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Methylation is a common biotransformation that encom-
passes a wide variety of substrates involved in a myriad of
biological processes.[1] For example, methylation of DNA has
been shown to play an important role in gene regulation, and
methylation of specific protein targets has been established as
a general mechanism to control signal transduction or cell
growth and differentiation. In addition, the biological con-
sequences of methylation of rRNA and mRNA are also well
documented.[1] The majority of biological methyl transfers are
catalyzed by methyltransferases that use (S)-adenosylmethio-
nine (AdoMet) as the methyl donor. It is of interest that
methylation is such a prevalent process in living organisms,
considering that methyl transfer from AdoMet to its acceptor
is intrinsically a very slow reaction in water.[2] Although
methyltransferases characteristically display low kcat values,
their catalysis of methyl transfer can still be considered
significant compared to the uncatalyzed reaction.

While the flexibility of AdoMet as a methyl donor is
apparent from its ability to use carbon, nitrogen, and oxygen
as acceptors, methyltransferases that are capable of catalyzing
C-methylation are much less common and therefore less well
studied.[3] A specific area in which C-methyltransferases

propane ring and the macrolide core and the relative configuration at
the C13 stereocenter. However, the relative configuration of the sugar
unit in callipeltoside A (1) with regard to the core has been assigned
through NOE analysis.
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clearly play a central role is the production of methyl-
branched sugars. On the basis of their biogenesis, branched-
chain sugars can be divided into two groups.[4, 5] Sugars
carrying a methyl or a two-carbon side chain are classified as
Group I, and those bearing a hydroxymethyl or a formyl
branch make up Group II. Branched chains longer than two
carbon atoms are extremely rare. Formation of Group I
branched-chain sugars most likely involves coupling of a one-
or two-carbon unit from appropriate donors such as AdoMet
or pyruvate to a diphosphonucleotidyl(NDP)-hexulose.[5]

Unfortunately, information on the biosynthetic pathways of
these unusual sugars, especially mechanisms of branched-
chain attachment, is sparse and is mostly derived from early
tracer experiments.[4, 5] This paper reports the isolation and
characterization of TylC3, the first C-methyltransferase to be
purified that is involved in the biosynthesis of a branched-
chain sugar, namely, l-mycarose (1, Scheme 1). l-Mycarose,

along with two other sugars, d-mycaminose (2) and d-
mycinose (3), is an essential component of the macrolide
antibiotic tylosin (4), which is produced by Streptomyces
fradiae. Tylosin is used commercially to treat veterinary
Gram-positive and mycoplasma infections, as well as to
promote livestock growth.[6] l-Mycarose also forms part of a
few other clinically important antibiotics including erythro-
mycin, in which l-mycarose is methylated at O-3 (l-cladi-
nose).

Early genetic studies led to the identification of the entire
gene cluster responsible for the biosynthesis of tylosin,[7]

including the genes involved in the biosynthesis of l-
mycarose.[8] Sequencing results and analyses identified tylC3
as the gene likely to encode the C-methyltransferase required
for the attachment of the methyl branched chain to the
hexulose precursor 5 (Scheme 1). Although TylC3 did not
display significant sequence homology to any characterized
AdoMet-dependent methyltransferase, three localized se-
quences similar to the well-defined binding motifs of Ado-

Met-dependent enzymes were identified. One gene product
that did exhibit strong homology to TylC3 was EryBIII (68 %
identity and 80 % similarity) in the erythromycin-producing
strain Saccharopolyspora erythraea.[9] Mutation experiments
implicated eryBIII as the gene encoding the C-methyltrans-
ferase in the biosynthesis of l-cladinose in erythromycin.[10]

However, no biochemical studies were performed on the gene
product to confirm its function.

To verify the function of TylC3, the tylC3 gene was
amplified by polymerase chain reaction (PCR) from the
cosmid pHJL311[11] and cloned into a pET-24b(�) vector. The
resulting construct, pHC34, was used to transform Escherichia
coli BL21(DE3), from which the expressed C-terminal His-
tagged TylC3 was purified to near homogeneity by a Ni-NTA
column (Qiagen). N-Terminal amino acid sequencing con-
firmed the identity of TylC3,[12] and the subunit molecular
mass of 48 kDa, as revealed by sodium dodecyl sulfate

polyacrylamide gel electrophoresis (SDS
PAGE), correlates well with the predicted
value of 46 423 Da deduced from the amino
acid sequence. An Mr of 43.1 kDa, estimated
by gel filtration, indicated that TylC3 exists as
a monomer in solution.

Initial tests with [3H3C]AdoMet showed
that TylC3 does bind AdoMet, even in the
absence of sugar substrate. HPLC analysis[13]

of an incubation of this enzyme with the
expected substrate 5[14] revealed the presence
of a new compound. The NMR data identi-
fied[15] this new product as the C-3 methy-
lated sugar 6, and this firmly establishes the
function of TylC3 as the AdoMet-dependent
C-methyltransferase required for the biosyn-
thesis of l-mycarose. A positive Nuclear
Overhauser Effect (NOE) between the new-
ly installed C-3 methyl group and the C-5
axial hydrogen atom showed the methyl
group to be axial; this indicates that TylC3-
catalyzed methylation proceeds with overall
inversion of configuration at C-3.

An HPLC assay was developed and used to determine the
kinetic parameters for the enzyme.[16] Km for AdoMet was
1.5� 0.2 mm, but Km for the sugar substrate 5 was beyond the
sensitivity of the assay and could only be estimated as less
than 1 mm. The small Km values and a kcat of 1.4� 0.1 minÿ1 are
typical for methyltransferases,[2] which exhibit large catalytic
accelerations as compared to the uncatalyzed reaction even
though their turnover numbers are often low. Considering
that purified TylC3 is UV/Vis transparent above 300 nm and
its activity does not depend on the presence of metal ions,[17]

the enzyme appears not to require the assistance of any
cofactor to stabilize the enediolate intermediate 7, which is
likely to be the methyl acceptor in this mechanism
(Scheme 2).

To gain evidence for the intermediacy of enediolate 7 in the
course of TylC3-catalyzed reaction,[18] a 4,4-difluoro substrate
analogue 8 was synthesized as shown in Scheme 3.[19±21] It is
anticipated that upon incubation with TylC3, 8 may undergo
deprotonation at C-3 followed by the elimination of a fluoride

Scheme 1. Top: organization of the tylosin PKS gene cluster; bottom: biosynthesis of tylosin (4).
1 ± 3 are shown as substituents, not as independent molecules.



COMMUNICATIONS

Angew. Chem. Int. Ed. 2001, 40, No. 3 � WILEY-VCH Verlag GmbH, D-69451 Weinheim, 2001 1433-7851/01/4003-0609 $ 17.50+.50/0 609

O
Me

HO OTDP

O

O
Me

HO OTDP

O

H

O
Me

HO
OTDP

O

S
Met Ado

Me

P O P

O O

O O
O

O
Me

HO

O

O

O

HO

N

NH

O

O

Me

Me

TylC3

AdoMet

_

+

Enz-B
_

5

7

3
1

1'
2'

6"

5"

6

_ _

Scheme 2. Essential components of the methylation step 5!6.
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93%; i) 1H-tetrazole, pyridine, TMP-morpholidate; j) 2m LiOH, THF, two
steps, 47%. AIBN� azobisisobutyronitrile, Bn�benzyl, Bz� benzoyl,
DAST� (diethylamino)sulfur trifluoride, NBS�N-bromosuccinimide,
PCC�pyridinium chlorochromate, TMP� thymidine 5'-trihydrogenphos-
phate, TDP� thymidine 5'-dihydrogenphosphate.

ion from C-4 to yield a new intermediate 9 (Scheme 4).[22]

Since 9 closely resembles the putative enediolate intermediate
7, binding of 9 to the active site of TylC3 may lead to enzyme
inhibition. However, to our disappointment, when compound
8 was exposed to TylC3, no release of fluoride ion could be
detected by 19F NMR, and no inhibition of TylC3 was
observed. Considering that 8 is not even a competitive
inhibitor for TylC3 at a concentration 25 times higher than
that of the substrate in a competition experiment, 8 must
either have little affinity toward TylC3 or have difficulty
fitting into the active site. Clearly, a full elucidation of the
catalytic mechanism of TylC3 must await further experiments.

Nevertheless, since TylC3 is a prototypical C-methyltrans-
ferase involved in methyl-branched sugar formation, insights
gleaned from this study should be applicable to the biosyn-
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thesis of other methyl-branched sugars such as l-vinelose, d-
and l-virenose, d-evalose, l-nogalose, l-chromose B, d-ever-
micose, and l-axenose.[4, 5, 23] The present studies on TylC3 not
only expand our knowledge of AdoMet-dependent enzymes,
but also add to the tools available for the genetic manipu-
lation of biosynthetic pathways of deoxy sugars. Since the
sugar components of macrolide antibiotics are known to be
essential for specificity and activity of the parent drug, the
ability to genetically engineer microorganisms to produce
sugars that contain various structural alterations, such as
branched chains, provides an innovative approach to the
discovery of clinically useful compounds.
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Oxathiaphospholane Approach to the
Synthesis of P-Chiral, Isotopomeric
Deoxy(ribonucleoside phosphorothioate)s and
Phosphates Labeled with an Oxygen Isotope**
Piotr Guga, Krzysztof DomanÂ ski, and Wojciech J. Stec*

Introduced by Eckstein, phosphorothioate analogues of
nucleotides have become an indispensable tool for studying
the metabolism of nucleic acids.[1] Standard chemical methods
for the synthesis of oligo(deoxyribonucleoside phosphoro-
thioate)s (PS-Oligos) provide a mixture of 2n diastereoiso-
mers, where n is the number of phosphorothioate linkages.[2]

The enzymatic synthesis of stereodefined PS-Oligos is limited
to the preparation of (all-RP)-oligomers because of the
stereoselectivity of available DNA and RNA polymerases.
The first method for stereocontrolled chemical synthesis of
PS-Oligos was elaborated in our group,[3] and several alter-
native methods were recently reported.[4, 5] Stereodefined PS-
Oligos were used for studying the mode of action of several
bacterial and human enzymes[6±8] and the stereodependent
avidity of PS-Oligos toward complementary DNA or RNA.[9]

However, the presence of a sulfur atom affects the properties
of internucleotide bonds, mostly due to the different steric
requirements of sulfur atoms (PÿS vs PÿO bond length),
different affinity towards metal ions, and changes in the
distribution of the negative charge in the phosphorothioate
anion.[10] Therefore, the hydration pattern of PS-Oligos is
different from that of natural oligonucleotides,[11] and this
obstructs the evaluation of kinetic data of ªrescue effectsº of
thiophilic metal ions, and makes analysis of direct or water-
mediated contacts between metal ions and phosphate groups
much more difficult. These inconveniences could be avoided
by using P-chiral isotopomeric phosphates.[12] Here we
describe the synthesis of stereodefined oligo(deoxyribonu-
cleoside [18O]phosphorothioate)s (PS18O-Oligos) and oligo-
(deoxyribonucleoside [18O]phosphate)s (P18O-Oligos), in
which both of the nonbridging oxygen atoms of the inter-
nucleotide bond were replaced by S and 18O, or one of them
was replaced by 18O, respectively. Oligonucleotides containing
a single P-chiral [16O,18O] internucleotide bond were first used
by Eckstein[13] in studies on Eco RI endonuclease. Stereo-
defined P18O-Oligos can be used to investigate the interaction
of particular oxygen atoms with other molecules or metal ions,
given analytical methods that allow the isotopic effect to be
measured with satisfactory accuracy.[14]

To obtain stereodefined PS18O-Oligos, we synthesized 5'-O-
DMT-nucleoside-3'-O-(2-thio-ªspiroº-4,4-pentamethylene-
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wash with 500 mm potassium phosphate buffer, pH 3.5.
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