Cite this: Chem. Commun., 2012, 48, 8664–8666

www.rsc.org/chemcomm

COMMUNICATION

Phosphine-catalyzed asymmetric [4 + 1] annulation of Morita–Baylis–Hillman carbonates with dicyano-2-methylenebut-3-enoates[†]

Xiao-nan Zhang,^a Hong-Ping Deng,^b Long Huang,^a Yin Wei^b and Min Shi*^{ab}

Received 28th June 2012, Accepted 12th July 2012 DOI: 10.1039/c2cc34619b

A novel asymmetric [4+1] annulation of MBH carbonates with dicyano-2-methylenebut-3-enoates has been developed for the first time, providing an efficient and enantioselective synthesis of highly functionalized cyclopentenes bearing one all-carbon quaternary stereogenic center.

Over the past decade, nucleophilic phosphine catalysis has attracted much research effort.¹ At the present stage, phosphine-mediated reactions have become a powerful tool in producing carbo- and heterocycles.² In particular, phosphine-catalyzed [3+2] and [4+2]annulations³ of allenoates and imines/alkenes have been applied in the synthesis of several natural products.⁴ Recently, Morita-Baylis-Hillman (MBH) acetates and carbonates as complementary and versatile substrates have emerged in nucleophilic phosphine catalysis since Lu and co-workers first reported a series of intra- and intermolecular [3+n] annulations (n = 2, 4, 6) using MBH carbonates as 1.3-dipoles with various electron-deficient olefins catalyzed by a tertiary phosphine under mild conditions.⁵ Then, several reports on asymmetric [3+2] annulations of MBH carbonates with electron-deficient olefins have been disclosed.⁶ More recently, Zhang, Huang and He and their co-workers have also developed several MBH adducts involved in [4+1] annulations to give the annulation products in high yields, respectively, in which the MBH adducts served as a new kind of 1,1-dipolar synthon.⁷ However, to the best of our knowledge, there is no report on the asymmetric version of this reaction. On the basis of these studies and our ongoing investigations on the phosphine catalyzed asymmetric annulations,⁸ we envisioned that chiral phosphinemediated [4+1] cyclization may be utilized to construct densely functionalized optically active cyclopentenes (Scheme 1).

The electron-deficient diene compounds necessary for the annulation reactions can be conveniently prepared from alkyl propiolates and α, α -dicyanoolefins.⁹ Herein we wish to report

Scheme 1 A research proposal.

the first enantioselective [4+1] annulation of MBH acetates and carbonates with dicyano-2-methylenebut-3-enoates, providing a facile protocol to construct highly functionalized cyclopentenes bearing one all-carbon quaternary stereogenic center in good yields with excellent enantioselectivities.¹⁰

Based on our previous work on chiral phosphines as nucleophilic catalysts in asymmetric catalysis,¹¹ we initiated the study

 Table 1
 Screening of chiral phosphine catalysts^a

^{*a*} Reactions were performed with **1a** (0.10 mmol) and **2a** (0.15 mmol) in the presence of 20 mol% of **CP** in toluene (1 mL) at room temperature. ^{*b*} Isolated yields. ^{*c*} Determined by chiral HPLC analysis.

^a Key Laboratory for Advanced Materials and Institute of Fine Chemicals, East China University of Science and Technology, 130 MeiLong Road, Shanghai 200237, P. R. China

^b State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Road, Shanghai 200032, P. R. China. E-mail: mshi@mail.sioc.ac.cn

[†] Electronic supplementary information (ESI) available: Experimental procedures and characterization data for new compounds. CCDC 872182. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c2cc34619b

Scheme 2 Optimization of the reaction conditions.

by investigating the reaction between dicyano-2-methylenebut-3enoate 1a and MBH carbonate 2a in the presence of multifunctional chiral thiourea-phosphine CP1 (20 mol%) derived from L-phenylalanine in toluene at room temperature. To our delight, the desired annulation indeed took place, giving the corresponding product 3a in 84% ee, albeit in only 39% yield (Table 1). Increasing the steric bulkiness of multifunctional thiourea-phosphines derived from natural amino acids, we consecutively examined the catalysts CP2 and CP3, and identified that CP3 was the more efficient catalyst, producing 3a in 38% yield along with 90% ee value. Subsequently we examined several multifunctional chiral phosphines CP4-CP9 having an axially chiral binaphthyl scaffold. Using CP4 as the chiral phosphine 3a was produced in 42% yield with 15% ee value. Notably, both yields and ee values of the product 3a increased when multifunctional thiourea-phosphines CP5-CP7 were employed, and revealed that CP7 was the more effective catalyst, affording 3a in 90% yield with 80% ee. Gratifyingly, an improvement was possible through a slight structural modification of catalyst CP7 to give CP8 and CP9, which could produce 3a in better results. Finally, we found that 3a could be obtained in 80% yield with 89% ee using CP9 as catalyst (Table 1).

With the identification of the best catalyst in this reaction, we next attempted to further optimize reaction conditions by screening the solvent (Table S1, ESI[†]). The reaction outcomes revealed that using 20 mol% **CP9** as the catalyst with 4 Å MS as the additive (40 mg for 0.1 mmol of **1a** and 0.15 mmol of **2a**) and carrying out the reaction in toluene at room temperature for 2 days gave **3a** in 84% yield with 90% ee value, which served as the best reaction conditions in this reaction (Scheme 2). Using 10 mol% of **CP9** gave **3a** in 72% yield and 88% ee under identical conditions.

Having determined the optimal reaction conditions for the highly enantioselective formation of **3a**, we turned our attention to the substrate scope of this multifunctional chiral-phosphine-catalyzed asymmetric [4+1] annulation of dicyano-2-methylenebut-3-enoates with MBH carbonates and the results are summarized in Table 2. All reactions proceeded smoothly to give the corresponding products 3 in moderate to good yields with excellent enantioselectivities under the optimal reaction conditions (Table 2). Whether \mathbf{R}^1 is an electron-rich or -deficient aromatic ring, the reactions proceeded smoothly to give the corresponding annulation products 3b-3i in good yields with 77-90% ee values, respectively (Table 2, entries 1-8). Only in the case of ortho-MeOC₆H₄ dicyano-2-methylenebut-3-enoate 1b, the corresponding adduct 3b was obtained in good yield along with relatively lower ee value (77% ee), perhaps due to the steric influence (Table 2, entry 1). When R^1 is a heteroaromatic group $(\mathbf{R}^{1} =$ funan-2-yl) or a sterically more bulky 2-naphthalene moiety or a more substituted aromatic group ($R^1 = 3,4,5$ -(MeO)₃C₆H₂), the reactions also proceeded efficiently to afford the corresponding

Table 2 The substrate scope of [4+1] annulation of dienes 1 with MBH carbonates 2^{a}

		$\begin{array}{c} NC \\ R^{1} \\ CO_{2}Me \\ 1 \end{array} \xrightarrow{CO_{2}Me} R^{3} \end{array} \xrightarrow{CP9 (20 \text{ mol}\%)}_{4\text{Å MS, toluene, r.t.}} \xrightarrow{R^{1} \\ MeO_{2}C \\ 3 \end{array} \xrightarrow{R^{2} \\ R^{3} \\ R^{3} \\ R^{3} \end{array}$					
Entry	\mathbb{R}^1	\mathbb{R}^2	R ³	Time (d)	$\operatorname{Yield}^{b}(\%)$	ee^{c} (%)	
1	1b $(o-\text{MeOC}_6\text{H}_4)$	2a $(p-NO_2C_6H_4)$	2a (OEt)	2	3b , 80	77	
2	$1c (m-MeOC_6H_4)$	2a $(p-NO_2C_6H_4)$	2a (OEt)	2	3c , 82	87	
3	$1d(p-MeC_6H_4)$	2a $(p-NO_2C_6H_4)$	2a (OEt)	2	3d , 86	90	
4	1e $(p-FC_6H_4)$	2a $(p-NO_2C_6H_4)$	2a (OEt)	2	3e , 80	89	
5	$1f(p-ClC_6H_4)$	2a $(p-NO_2C_6H_4)$	2a (OEt)	2	3f , 79	90	
6	$1g(p-BrC_6H_4)$	2a $(p-NO_2C_6H_4)$	2a (OEt)	2	3g , 70	90	
7	1h (Ph)	2a $(p-NO_2C_6H_4)$	2a (OEt)	2	3h , 85	89	
8	1i $(p-CF_3C_6H_4)$	2a $(p-NO_2C_6H_4)$	2a (OEt)	2	3i , 75	87	
9	1j (furan-2-yl)	2a $(p-NO_2C_6H_4)$	2a (OEt)	2	3 j, 81	91	
10	1k (naphtha-2-yl)	2a $(p-NO_2C_6H_4)$	2a (OEt)	2	3k , 84	90	
11	11 (3,4,5-(MeO) ₃ C ₆ H ₂)	2a $(p-NO_2C_6H_4)$	2a (OEt)	2	31 , 70	90	
12	$1d (p-MeC_6H_4)$	2b (<i>m</i> -NO ₂ C ₆ H ₄)	2b (OEt)	2	3m , 76	92	
13	$1d (p-MeC_6H_4)$	$2c (p-ClC_6H_4)$	2c (OEt)	7	3n , 42	85	
14	$1d (p-MeC_6H_4)$	2d (Ph)	2d (OEt)	7	30 , 39	85	
15	$1d (p-MeC_6H_4)$	$2e (3-Br, 4-FC_6H_3)$	2e (OEt)	7	3p , 69	89	
16	$1d (p-MeC_6H_4)$	2f (CH ₃)	2f (OEt)	7	3q , 29	66	
17	$1d (p-MeC_6H_4)$	$2g (p-NO_2C_6H_4)$	$2g (O^tBu)$	5	3r , 70	90	
18	$1d (p-MeC_6H_4)$	2h $(p-NO_2C_6H_4)$	2h (OBn)	2	3s , 80	90	
19	$1d (p-MeC_6H_4)$	2i (<i>m</i> -NO ₂ C ₆ H ₄)	2i (CH ₃)	2	3t , 90	90	
20	$1d (p-MeC_6H_4)$	2j (<i>p</i> -CF ₃ C ₆ H ₄)	2j (CH ₃)	2	3u , 86	92	
21	$1d (p-MeC_6H_4)$	2k $(p-FC_6H_4)$	2k (CH ₃)	2	3v , 88	94	
22	$1d (p-MeC_6H_4)$	2l $(o$ -ClC ₆ H ₄)	2l (CH ₃)	4	3w , 41	93	
23	$1d (p-MeC_6H_4)$	$2m (p-ClC_6H_4)$	2m (CH ₃)	3	3x , 90	93	
24	$1d (p-MeC_6H_4)$	$2n (p-MeC_6H_4)$	2n (CH ₃)	4	3 y, 86	98	
25	$1d (p-MeC_6H_4)$	20 (3,4-Cl ₂ C ₆ H ₃)	20 (CH ₃)	3	3z , 92	90	
26	$1d (p-MeC_6H_4)$	2p (thiophen-2-yl)	2p (CH ₃)	3	3aa , 91	97	

^{*a*} Reactions were performed with **1** (0.10 mmol) and **2** (0.15 mmol) in the presence of 20 mol% of **CP9** in toluene (1 mL) at room temperature. ^{*b*} Isolated yields. ^{*c*} Determined by chiral HPLC analysis.

Scheme 3 Possible reaction mechanism for the formation of 3.

products 3j-31 in 70-84% yields with 90-91% ee values (Table 2, entries 9–11). Next, the investigation of the MBH carbonates was continued by using 1d as a substrate (Table 2, entries 12-26). The reaction tolerated different aromatic moieties R² in the MBH carbonates 2. Due to their lower reactivities, substrates with no substituent or halogen atom substituent on the aromatic ring of MBH carbonates resulted in reduced yields with high ee values upon prolonging the reaction time to 7 days (Table 2, entries 13-15). However, using MBH carbonate 2f as a substrate, the reaction also proceeded efficiently, affording the cycloadduct 3qin 29% yield along with 66% ee value. The reactions also worked well upon changing the ester groups in the MBH carbonates, providing the corresponding products 3r and 3s in 70% and 80% yields with identical 90% ee values, respectively (Table 2, entries 17 and 18). Notably, taking MBH carbonates derived from methyl vinyl ketone (MVK) as substrates, whether R² is an electron-rich or -deficient aromatic ring or a heteroaromatic group (R^2 = thiophen-2-yl), the reactions proceeded smoothly to give the corresponding annulation products 3t-3aa in moderate to excellent vields (41-92%) with 90-98% ee values, respectively (Table 2, entries 19-26). Only in the case of ortho-ClC₆H₄ MBH carbonate 21, the corresponding adduct 3w was obtained in 93% ee along with relatively lower yields (41% yield), perhaps due to the steric influence (Table 2, entry 22). The absolute configuration of 3d has been assigned by X-ray diffraction as R-configuration. The ORTEP drawing and the CIF data are summarized in the ESI.[†]

On the basis of the above experimental results and previous work, 5ac,12 a plausible reaction mechanism has been outlined in Scheme 3. The reaction might be initiated with the *in situ* formation of the phosphorus ylide I from 2 *via* an addition–elimination–deprotonation process. Then the nucleophilic attack of phosphorus ylide I to dicyano-2-methylenebut-3-enoate 1 with its C-1-terminal results in intermediate II, which isomerizes to intermediate III through a hydrogen transfer. Intermediate III produces the desired highly functionalized cyclopentene 3 and regenerates the chiral-phosphine catalyst *via* an intramolecular Michael addition followed by the elimination of catalyst. The possible transition state of this asymmetric [4+1] annulation is illustrated in Fig. S1 in the ESI.†

In conclusion, the asymmetric [4+1] annulation reactions utilizing MBH carbonates as C₁ synthons have been developed for the first time, which provide an efficient and enantioselective synthesis of highly functionalized cyclopentenes bearing one all-carbon quaternary stereogenic center. Further efforts are in progress to develop the use of this reaction in organic synthesis. Financial support from the National Basic Research Program of China (973)-2010CB833302, the Shanghai Municipal Committee of Science and Technology (11JC1402600), the Fundamental Research Funds for the Central Universities and the National Natural Science Foundation of China (20902019, 20872162, 20672127, 21121062, 20732008, 20772030 and 20702059) is greatly acknowledged.

Notes and references

- For important reviews, see: (a) X. Lu, C. Zhang and Z. Xu, Acc. Chem. Res., 2001, 34, 535; (b) J. L. Methot and W. R. Roush, Adv. Synth. Catal., 2004, 346, 1035; (c) A. Marinetti and A. Voituriez, Synlett, 2010, 174; (d) S. Xu and Z. He, Sci. Sin. Chim., 2010, 40, 856.
- 2 For reviews, see: (a) X. Lu, Y. Du and C. Lu, *Pure Appl. Chem.*, 2005, 77, 1985; (b) V. Nair, R. S. Menon, A. R. Sreekanth, N. Abhilash and A. T. Biji, *Acc. Chem. Res.*, 2006, **39**, 520; (c) L.-W. Ye, J. Zhou and Y. Tang, *Chem. Soc. Rev.*, 2008, **37**, 1140.
- 3 For reviews, see: B. J. Cowen and S. J. Miller, *Chem. Soc. Rev.*, 2009, **38**, 3102 and the references cited therein.
- 4 Y. S. Tran and O. Kwon, J. Am. Chem. Soc., 2007, 129, 12632.
- (a) Y. Du, X. Lu and C. Zhang, Angew. Chem., Int. Ed., 2003, 5 42, 1035; (b) Y. Du, J. Feng and X. Lu, Org. Lett., 2005, 7, 1987; (c) J. Feng, X. Lu, A. Kong and X. Han, Tetrahedron, 2007, 63, 6035; (d) S. Zheng and X. Lu, Org. Lett., 2008, 10, 4481; (e) S. Zheng and X. Lu, Tetrahedron Lett., 2009, 50, 4532; (f) S. Zheng and X. Lu, Org. Lett., 2009, 11, 3978; (g) L.-W. Ye, X.-L. Sun, Q.-G. Wang and Y. Tang, Angew. Chem., Int. Ed., 2007, 46, 5951; (h) X. Han, L.-W. Ye, X.-L. Sun and Y. Tang, J. Org. Chem., 2009, 74, 3374; (i) C.-W. Cho, J.-R. Kong and M. J. Krische, Org. Lett., 2004, 6, 1337; (j) C.-W. Cho and M. J. Krische, Angew. Chem., Int. Ed., 2004, 43, 6689; (k) H. Park, C.-W. Cho and M. J. Krische, J. Org. Chem., 2006, 71, 7892; (1) Y.-Q. Jiang, Y.-L. Shi and M. Shi, J. Am. Chem. Soc., 2008, 130, 7202; (m) R. Zhou, J.-F. Wang, H.-B. Song and Z.-J. He, Org. Lett., 2011, 13, 580; (n) J. Peng, X. Huang, L. Jiang, H.-L. Cui and Y.-C. Chen, Org. Lett., 2011, 13, 4584.
- 6 (a) B. Tan, N. R. Candeias and C. F. Barbas III, J. Am. Chem. Soc., 2011, 133, 4672; (b) F.-R. Zhong, X.-Y. Han, Y. Q. Wang and Y.-X. Lu, Angew. Chem., Int. Ed., 2011, 50, 7837; (c) Q.-G. Wang, S.-F. Zhu, L.-W. Ye, C.-Y. Zhou, X.-L. Sun, Y. Tang and Q.-L. Zhou, Adv. Synth. Catal., 2010, 352, 1914; (d) H.-P. Deng, Y. Wei and M. Shi, Adv. Synth. Catal., 2012, 354, 783.
- 7 (a) Z.-L. Chen and J.-L. Zhang, *Chem.–Asian J.*, 2010, 5, 1542;
 (b) P.-Z. Xie, Y. Huang and R.-Y. Chen, *Org. Lett.*, 2010, 12, 3768;
 (c) J.-J. Tian, R. Zhou, H.-B. Song and Z.-J. He, *J. Org. Chem.*, 2011, 76, 2374.
- X.-Y. Guan and M. Shi, J. Org. Chem., 2009, 74, 1977;
 Y.-W. Sun, X.-Y. Guan and M. Shi, Org. Lett., 2010, 12, 5664; (c) X.-C. Zhang, S.-H. Cao, Y. Wei and M. Shi, Chem. Commun., 2011, 47, 1548; (d) X.-C. Zhang, S.-H. Cao, Y. Wei and M. Shi, Org. Lett., 2011, 13, 1142; (e) H.-P. Deng, Y. Wei and M. Shi, Org. Lett., 2011, 13, 3348.
- 9 X. Jiang, D. Fu, X. Shi, S. Wang and R. Wang, Chem. Commun., 2011, 47, 8289.
- 10 For reviews on the construction of quaternary carbon center, see: (a) C. J. Douglas and L. E. Overman, *Proc. Natl. Acad. Sci. U. S. A.*, 2004, **101**, 5363; (b) M. Bella and T. Gasperi, *Synthesis*, 2009, 1583.
- 11 For reviews on chiral phosphorus compounds as catalysts in organocatalytic reactions, see: (a) Y. Wei and M. Shi, Acc. Chem. Res., 2010, 43, 1005; For selected references of chiral multifunctional phosphines as organocatalysts: (b) M. Shi and L.-H. Chen, Chem. Commun., 2003, 1310; (c) M. Shi, L.-H. Chen and C.-Q. Li, J. Am. Chem. Soc., 2005, 127, 3790; (d) K. Matsui, S. Takizawa and H. Sasai, Synlett, 2006, 761; (e) B. J. Cowen and S. J. Miller, J. Am. Chem. Soc., 2007, 129, 10988; (f) X.-Y. Han, Y.-Q. Wang, F.-R. Zhong and Y.-X. Lu, J. Am. Chem. Soc., 2011, 133, 1726; (g) Y.-L. Yang, C.-K. Peng and M. Shi, Org. Biomol. Chem., 2011, 9, 3349; (h) H.-P. Deng, Y. Wei and M. Shi, Eur. J. Org. Chem., 2012, 183; (j) D. Wang, Y. Wei and M. Shi, Chem. Commun., 2012, 48, 2764.
- 12 R. Zhou, C. Wang, H. Song and Z. He, Org. Lett., 2010, 12, 976.