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A versatile methodology for the modification of single wall
carbon nanotubes (SWCNT) through an inverse electron
demand Diels-Alder reaction with tetrazine-AuNP (1-AuNP)
under ambient conditions is described. A robust covalently
bonded hybrid nanocomposite is formed.

Both single wall carbon nanotubes (SWCNTs) and multiwall
carbon nanotubes (MWCNTs) continue to be of great interest
because of their many applications in the fabrication of advanced
nanomaterials.'? Carbon nanotubes surface-modified with metal
nanoparticles (NP; mainly gold or silver) are of particular interest
because of their application in catalysis, imaging contrasting
agents, and drug delivery.>* Metal nanoparticles can be
incorporated onto CNT through physical adsorption or covalent
bonding. Physical adsorption of NP onto CNT can be achieved
either by in-situ reduction of the corresponding metal ion or
through electrostatic interactions, van der Waals interactions, or
aromatic interactions of pre-formed gold nanoparticles (AuNPs)
with the CNT. However, these inherently weak interactions result
in poor stability of the resulting nanostructures. Covalent
modification of CNT with the ligand shell of the NP can however
significantly improve the stability of the nanocomposites. Most
importantly, using pre-formed AuNPs enables control of the
shape, size, and functionality of the NPs. One drawback of most
CNT chemical modification methods is that the process usually
involves an initial oxidation of the CNT with concentrated nitric
acid and sulfuric acid, leading to the formation of various oxygen
containing groups (mainly carboxyl group) on the defect sites.>*
Esters or amides are often prepared in follow-up reactions.”>*!°
This activation process results in a series of derivative sites on
CNT with little or no regiospecificity, mainly occurring at defects
or edges. The result is a poorly-controlled modification.
Moreover, reactions involving the most common AuNPs,
thiolate-protected AuNPs, only tolerate mild ambient conditions
because of the relative lability of the Au-S bond. Harsh
conditions, such as heating at high temperature (>100 °C for
prolonged periods) or photo-irradiation can cause severe
degradation of the ligand shell and ultimately, the NP. Obvious
entries to chemical derivatization that do not require oxidative
activation, such as Diels-Alder reactions, unfortunately often
involve reaction conditions that are incompatible with the thiolate
AuNP, although CNT can serve as a dienophile in possible Diels-
Alder reactions.*''? Harsh conditions, including reflux or
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microwave heating, are required to facilitate the completion of
these reactions. An efficient covalent-bonding methodology for
the preparation of CNT-AuNP nanocomposites using catalyst-
free and room temperature is thus much desired. We note that
similar constraints arising in polymer-grafting—CNT synthesis
and Diels-Alder reactions have been effectively used in this
regard."

Tetrazines react with strained dieneophiles in a rapid, atom
efficient, and catalyst free-manner. The inverse electron demand
Diels-Alder reaction of highly electron-deficient tetrazines with
strained alkenes or acetylenes has been widely explored.'*!>!6!7
3,6-Diaminotetrazines, for example, have been applied to the
modification of MWCNT at -elevated tempera‘[ures.18 The
resulting amino-tethered MWCNT can be used as a crosslinker to
improve the wear performance of an MWCNT/epoxy resin.'® The
application of the tetrazine click chemistry to nanoparticle
modifications has however received relatively little attention. Han
et al. demonstrated the application of tetrazine-dienophile Diels-
Alder chemistry to functionalize nanoparticles by attaching
tetrazine-modified dyes/biomolecules to dienophile (norbornene)
containing ligand-protected quantum dots.”® Audebert et al.
prepared tetrazine-doped silica nanoparticles to study the
fluorescence emission properties of these NP.?! Here we report
the facile synthesis of a tetrazine-terminated AuNP (tetrazine-
AuNP or 1-AuNP), and the development of an efficient and
reproducible methodology to modify SWCNTs via the reverse
electron demand Diels-Alder reaction with these tetrazine-AuNP.
The tetrazine-AuNP can react with SWCNTs in ambient
conditions (room temperature and catalyst-free) to form a AuNP-
SWCNT complex. Covalent bonding of AuNP to CNT not only
increases the chemical and physical stability of the
nanocomposites, but also provides a versatile methodology for
further modification of CNTs through the thiol exchange
reaction.

The synthesis of the gold nanoparticle grafted single wall
carbon nanotubes is shown in Scheme 1. To prepare the
tetrazine-AuNP (1-AuNP), the undecanolthiolate-terminated gold
nanoparticles (MUD-AuNP) were prepared by following a
standard place-exchange procedure involving mixing 11-
mecaptoundecanol (MUD) with dodecanethiolate protected
AuNP, at a ligand ratio of 1:1, for 1h. The MUD-AuNP were
purified by washing with ethanol and acetonitrile.
Characterization by '"H-NMR spectroscopy reveals the absence of
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sharp ligand peaks, indicating the purity of the product AuNP.
The pure MUD-AuUNP are soluble in THF, chloroform, DCM,
and toluene. 3,6-Dichlorotetrazine (1) was then prepared
following a previous reported procedure with an overall yield of
80%.'***  Triaminoguanidine (3) was first synthesized by
refluxing guanidine hydrochloride (2) and hydrazine
monohydrate in dioxin for 2 hour, followed by treatment with
2,4-pentanedione to form the dihydrotetrazine precursor (4). The
precursor 4 was then oxidized by sodium nitrite to yield 3,6-
bis(3,5-dimethyl-1H-pyrazol-1-yl)-s-tetrazine  (5). The 3,6-
dichlorotetrazine (1) was subsequently generated by treatment of
5 with hydrazine and trichloroisocyanuric acid. 3,6-
dichlorotetrazine (1) is a very hygroscopic compound and is
readily hydrolyzed when exposed to moisture. To protect the
integrity of the tetrazine moieties and maintain their high
reactivity toward the dienophile, the chlorotetrazine was
introduced onto the hydroxyl-terminated MUD-AuNP in the last
step, under anhydrous conditions. The tetrazine-capped AuNP (1-
AuNP, 1.940.3 nm, Fig.1b) are synthesized by mixing the MUD-
AuNP with excess of tetrazine 1 at room temperature for 2 h.
A NHNH,
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Scheme 1. Synthesis of tetrazine-AuNP (1-AuNP) and the Diels-Alder
reaction between tetrazine-AuNP and SWCNT to prepare AuNP-SWCNT.

Whereas most (the exception being the aforementioned
polymer CNT conjugates'”) published chemical modification
methods of SWCNTs require pre-treatment and relatively harsh
conditions, SWCNTSs react with tetrazine-AuNP under ambient
conditions, without any pre-treatment. A stock suspension of
SWCNT in dry THF was first prepared by sonication of 5 mg of
SWCNT in 5 mL of anhydrous THF. A tetrazine-AuNP/THF
solution was immediately prepared before use by dissolving 1 mg
of 1-AuNP in 5 mL of dry THF. ImL of a SWCNT suspension
and different volumes of the tetrazine-AuNP solution (50 pL and
500 pL for this study) were mixed for 2 h at room temperature to
allow for the completion of the Diels-Alder reaction. The reaction
mixture was then centrifuged (5 min, 12,000 rpm); the upper
black supernatant was then removed. The resulting AuNP-
SWCNT pellet was re-suspended in THF, bath sonicated for 5
min and centrifuged again, discar0064ing the supernatant. This
purification procedure was repeated with THF, DCM, toluene,
and acetonitrile, 10 times per solvent until the supernatant was
clear and colorless. The pure AuNP-SWCNT sample was then
suspended in THF for further characterization. The reaction
between the tetrazine-AuNP and SWCNT was confirmed by
ss TEM, EDX, Raman spectroscopy, and XPS.
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HR-TEM images of SWCNT before (Figure la) and after
(Figure 1 c,d) the Diels-Alder reaction with tetrazine-AuNP for
2h demonstrate the association between CNT and AuNP. An
increase in the reactants ratio of tetrazine-AuNP to SWCNT leads

120 to a greater density of AuNP attached onto the SWCNT surface.

Interestingly, the AuNP remain quite evenly distributed along the
CNT. Covalent bonding of AuNP to SWCNT is confirmed by a
control experiment. MUD-AuNP and SWCNT were mixed under
the same reaction conditions. As expected, the MUD-AuNP

12s without tetrazines do not react with SWCNT and only

underivatized SWCNT were isolated after purification
(Supporting information, Figure S10.d). Energy dispersive X-ray
(EDX) spectrum analysis confirms the presence of Au, S, Cl, and
N in the AuNP-SWCNT sample (Figure S11).

Fig. 1. HR-TEM of (a) SWCNT, (b) 1-AuNP, (c) low 1-AuNP loading AuNP-
SWCNT sample and (d) high 1-AuNP loading AUNP-SWCNT sample.

Raman spectroscopy provides evidence for the chemical
modification of carbon nanotubes.** The HeNe laser line at 633
nm was used in the characterization of AUNP-SWCNT in order to
avoid the strong extinctions of AuNP at 488 nm and 514 nm,
which are otherwise common excitation wavelengths for Raman
spectroscopy. The Raman spectrum of pristine SWCNTs
(Supporting information Figure S12a) is consistent with data
reported in literature, with two prominent features: a weak D
band and a strong G band around 1325 cm™ and 1580 cm™,
respectively.” The spectrum of AuNP-SWCNT nanocomposites
(Figure S12.b,c) shows significant changes compared to that of
SWCNT alone. The decrease in the G/D ratio from 20/1 for the
pristine SWCNT (Figure S12.a) to 8/1 for the low AuNP loading
AuNP-SWCNT sample (Figure S12.b) is consistent with sidewall
modification of the SWCNT.5% The D and G bands almost
disappear in the case of the high AuNP loading sample
(Supporting information Figure S12.c). At the same time, new
bands associated with the AuNP-SWCNT were observed (Table
1). New peaks at 429 cm™ (ring deformation), 705 cm™ (C-S
stretching mode), 810 cm’! (C-ClI stretch mode, broad) and a
broad peak around 1090cm™ (C-C-C stretching mode) are
observed. The characteristic features of a C-N stretch mode, a
tetrazine ring stretch mode, and the C=N stretch mode were also
observed around 1270 cm™, 1390 cm” and 1660 cm’,
respectively. These new Raman bands in the functionalized
SWCNT sample confirm the presence of the AuNP on the surface
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of the SWCNTs.

Table 1. Summary of the raman bands of the AuNP-SWCNT

Raman Shift (cm-1) Vibrational mode
429 ring deformation
705 C-S stretch
810 C-Cl stretch
1090 C-C-C stretch
1270 C-N stretch
1390 tetrazine ring stretch
1660 C=N stretch
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Figure 2. XPS survey scan of (a) AUNP-SWCNT, and (b) SWCNT. (c) is the
zoom in of AUNP-SWCNT for peak assignment. (d) is the high resolution
N1s spectra of AUNP-SWCNT.
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The AuNP-SWCNT and SWCNT were also characterized by
X-ray photoelectron spectroscopy (XPS). The XPS survey
spectrum of AuNP-SWCNT (Figure 2.a,c) compared with that of
pristine SWCNT (Figure 2.b) clearly shows the appearance of
new peaks from the Diels-Alder adduct. The Au 4d (336 eV) and
Au 4f (doublet around 89.0-89.5 eV) are clearly resolved but the
S2p peak overlaps with the Si2p peak of the Si wafer sample
support). EDX however confirms the presence of S in AuNP-
1s SWCNT. A high resolution N1s XPS signal shows two peaks at

402.2 eV and 400.8 eV, one assigned to the nitrogen of the Diels-

Alder adduct and the other to unreacted tetrazine on AuNP-

SWCNT surface.
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Conclusions

20  SWCNT are shown to be efficiently functionalized with
tetrazine-AuNP through a versatile reverse electron demand
Diels-Alder reaction under ambient conditions, e.g. room
temperature, no irradiation, and catalyst-free. The loading of
tetrzaine-AuNP on the SWCNT sidewall could be readily
controlled by varying the ratio of these two reactants. The
tetrazine-AuNP can react directly with the sidewalls of SWCNTSs
and no pre-treatment of the nanotubes is required. More
importantly, the high reactivity of tetrazine-AuNP with SWCNT
provides for an accurate derivatization of 2D or 3D-based carbon
materials. The covalent bonding greatly increases the stability of
these nanocomposites compared to their analogues formed via
non-covalent interactions.
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