt on synthesis of 4 
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observed in all cases.
16

 As a result, intermolecular Friedel-

Crafts reaction seems not a feasible method to couple the 

fragment 5 with 14. 

   Therefore, we moved our attention to introduce motif 5 into 

the molecule before the construction of the carbon skeleton. 

Starting again from 13, motif 5 was readily connected with 13 

through a Mitsunobu transformation (Scheme 2). Following 

vinyl oxidation treatments established the aldehyde group in 

16. Notably, during the construction of the unique polycyclic 

skeletons of 1 and 2, Barker and coworkers explored cascade 

cyclization of compounds similar to 16. The bulky tert-

butyldiphenylsiyl protecting group on the bottom-left hydroxy 

was found pivotal to enable the expected cyclization. 

However,  methoxymeth yl  protect ion  wi l l  lead  to  

Scheme 2. Total synthesis of (+)-ovafolinin B (2) 
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Scheme 3. Synthesis of (+)-ovafolinin A 
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decomposition products.
9
 In our case, protections of three 

hydroxy groups in 16 are all benzyl groups. To our delight, 

treatment of 16 with trifluoroacetic acid established 

successfully the expected polycyclic skeleton through basically 

a double Friedel-Crafts reaction process, affording 3 in 87% 

yield. The subsequent hydrogenation removed all three benzyl 

protections and gave (+)-ovafolinin B (2) in quantitative yield. 

Noteworthy, the final de-protection process in Barker’s 

synthesis led to formation of not only 2 but also 1, both in 

poor yields. In our synthesis, there was no formation of 1 

observed during the debenzylation process of 2. 

With the successful development of an asymmetric route to 

2, we focused on the synthesis of 1. We envisaged that the 

benzylic oxidation cyclization of 2 could lead to the formation 

of p-benzoquinone methide intermediate 17. And the 

following conjugated addition from the vicinal hydroxy group 

will furnish 1 in the end. Therefore, 2 was submitted to various 

conditions reported for formation of benzoquinone methide 

intermediates. The employment of PhI(OAc)2
17

 resulted in the 

generation of 1 but in poor yield. The oxidation with Ag2O
18 

and DDQ
19

 could significantly improve the formation of 1, 

respectively.  The best result was obtained from the treatment 

with Cu(OAc)2,
20

 affording 1 in 91% yield. Barker’s condition 

was also checked, which lead to the formation of 1 in 

moderate yield after the complete consumption of 2. Due to 

our curiosity, the aerial oxidation of 2 was checked under neat 

condition. Only trace amount of 1 can be formed after three 

days.  

After the synthesis of 1 and 2 completed, the optical 

rotation properties of our synthetic (+)-ovafolinins A and B 

were checked. The data (+159.5, (c = 0.36, MeOH) for 1 and 

+166.0 (c = 0.16, MeOH) for 2) are close to those observed by 

Baker and coworkers, which supports Barker’s conclusion that 

natural ovafolinins A and B were both isolated in scalemic 

mixtures. 

Conclusions 

In summary, an asymmetric synthetic approach to (+)-

ovafolinins A and B has been developed. The entire synthetic 

route features with a high stereoselective alkylation of (S)-

Taniguchi lactone, a double Friedel-Crafts reaction process, a 

global debenzylation and a Cu(OAc)2-enabled benzylic 

oxidative cyclization. As the result, the synthesis (+)-ovafolinin 

B has been completed in 11 linear steps and 23% total yield. 

And the synthesis of (+)-ovafolinin A has been achieved in 12 

linear steps and 21% total yield. 
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