Accepted Manuscript

Morphology effect of nanostructure ceria on the Cu/CeO2 catalysts for synthesis of methanol from CO2 hydrogenation

Bi Ouyang, Weiling Tan, Bing Liu

PII:	S1566-7367(17)30091-2
DOI:	doi: 10.1016/j.catcom.2017.03.005
Reference:	CATCOM 4962
To appear in:	Catalysis Communications
Received date:	14 November 2016
Revised date:	18 February 2017
Accepted date:	8 March 2017

Accepted date: 8 March 2017 Please cite this article as: Bi Ouyang, Weiling Tan, Bing Liu, Morphology effect of nanostructure ceria on the Cu/CeO2 catalysts for synthesis of methanol from CO2 hydrogenation. The address for the corresponding author was captured as affiliation for all authors. Please check if appropriate. Catcom(2017), doi: 10.1016/j.catcom.2017.03.005

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Morphology effect of nanostructure ceria on the Cu/CeO2 catalysts for synthesis of methanol from CO₂ hydrogenation

Bi Ouyang, Weiling Tan, Bing Liu*

Key Laboratory of Catalysis and Materials Sciences of the State Ethnic Affairs Commission & Ministry of Education, College of Chemistry and Material Science, South-Central University for Nationalities, Wuhan 430074, PR China

*Corresponding Tel./fax: 67842572; E-mail: authors. +8627

liubing@mail.scuec.edu.cn

Abstract: Three kinds of CeO_2 with different nanostructures were prepared by a controlled hydrolysis method, and Cu/CeO₂ catalysts were prepared by an incipient wetness impregnation method. The catalytic activity of Cu/CeO₂ catalysts was evaluated by the methanol synthesis from CO₂ hydrogenation. It was observed that the support morphology greatly affected the activity and selectivity of methanol synthesis from CO₂ hydrogenation. The nanorod CeO₂ supported Cu/CeO₂ catalyst by the exposure of (100) and (110) faces showed the strongest interaction between CuO and CeO₂, highest CuO dispersion and the highest catalytic activity with methanol yield of 1.9% at 240°C and 2MPa.

Key words: Morphology effect, CO2 Hydrogenation, Methanol, Cu/CeO2 catalyst

Chill and the second se

1. Introduction

The conversion of CO₂ into value-added chemicals has received considerable attention because CO₂ is both a major greenhouse gas and a cheap C1 resource [1]. Methanol is a key commodity chemical, which has been widely used for the production of a number of chemical intermediates [2]. It would be attractive if the distributed and produced in small-scale devices H₂ reacted with CO₂ to produced methanol, the later can be easily stored and transported, and used for further processing [3]. Currently, methanol is industrially synthesized from H₂, CO₂, and CO at high pressure (50~100 atm) and high temperature (200~300°C) over Cu/ZnO/Al₂O₃ catalyst [4]. The methanol synthesis from CO₂ hydrogenation (CO₂+3H₂ \rightarrow CH₃OH + H₂O) is a challenging task because of the chemical inertness of CO₂ [5]. Due to the inertness of CO₂, the CO₂ conversion was usually low. Except methanol, other hydrogenated products such as higher alcohols and hydrocarbons were also produced [6]. In addition, the relatively high concentration of CO₂ and H₂ also promoted the reverse water gas shift reaction (CO₂+H₂ \rightarrow CO+H₂O) to give CO [4, 5]. Therefore, the effective synthesis of methanol is still a great challenge.

The catalysts for CO_2 hydrogenation to methanol mainly focus on Cu, Pd [7, 8] and other hybrid catalyst, such as Ni-Ga [9], Pt-Co [10]. Cu based catalysts have received great interest for the synthesis of methanol from CO_2 hydrogenation, as the low cost of the Cu catalysts would reduce the industrial production cost. CeO_2 is one of the most important oxides in heterogeneous catalysis due to its high redox ability. There are some literatures which use of CeO_2 as a support in CO_2 hydrogenation process for methanol production [11-12]. Fan et.al reported the strong metal support interaction (SMSI) between Pd and CeO_2 , which greatly improved the selectivity and

lifetime for methanol synthesis form CO_2 hydrogenation [12]. Graciani et al [4] found that the Cu-ceria interface was active site for synthesis of methanol. The metal and oxide interface afforded special path way for CO_2 to methanol conversion.

CeO₂ with various uniform and well defined morphologies has been successfully prepared through controlled conditions. The effect of the morphology of the CeO₂ support was also observed on catalytic performance over water-gas shift (WGS), steam reforming of methanol (SRM) and other reaction [13-15]. In addition, the support morphology also affects the activity and selectivity of methanol synthesis from CO₂ hydrogenation. Shik C. Tsang et al. [16] found the exposed polar (002) face in platelike ZnO showed a much stronger material synergy with copper than other crystal facets, which gave higher selectivity towards methanol from CO₂ hydrogenation. However, there was no report on the morphology effect of CeO₂ over methanol synthesis from CO₂ hydrogenation. In this paper, three kinds of CeO₂ with different nanostructures were prepared by a controlled hydrolysis method. The Cu/CeO₂ catalysts were prepared by an incipient wetness impregnation method and applied in methanol synthesis from CO₂ hydrogenation.

2. Experimental Section

2.1 Catalyst preparation

2.1.1 Preparation of CeO₂ support with different shapes

Different shapes of nanoscale ceria (nanorods, nanocubes and nanoparticles) were prepared via a controlled hydrolysis method according to the known procedures with some modifications [17]. Typically, $Ce(NO_3)_3.6H_2O$ (4.34 g) was firstly dissolved in deionized water (10 ml), then KOH (2.8 g) in 50 mL of deionized water was added dropwise into $Ce(NO_3)_3$ solution at room temperature. After the complete addition, the mixture was magnetically stirred for 2 h. Then the mixture was introduced into a

stainless steel autoclave and kept at 100 °C or 180 °C for 24 h. The precipitants were further separated, washed and dried at 100°C for 24 h. Finally, the as-made powder was calcined in air at 400 °C for 4 h to obtain CeO₂ with nanorods with the hydrothermal temperature of 100 °C and nanocubes with the hydrothermal temperature of 180 °C. The procedures for the preparation of CeO₂ nanoparticles were almost the same as those for the preparation of nanorods CeO₂ except the crystallization temperature was changed to 100 °C and 0. 28 g of KOH was used.

2.1.2 Preparation of CuO/CeO₂ catalysts

CuO/CeO₂ catalysts were prepared by an incipient wetness impregnation (IMP) method. Cu(NO₃)₂ was used as the precursor. The calculated Cu loading of 5wt.%. Then the mixture was dried overnight at 100°C and calcined in air at 400 °C for 4 h to get the CuO/CeO₂ catalysts.

2.2 Catalysts characterization

The X-ray diffraction (**XRD**) patterns were determined using a Bruker-D8 diffractormeter with monochromatized Cu-K α radiation ($\lambda = 1.54056$ Å) operated at 40 kV and 40 mA and collected by a Vantec-1 detector.

BET surface area of the CeO₂ was determined by physisorption of N₂ at 77 K by using a quantachrome Autosorb-1-C-MS instrument. About 200 mg sample were degassed in vacuum at 623 K for 3 h prior to the measurements to remove pre-adsorbed components. The specific surface area was determined from the linear portion of the Brunauer – Emmett – Teller (BET) plot.

Transmission electron microscopy (**TEM**) images of the catalyst samples were obtained with a FEI Tecnai G20 instrument. The samples were prepared by directly suspending the catalyst in ethanol with ultrasonic treatment. A copper microscope grid covered with perforated carbon was dipped into the solution and then dried.

H₂-temperature processed reduction (**H**₂-**TPR**) was experiments were carried out using AMI-200 from Zeton Altamira Company. The sample (50 mg) in a quartz reactor was purged with 30 ml/ min Ar while heating at a ramp rate of 10 °C /min to 150° C and maintaining that temperature for 1 h to remove traces of water. After cooling to 50°C, the sample was reduced in a flow of 10 vol.% H₂/Ar (30 ml/min) while heating from 50 °C to 800 °C at a rate of 10 °C /min.

2.3 Typical procedure for CO₂ hydrogenation reaction

All catalytic tests were performed in fixed-bed flow reactor (stainless steel having a length of 47cm and inside diameter of 1/4 inch). The reactor system was equipped with a programmable temperature controller. Typically, the Cu/CeO₂ catalyst (0.1 g) was first reduced at 400 °C (1 °C/min) for 2 h with H₂ flow rate of 5 mL/min at atmosphere pressure prior to methanol synthesis. The reactor was then cooled down to 100°C and the gas mixture (25% CO₂+75% H₂, 5 mL/min) was introduced continuously for a certain time at different temperatures (240 ~300 °C) and 2MPa. The GHSV = 3 L h⁻¹g_{cat}⁻¹. The gas products were analyzed by Agilent GC 7890B on line (thermal conductivity and flame ionization detectors). The liquid product was collected in cold trap and analyzed by 4890 gas chromatography (flame ionization detectors) off line. The conversion and selectivity reaction parameters are defined as:

$$X_{CO2} = \frac{n_{CO2,in} - n_{CO2,out}}{n_{CO2,in}}$$

Selectivity
$$= \frac{n_{product,out}}{n_{CO2,in} - n_{CO2,out}}$$

3. Results and Discussion

Firstly, CeO_2 with different morphologies prepared with different conditions were characterized by TEM technology, and the results are shown in Fig. S1. CeO_2 nanorods were clearly observed in Fig. S1a, which had a uniform width of 10 ± 3 nm

with a length of 80-150 nm. High resolution TEM (HRTEM) images of Fig. S1b and Fig. S1c revealed CeO_2 nanorods exposed (100) and (110) faces. As shown in Fig. S1 d, CeO₂ prepared at the hydrothermal temperature of 180 °C showed nanocubes structure with a side-size of 50-110 nm. HRTEM images of CeO2 nanocubes exposed (100) face (Fig. S1e). The change of crystallization temperature and the concentration of KOH produced CeO₂ nanoparticles with a uniform diameter 21 ± 3 nm (Fig. S1f), exposing diverse faces in which the thermodynamically stable (111) faces are predominant. TEM results indicated that the CeO₂ shape greatly affected by the preparative conditions, especially the crystallization temperature and substrate concentration. Torrente-Murciano et al. [15] also found that the morphological phase of CeO₂ was related with the base concentration and temperature during the hydrothermal synthesis. At low temperature and base concentration, the dissolution/recrystallization rate was slow, resulting in the formation of ceria nanoparticles. With the increasing of base concentration, the chemical potential accelerated the anisotropic growth of the Ce(OH)₃ nuclei, forming ceria nanorods. Increasing the hydrothermal temperature further, the Ce(OH)₃ nuclei are condensed to ceria, nanocubes morphology formed.

The morphology of CuO/CeO₂ catalysts was also characterized by TEM technologies. As shown in Fig. S2, the morphologies of CeO₂ were remained after doping of CuO nanoparticles on the surface of CeO₂. It was observed that CuO nanoparticles were almost homogenously dispersed on the surface of the CeO₂ supports without apparent aggregation.

H₂-TPR profiles were performed to study the redox ability of the three kinds of CeO₂, and were shown in Fig. 1a. All the three CeO₂ had two reduction peaks. The lower temperature reduction peak belongs to the reduction of surface oxygen in CeO₂,

and the higher reaction temperature reduction peak belongs to the reduction of bulk oxygen [18]. The reduction temperature of surface oxygen increased in an order of CeO_2 nanoparticles, CeO_2 nanocubes and CeO_2 nanorods. The reduction temperature and reduction peak area are summarized in Table 1. The H₂ consumption of surface oxygen for CeO₂ nanorods was closed to that for CeO₂ nanocubes, which were 110 and 102 µmol, respectively. The number was 83 µmol for CeO₂ nanoparticles. The BET surface area of the CeO_2 was also shown in Table 1, the surface area was 56, 69, 77 m²/g for CeO₂ nanorods, nanocubes and nanoparticles. The CeO₂ nanorods had the smallest surface area but the highest surface oxygen content. H₂-TPR profiles of CuO/CeO₂ catalysts are show in Fig.1b. A main reduction peak at 179 °C together with a peak at 154°C were observed for 5% CuO/CeO₂ nanoparticles, which were attributed to the reduction of CuO and ceria on the interface of CuO-CeO₂.[19]. The reduction temperature increased to 251 °C and 309 °C for 5% CuO/CeO2 nanocubes and 5% CuO/CeO₂ naorods catalysts, respectively. Compared to the bulk CeO₂, the reduction temperature of the catalyst decreased obviously due to the strong interaction between metal and support (SMSI) effect, high calcination temperature will improve this effect [20]. Cu can effectively activate the surface Ce-O bond and promoted the surface reduction of CeO₂. Araiza et al. [21] studied the CuO supported on different morphology CeO₂, and also found the CuO/CeO₂-rod had the highest temperature of main reduction peak. As CeO₂ nanocubes has exposed (100) crystal planes and CeO₂ nanorods has exposed (100) and (110) crystal planes, it is likely that the Cu precursor preferentially interacts with the (110) crystal planes of CeO₂ nanorods.

Fig. 1 H₂-TPR of CeO₂ support and 5% CuO/CeO₂ catalysts

Table 1. The surface area from BET experiment and reduction temperature, H₂

	surface area	Surface oxygen reduction	Surface oxygen H ₂
	(m ² /g)	temperature (°C)	consumption(µmol)
CeO ₂ nanorods	56	472	110
CeO ₂ nanocubes	69	399	102
CeO_2 nanoparticles	77	391	83

consumption of CeO₂ samples summarized in H₂-TPR experiment

XRD patterns of the three as-prepared CuO/CeO₂ catalysts were shown in Fig. 2. Diffraction peaks with 20 at 28.6, 33.1, 47.5, 56.3, 59.1° are indexed to the (111), (200), (220), (311) and (222) planes of face-centered cubic CeO₂ with a fluorite structure (PDF#34-0394). The CeO₂ crystallite sizes were calculated from the XRD peak widths using the Scherrer equation. The diameters were 16, 13 and 11 nm for CeO₂ nanocubes, nanoparticles and nanorods, respectively. The diffraction peaks with 20 at 35.5 and 38.7° were ascribed to (002) and (111) planes of CuO (PDF#45-0397) in 5% CuO/CeO₂ nanoparticles. However, there were no diffraction peaks of CuO in 5% CuO/CeO₂ nanorods and nanocubes catalysts, which indicated that small sized CuO nanoparticles were homogeneously dispersed in 5% CuO/CeO₂ nanorods and nanocubes catalysts.

Fig.2 XRD profiles of 5%CuO/CeO₂ catalysts

The H₂-TPR and XRD results show clearly that the tendency of reduction temperature of CuO/CeO₂ catalysts was the same as the CeO₂ support (nanorods > nanocubes > nanoparticles), but not consistent with the particle size of CuO $(CuO/CeO_2 \text{ nanocubes} > CuO/CeO_2 \text{ nanoparticles} > CuO/CeO_2 \text{ nanorods})$. That means the morphology effect of support was larger than the particle size effect of CuO in our catalysts. H₂-TPR experiments also indicated the interaction and reduction of the CuO with the CeO₂ support vary with the morphology and exposed crystal planes of the CeO_2 support. The CeO₂ nanorods, which exposed (100) and (110) faces showed the highest Cu dispersion and interaction between CuO CeO_2 . and

Fig. 3. The temperature effect on CO₂ conversion and methanol selectivity of

Cu/CeO2 catalysts

The effect of the reaction temperature on CO₂ conversion was studied and the

results are shown in Fig.3a. The catalytic activity of the three Cu/CeO₂ catalysts increased with the increase of the reaction temperature. However, the highest CO₂ conversion was only 6.7% for Cu/CeO₂ nanorod catalyst at 300 °C The CO₂ conversion was according the followed sequence, conv. Nanorods > conv. Nanocubes > conv. Nanoparticles, which was consistant with the H₂-TPR of Cu/CeO₂ catalysts. The Cu/CeO₂ nanorods had the strongest interaction between CuO and CeO₂, highest CuO dispersion and largest CO₂ conversion. Fig. 3b showed the methanol selectivity. The methanol selectivity decreased sharply with the increase of the reaction temperature. For instance, the methanol selectivity of Cu/CeO₂ nanorod catalyst was 89.5% at 240°C, and that sharply decreased to 19.8% at 300°C. The highest methanol yield was 1.9% over Cu/CeO₂ nanorods catalysts at 240 °C and 2 MPa. The other by-product were CH₄ and CO. At lower temperature (240°C), the main side reaction was methanation reaction (CO₂+4H₂ \rightarrow CH₄+2H₂O), and at higher temperature (260, 280, 300°C), the reverse WGS reaction (CO₂+H₂ \rightarrow CO+H₂O) activity increased sharply due to Cu based catalysts was also a good WGS or reversed WGS catalyst [22].

Conclusions

In conclusion, three nanostructure Cu/CeO_2 catalysts with different morphology were prepared and applied in CO_2 hydrogenation to methanol. The Cu/CeO_2 nanorods catalyst showed the highest methanol yield of 1.9% at 240 °C and 2MPa. H₂-TPR and XRD results indicated CuO/CeO_2 nanorods had the strongest interaction between CuO and CeO₂, highest CuO dispersion and largest CO₂ conversion.

Acknowledgements

The Project was supported by National Natural Science Foundation of China (no. 21206200).

Reference

Z.F. Zhang, Y. Xie, W.J. Li, S.Q. Hu, J.L. Song, T. Jiang, B.X. Han, Angew.
Chem. Int. Ed. 47 (2008) 1127 –1129.

P. Gao, H.Y. Yang, L. Zhang, C. Zhang, L.S. Zhong, H. Wang, W. Wei, Y.H. Sun,
J. CO₂ Util. 16 (2016) 32–41.

3. Y. Hartadi, D. Widmann, R.J. Behm, ChemSusChem 8 (3) (2015) 456-465.

4. J. Graciani, K. Mudiyanselage, F. Xu, A.E. Baber, J. Evans, S.D. Senanayake, D.J. Stacchiola, P. Liu, J. Hrbek, J.F. Sanz, J.A. Rodriguez, Science 345 (2014) 546-550.

V. Deerattrakula, P. Dittanetb, M. Sawangphrukc, P. Kongkachuichaya, J. CO₂
Util. 16 (2016) 104–113.

6. M.D. Porosoff, B.H. Yan, J.G.G. Chen, Energy Environ. Sci. 9 (2016) 62-73.

7. X.M. Guo, D.S. Mao, G.Z. Lu, S. Wang, G.S. Wu, Catal. Commun. 12 (2011) 1095–1098.

X.W. Zhou, J. Qu, F. Xu, J.P. Hu, J. S. Foord, Z.Y. Zeng, X.L. Hong, S.C.E.
Tsang, Chem. Commun. 49 (2013) 1747-1749.

F. Studt, I. Sharafutdinov, F. Abild-Pedersen, C.F. Elkjær, J.S. Hummelshøj, S. Dahl, I. Chorkendorff, J.K. Nørskov, Nature Chem. 6 (2014) 320-324.

M. U. Khan, L.B. Wang, Z. Liu, Z.H. Gao, S.P. Wang, H.L. Li, W.B. Zhang, M.L.
Wang, Z.F. Wang, C. Ma, J. Zeng, Angew. Chem. Int. Ed.
doi: 10.1002/anie.201602512

11. J. Rodriguez, P. Liu, D. J. Stacchiola, S. D. Senanayake, M. G.White, J.G.Chen, ACS Catal. 2015, 5, 6696–6706

12. L. Fan, K. Fujimoto, J. Catal. 150 (1994) 217-220.

13. S.Y. Yao, W.Q. Xu, A.C. Johnston-Peck, F.Z. Zhao, Z.Y. Liu, S. Luo, S.D.

Senanayake, A. Martínez-Arias, W.J. Liu, J.A. Rodriguez, Phys. Chem. Chem. Phys. 16 (2014) 17183—17195.

14. N. Yi, R. Si, H. Saltsburg, M. Flytzani-Stephanopoulos, Energy Environ. Sci. 3 (2010) 831–837.

15. L. Torrente-Murciano, R.S.L. Chapman, A. Narvaez-Dinamarca, D. Mattia, M.D.

Jones, Phys. Chem. Chem. Phys. 18 (2016) 15496-15500.

16. F.L. Liao, Y.Q. Huang, J.W. Ge, W.R. Zheng, K. Tedsree, P. Collier, X.L. Hong,

S.C. Tsang, Angew. Chem. Int. Ed. 50 (2011) 2162 -2165.

17. M.B. Boucher, S. Goergen, N. Yi, M. Flytzani-Stephanopoulos, Phys. Chem. Chem. Phys. 13 (2011) 2517–2527.

18. L. Torrente-Murciano, A. Gilbank, B. Puertolas, T. Garcia, B. Solsona, D. Chadwick, Appl. Catal. B: Environmental 132-133 (2013) 116-122.

19. P. Djinović, J. Batista, A. Pintar, Catal. Today 147S (2009) S191-S197.

20. P. Djinović, J. Levec, A. Pintar, Catal. Today 138 (2008) 222-227.

21. D.G. Araiza, A. Gómez-Cortés, G. Díaz, Catal. Today 282 (2017) 185-194.

22. L. C. Grabow, M. Mavrikakis, ACS Catal. 1 (2011) 365-384.

Highlights

- Three Cu/CeO₂ catalysts were applied in CO₂ hydrogenation to methanol • reaction.
- Support morphology greatly affected the catalyst activity of CO₂ • hydrogenation.
- The Cu/CeO₂ nanorods gave the highest methanol yield of 1.9% at 240°C and •

han.