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Viscosity influence on the stability of a swirling jet with nonrotating core

L. G. Sarasta® and A. C. Sicardi Schifino®
Facultad de Ciencias, Universidad de la Réfica, Montevideo, Uruguay

(Received 20 October 1998; accepted 12 January)2000

The effect of the viscosity on the linear stability of a swirling top hat jet with nonrotating core is
studied analytically. Numerical values of the growth rate are obtained. It is shown that the viscosity
induces instabilities in the region of wave numbers where no inviscid instability occurs. In the short
wave limit, the asymptotic solution reveals that the situation is quite different for the strictly inviscid
and the viscous cases. While in the inviscid fluid the growth rate is proportional to the wave number,
in the viscous case the growth rate approaches a constant value for large wave nhumh2080 ©
American Institute of Physic§S1070-663(00)00405-F

We study the influence of the viscosity on the stability to We assume that the perturbations are of the form
axisymmetric disturbances of a swirling top hat jet with non-
rotating core of radiufR. The velocity is assumed to have a {uj.vj.wi.p}={f;(r).g;(r).hi(r), m(r)}
constant circulatiod” outside of the core, and zero circula- Xexgia(z—ct)]
tion in the core of the jet. The axial component of the veloc-
ity has a constant valud/ in the inner region and zero value
outside. The components for the basic floare explicitly

(wherej=i,v). Substituting these expressions into E@,
we obtain the modified Bessel equations

given by 1d/( dh, 1d/( dh
= r =2 = u2h,=0, = —|r —| — a?h;=0,
UVW {0I'/2ar,0} for r>R rdr\ dr rdr\ dr
- 10,00} for r<R with u?=a?—ia(c—W)/v. By requiring the solution to be
in (r,6,2) cylindrical components. Note that there is a veloc-Pounded at the origin, we obtain the solutiort,
ity jump in both the azimuthal and the axial velocity. =Alg(ur) andh;=Blo(ar), and therefore the complete ex-

A similar model, considering the fluid as inviscid, has pression of the disturbances in the viscous region are
been investigated by Martin and Mgibu‘rgnd p_revious_ly by_ i d a d
Rotunna? In the former, the capacity of the increasing cir- f=-B— alo(al’)—lA—za o(ur),
culation to stabilize the Kelvin—Helmholtz instabifitis in- @ K
vestigated. h=Blg(ar)+Aly(ur),
In our model, it is not possible to take the viscosity to be
nonzero everywhere in the fluid. If the viscosity is taken to  7=B(c—W)ly(ar).
be different to zero everywhere, the stress tensor is infinite at . .
=R by the presence of the velocity jump. In the present In the outer region, the flow can be described by the

model we consider that the viscosity is small but different toPotential theory. Requiring the solution to be bounded at
zero in the inner region, while the fluid is inviscid in the infinity, we find the expressions for the perturbations in the

outer region. outer region,

The linearized equations governing the perturbations i
in the inner region are h=CKg(ar), f=—C——=Ky(ar), mw=CcKy(ar).

a dr
g_g_U.VV: — 1Vp+ vA2y, (1) We now impose boundary conditions at the separation
ot P surface of the two regions, which can be expressed;as
with V-v=0, wherep is the perturbation on the pressupe, =R+ 8, whereé=E exp(k(z—ct)). The kinematical condi-
the density, and the viscosity of the fluid. In order to solve tion that the surface moves with the fluid giv&sy,/Dt
these equations, we write the disturbance as the wawy ~ =d#/dt+(U-V)y=u, thatis,
+v, ,* where the first term is irrotational X v;= 0. By using B o
these properties, we obtain th@p is satisfied ifv verifies a(c—W)E=—Aly(aR)— m Bly(uR), 3)
0 2 ﬁVi 1
E‘FU-V v,=vVa,, E'FU-VW:—;VD. 2 aCd=—CK6(aR). (4)
The dynamical boundary condition is that the stress of
3Electronic mail: sarasua@fisica.edu.uy the fluid must be continuous across the surface,
PElectronic mail: asicardi@fisica.edu.uy gij AR+ 8) = gy 1(R+ 6). Linearizing, these read
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FIG. 1. Growth rateoc=a*c* for (a)
A=0. The flow is unstable for all val-

(a) a* ues of Re. The growth rater ap-

proaches a constant value @5 tends
to infinity. (b) A=10. In this case, the
circulation existing around the jet sta-

. 12 bilizes the flow for small wave num-
174 c*] bers. However, the stabilization of the
10| ] increasing circulation is less effective
] for the viscous fluid.
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72(R) 97 |T=R 7'rr,2( )=m1(R) ar r ) IO(a'*) K'(a*) a*|0(a*)

=R
+ia*zﬂ*2|?(—ﬂj)w= , (5)

wherer; is the deviatoric term of the stress tensor dds Re lo(um*) To(a™)
the pressure of the unperturbed flow. Substituting for the
expressions of the disturbances we get two equations which - ~
together with Eqs(3) and (4) constitute a linear system for Where ~ ReWR/y,  c*=c/W, a*=aR, u*
the constant#\, B, C, E Elimination of these constants give =/a*?—i(c* —1)a* Re, andA =(I'/27WR)2. The sign of
the following eigenvalue equation: the imaginary part of the eigenvalwe=c, +ic; determines
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the stability of the jet. Whem; is positive, the disturbance The stabilization which takes place far>0 appears to
grows exponentially and the flow is unstable. be related to the Rayleigh stabilitysince this case corre-

Let us consider Re to be the Reynolds number of thesponds to the situation in which the outer circulation is
basic flow. As Re tends to infinity, the eigenvalue equationgreater than the circulation in the cdrehich is null in fac}.
for the inviscid case of Martin and Meiburgs recovered We show here that the Rayleigh stability remains dominant
from (5) for the particular case of zero circulation in the core.at small wave numbers even in the presence of viscosity.

We solve the eigenvalue equation by use of the NewtorThis is, for all values of Re as in the inviscid cdse.
method to determine* for different given values of Re and For arbitrary Re the flow is unstable to sufficiently large
the wave number*. Figure 1 shows the nondimensional wave number. Moreover, Fig. 1 shows that the growth rate of
velocity growth o=a*c® for the most unstable solution, the disturbances with wave number betwéeand 2A has a
i.e., the eigenvalue with maximum imaginary part, as a funcimaximum for a finite value of Re. In fact, there are modes
tion of a* for different values of Re. which are stable in the inviscid case, but become unstable in

This figure reveals that wheA is different to zero, the the viscous case. To study in detail this property, let us con-
flow is stable for perturbations with small wave numbers, butsider thatA>1 and Re is very high but finite. Employing the
unstable for sufficient large wave numbers at all values ofisymptotic expression for the modified Bessel functions for
Re. However, withA=0 the flow is unstable for all wave large values of the argument, E¢5) becomes ¢* —1
numbers at any value of Re. +i2a* IRef+c*2—Ala* +4a* u*IRE=0.

Let us consider the limit of small wave numbers. The  Since we assumed Re to be very high, we consistently
asymptotic expression of E@5) (as a* —0) results in the consider only the least order terrfis 1/Re. Then, the fol-

following eigenvalue equation: lowing approximate expression fo* is obtained:
f_14 [ . 1+i2a *za*l , A 1 o
¢ Re/| © Re/ ¢ 2% 773 ¢* = 5 (1= 287a% —1)+ (-~ 1+ 1U(1-24/a%)) ool
2a*2 (6)

+ W =0.
From the instability conditiorc; >0, we find that the
To solve this quadratic equation, we conserve lower orflow is unstable for all disturbances wid* > A, for finite
der terms ina*, considering in separate form those termsRe. This last result is unexpected since usually it has been
depending on Re and those independent of it. Hence, thgccepted that the viscosity acts purely as a stabilizing agent

expression ot* for small wave numbers is for swirling flows in the absence of rigid boundarieRe-
i cently, Mayer and Powélland Khorrami reported viscous
c*=1—2—Re(1i JV1-2A R€—2RE&a*?In o). instabilities in their study of the trailing vortex stability.

They found that a stable range of wave numbers in the in-
WhenA>0, the last term under the square root is negligibleviscid case was destabilized by increasing viscosity.
and then the flow is stable for all values of Re. WAK-0, It can be pointed out that this destabilizing influence of
the term under the square root is greater than 1 and then thiiscosity can appear in other flows like boundary layer or

basic flow is unstable for long waves. parallel flows®8*°
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The dependence @ as a function of log Re is shown phenomenon that a swirling flow can be destabilized by the
in Fig. 2. For wave numbers less thafs,2he growth rate has presence of the viscosity, without the presence of rigid walls.
a maximum for a relative low Re, and tends to zero as RéRayleigh stability predominates in the region of small wave

—oo, decreasing with 1/Re. numbers. However, the stable region is reduced in the pres-
On the other hand, for a fixed wave numhet>2A, ence of viscosity.
the disturbance is most unstable as Re tends to infinity. These results show that the effects of the viscosity are

It is interesting to compare these results with those obdrastic in the range of large wave numbers. The conclusions
tained in recent works by Mayer and Pofelhd Khorrami’ ~ drawn from inviscid models require great care in the short
in which the stability of the trailing vortex is studied by wave region.
numerical methods. Results from these earlier investigations The present model is restrictive since it takes the fluid to
have several similar features to what we have observed. Ihe viscous in a limited zone of the volume. Analytically, we
particular, in Ref. 6 the authors report instabilities with have obtained results which are in agreement with the more
growth rate decreasing as 1/Re at a fixed wave number, inomputationally intensive investigations performed in Refs.
agreement with the expression fof in Eq. (6). These co- 6 and 7.
incidences are remarkable, taking into account the differ-

ences in the models. ACKNOWLEDGMENTS
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