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A versatile methodology for the modification of single wall 
carbon nanotubes (SWCNT) through an inverse electron 
demand Diels-Alder reaction with tetrazine-AuNP (1-AuNP) 
under ambient conditions is described.  A robust covalently 
bonded hybrid nanocomposite is formed. 10 

Both single wall carbon nanotubes (SWCNTs) and multiwall 
carbon nanotubes (MWCNTs) continue to be of great interest 
because of their many applications in the fabrication of advanced 
nanomaterials.1,2 Carbon nanotubes surface-modified with metal 
nanoparticles (NP; mainly gold or silver) are of particular interest 15 

because of their application in catalysis, imaging contrasting 
agents, and drug delivery.3,4 Metal nanoparticles can be 
incorporated onto CNT through physical adsorption or covalent 
bonding. Physical adsorption of NP onto CNT can be achieved 
either by in-situ reduction of the corresponding metal ion or 20 

through electrostatic interactions, van der Waals interactions, or 
aromatic interactions of pre-formed gold nanoparticles (AuNPs) 
with the CNT. However, these inherently weak interactions result 
in poor stability of the resulting nanostructures. Covalent 
modification of CNT with the ligand shell of the NP can however 25 

significantly improve the stability of the nanocomposites. Most 
importantly, using pre-formed AuNPs enables control of the 
shape, size, and functionality of the NPs. One drawback of most 
CNT chemical modification methods is that the process usually 
involves an initial oxidation of the CNT with concentrated nitric 30 

acid and sulfuric acid, leading to the formation of various oxygen 
containing groups (mainly carboxyl group) on the defect sites.5,6 
Esters or amides are often prepared in follow-up reactions.7,8,9,10 
This activation process results in a series of derivative sites on 
CNT with little or no regiospecificity, mainly occurring at defects 35 

or edges. The result is a poorly-controlled modification. 
Moreover, reactions involving the most common AuNPs, 
thiolate-protected AuNPs, only tolerate mild ambient conditions 
because of the relative lability of the Au-S bond. Harsh 
conditions, such as heating at high temperature (>100 ºC for 40 

prolonged periods) or photo-irradiation can cause severe 
degradation of the ligand shell and ultimately, the NP. Obvious 
entries to chemical derivatization that do not require oxidative 
activation, such as Diels-Alder reactions, unfortunately often 
involve reaction conditions that are incompatible with the thiolate 45 

AuNP, although CNT can serve as a dienophile in possible Diels-
Alder reactions.8,11,12 Harsh conditions, including reflux or 

microwave heating, are required to facilitate the completion of 
these reactions. An efficient covalent-bonding methodology for 
the preparation of CNT-AuNP nanocomposites using catalyst-50 

free and room temperature is thus much desired. We note that 
similar constraints arising in polymer-grafting–CNT synthesis 
and Diels-Alder reactions have been effectively used in this 
regard.13 
    Tetrazines react with strained dieneophiles in a rapid, atom 55 

efficient, and catalyst free-manner. The inverse electron demand 
Diels-Alder reaction of highly electron-deficient tetrazines with 
strained alkenes or acetylenes has been widely explored.14,15,16,17 

3,6-Diaminotetrazines, for example, have been applied to the 
modification of MWCNT at elevated temperatures.18 The 60 

resulting amino-tethered MWCNT can be used as a crosslinker to 
improve the wear performance of an MWCNT/epoxy resin.19 The 
application of the tetrazine click chemistry to nanoparticle 
modifications has however received relatively little attention. Han 
et al. demonstrated the application of tetrazine-dienophile Diels-65 

Alder chemistry to functionalize nanoparticles by attaching 
tetrazine-modified dyes/biomolecules to dienophile (norbornene) 
containing ligand-protected quantum dots.20 Audebert et al. 
prepared tetrazine-doped silica nanoparticles to study the 
fluorescence emission properties of these NP.21 Here we report 70 

the facile synthesis of a tetrazine-terminated AuNP (tetrazine-
AuNP or 1-AuNP), and the development of an efficient and 
reproducible methodology to modify SWCNTs via the reverse 
electron demand Diels-Alder reaction with these tetrazine-AuNP. 
The tetrazine-AuNP can react with SWCNTs in ambient 75 

conditions (room temperature and catalyst-free) to form a AuNP-
SWCNT complex. Covalent bonding of AuNP to CNT not only 
increases the chemical and physical stability of the 
nanocomposites, but also provides a versatile methodology for 
further modification of CNTs through the thiol exchange 80 

reaction.  
    The synthesis of the gold nanoparticle grafted single wall 
carbon nanotubes is shown in Scheme 1. To prepare the 
tetrazine-AuNP (1-AuNP), the undecanolthiolate-terminated gold 
nanoparticles (MUD-AuNP) were prepared by following a 85 

standard place-exchange procedure involving mixing 11-
mecaptoundecanol (MUD) with dodecanethiolate protected 
AuNP, at a ligand ratio of 1:1, for 1h. The MUD-AuNP were 
purified by washing with ethanol and acetonitrile. 
Characterization by 1H-NMR spectroscopy reveals the absence of 90 
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of the SWCNTs. 

Table 1. Summary of the raman bands of the AuNP-SWCNT 

Raman Shift (cm-1) Vibrational mode 
429 ring deformation 
705 
810 

C-S stretch 
C-Cl stretch 

1090 C-C-C stretch 
1270 C-N stretch 
1390 tetrazine ring stretch 
1660 C=N stretch 

 
Figure 2. XPS survey scan of (a) AuNP‐SWCNT, and (b) SWCNT. (c) is the 
zoom in of AuNP‐SWCNT for peak assignment. (d) is the high resolution 5 

N1s spectra of AuNP‐SWCNT. 

    The AuNP-SWCNT and SWCNT were also characterized by 
X-ray photoelectron spectroscopy (XPS). The XPS survey 
spectrum of AuNP-SWCNT (Figure 2.a,c) compared with that of 
pristine SWCNT (Figure 2.b) clearly shows the appearance of 10 

new peaks from the Diels-Alder adduct. The Au 4d (336 eV) and 
Au 4f (doublet around 89.0-89.5 eV) are clearly resolved but the 
S2p peak overlaps with the Si2p peak of the Si wafer sample 
support). EDX however confirms the presence of S in AuNP-
SWCNT. A high resolution N1s XPS signal shows two peaks at 15 

402.2 eV and 400.8 eV, one assigned to the nitrogen of the Diels-
Alder adduct and the other to unreacted tetrazine on AuNP-
SWCNT surface.  

Conclusions 
    SWCNT are shown to be efficiently functionalized with 20 

tetrazine-AuNP through a versatile reverse electron demand 
Diels-Alder reaction under ambient conditions, e.g. room 
temperature, no irradiation, and catalyst-free. The loading of 
tetrzaine-AuNP on the SWCNT sidewall could be readily 
controlled by varying the ratio of these two reactants. The 25 

tetrazine-AuNP can react directly with the sidewalls of SWCNTs 
and no pre-treatment of the nanotubes is required. More 
importantly, the high reactivity of tetrazine-AuNP with SWCNT 
provides for an accurate derivatization of 2D or 3D-based carbon 
materials. The covalent bonding greatly increases the stability of 30 

these nanocomposites compared to their analogues formed via 
non-covalent interactions. 
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