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Viscosity influence on the stability of a swirling jet with nonrotating core
L. G. Sarasúaa) and A. C. Sicardi Schifinob)

Facultad de Ciencias, Universidad de la Repu´blica, Montevideo, Uruguay

~Received 20 October 1998; accepted 12 January 2000!

The effect of the viscosity on the linear stability of a swirling top hat jet with nonrotating core is
studied analytically. Numerical values of the growth rate are obtained. It is shown that the viscosity
induces instabilities in the region of wave numbers where no inviscid instability occurs. In the short
wave limit, the asymptotic solution reveals that the situation is quite different for the strictly inviscid
and the viscous cases. While in the inviscid fluid the growth rate is proportional to the wave number,
in the viscous case the growth rate approaches a constant value for large wave numbers. ©2000
American Institute of Physics.@S1070-6631~00!00405-0#

We study the influence of the viscosity on the stability to
axisymmetric disturbances of a swirling top hat jet with non-
rotating core of radiusR. The velocity is assumed to have a
constant circulationG outside of the core, and zero circula-
tion in the core of the jet. The axial component of the veloc-
ity has a constant valueW̃ in the inner region and zero value
outside. The components for the basic flowU are explicitly
given by

$U,V,W%5H $0,G/2pr ,0% for r .R

$0,0W̃% for r ,R
,

in (r ,u,z) cylindrical components. Note that there is a veloc-
ity jump in both the azimuthal and the axial velocity.

A similar model, considering the fluid as inviscid, has
been investigated by Martin and Meiburg,1 and previously by
Rotunno.2 In the former, the capacity of the increasing cir-
culation to stabilize the Kelvin–Helmholtz instability3 is in-
vestigated.

In our model, it is not possible to take the viscosity to be
nonzero everywhere in the fluid. If the viscosity is taken to
be different to zero everywhere, the stress tensor is infinite at
r 5R by the presence of the velocity jump. In the present
model we consider that the viscosity is small but different to
zero in the inner region, while the fluid is inviscid in the
outer region.

The linearized equations governing the perturbationsv
in the inner region are

]v

]t
1U•¹v52

1

r
¹p1nD2v, ~1!

with ¹•v50, wherep is the perturbation on the pressure,r
the density, andn the viscosity of the fluid. In order to solve
these equations, we write the disturbance as the sumv5vi

1vv ,4 where the first term is irrotational¹3vi50. By using
these properties, we obtain that~1! is satisfied ifv verifies

S ]

]t
1U•¹ D vv5n¹2vv ,

]vi

]t
1U•¹vi52

1

r
¹p. ~2!

We assume that the perturbations are of the form

$uj ,v j ,wj ,p%5$ f j~r !,gj~r !,hj~r !,p~r !%

3exp@ ia~z2ct!#

~where j 5 i ,v!. Substituting these expressions into Eqs.~2!,
we obtain the modified Bessel equations

1

r

d

dr S r
dhv

dr D2m2hv50,
1

r

d

dr S r
dhi

dr D2a2hi50,

with m25a22 ia(c2W̃)/n. By requiring the solution to be
bounded at the origin, we obtain the solutionshv
5AI0(mr ) andhi5BI0(ar ), and therefore the complete ex-
pression of the disturbances in the viscous region are

f 52B
i

a

d

dr
I 0~ar !2 iA

a

m2

d

dr
I 0~mr !,

h5BI0~ar !1AI0~mr !,

p5B~c2W̃!I 0~ar !.

In the outer region, the flow can be described by the
potential theory.1 Requiring the solution to be bounded at
infinity, we find the expressions for the perturbations in the
outer region,

h5CK0~ar !, f 52C
i

a

d

dr
K0~ar !, p5CcK0~ar !.

We now impose boundary conditions at the separation
surface of the two regions, which can be expressed ash
5R1d, whered5E exp(ik(z2ct)). The kinematical condi-
tion that the surface moves with the fluid givesDh/Dt
5dh/dt1(U•¹)h5u, that is,

a~c2W̃!E52AI08~aR!2
a

m
BI08~mR!, ~3!

acd52CK08~aR!. ~4!

The dynamical boundary condition is that the stress of
the fluid must be continuous across the surface,

s i j ,2(R1d)5s i j ,1(R1d). Linearizing, these read
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t rz,2~R!50

p2~R!1
]P02

]t U r 5R2t rr ,2~R!5p1~R!1
]P01

]r U
r 5R

,

wheret i j is the deviatoric term of the stress tensor andP0 is
the pressure of the unperturbed flow. Substituting for the
expressions of the disturbances we get two equations which
together with Eqs.~3! and ~4! constitute a linear system for
the constantsA, B, C, E. Elimination of these constants give
the following eigenvalue equation:

S c* 211
2i

Re
a*

I 09~a* !

I 0~a* !
D S c* 211

2i

Re
a* D

2
I 08~a* !

I 0~a* !

K~a* !

K8~a* !
c* 22D

I 08~a* !

a* I 0~a* !

1
4

Re2 a* 2m* 2
I 09~m* !

I 08~m* !

I 08~a* !

I 0~a* !
50, ~5!

where Re5W̃R/n, c* 5c/W̃, a* 5aR, m*
5Aa* 22 i (c* 21)a* Re, andD5(G/2pW̃R)2. The sign of
the imaginary part of the eigenvaluec5cr1 ic i determines

FIG. 1. Growth rates5a* c* for ~a!
D50. The flow is unstable for all val-
ues of Re. The growth rates ap-
proaches a constant value asa* tends
to infinity. ~b! D510. In this case, the
circulation existing around the jet sta-
bilizes the flow for small wave num-
bers. However, the stabilization of the
increasing circulation is less effective
for the viscous fluid.
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the stability of the jet. Whenci is positive, the disturbance
grows exponentially and the flow is unstable.

Let us consider Re to be the Reynolds number of the
basic flow. As Re tends to infinity, the eigenvalue equation
for the inviscid case of Martin and Meiburg1 is recovered
from ~5! for the particular case of zero circulation in the core.

We solve the eigenvalue equation by use of the Newton
method to determinec* for different given values of Re and
the wave numbera* . Figure 1 shows the nondimensional
velocity growth s5a* ci* for the most unstable solution,
i.e., the eigenvalue with maximum imaginary part, as a func-
tion of a* for different values of Re.

This figure reveals that whenD is different to zero, the
flow is stable for perturbations with small wave numbers, but
unstable for sufficient large wave numbers at all values of
Re. However, withD50 the flow is unstable for all wave
numbers at any value of Re.

Let us consider the limit of small wave numbers. The
asymptotic expression of Eq.~5! ~as a* →0! results in the
following eigenvalue equation:

S c* 211
i

ReD S c* 211
i2a

Re D2c* 2
a*

2
ln a* 2

D

2

1
2a* 2

Re2 50.

To solve this quadratic equation, we conserve lower or-
der terms ina* , considering in separate form those terms
depending on Re and those independent of it. Hence, the
expression ofc* for small wave numbers is

c* 512
i

2 Re
~16A122D Re222Re2a* 2 ln a* !.

WhenD.0, the last term under the square root is negligible
and then the flow is stable for all values of Re. WithD50,
the term under the square root is greater than 1 and then the
basic flow is unstable for long waves.

The stabilization which takes place forD.0 appears to
be related to the Rayleigh stability,3 since this case corre-
sponds to the situation in which the outer circulation is
greater than the circulation in the core~which is null in fact!.
We show here that the Rayleigh stability remains dominant
at small wave numbers even in the presence of viscosity.
This is, for all values of Re as in the inviscid case.1

For arbitrary Re the flow is unstable to sufficiently large
wave number. Moreover, Fig. 1 shows that the growth rate of
the disturbances with wave number betweenD and 2D has a
maximum for a finite value of Re. In fact, there are modes
which are stable in the inviscid case, but become unstable in
the viscous case. To study in detail this property, let us con-
sider thatD@1 and Re is very high but finite. Employing the
asymptotic expression for the modified Bessel functions for
large values of the argument, Eq.~5! becomes (c* 21
1 i2a* /Re)21c*22D/a*14a*m* /Re250.

Since we assumed Re to be very high, we consistently
consider only the least order terms~in 1/Re!. Then, the fol-
lowing approximate expression forc* is obtained:

c* 5
1

2
~16A2D/a* 21!1~2161/~122D/a* !!

a*

Re
i .

~6!

From the instability conditionci* .0, we find that the
flow is unstable for all disturbances witha* .D, for finite
Re. This last result is unexpected since usually it has been
accepted that the viscosity acts purely as a stabilizing agent
for swirling flows in the absence of rigid boundaries.5 Re-
cently, Mayer and Powell6 and Khorrami7 reported viscous
instabilities in their study of the trailing vortex stability.
They found that a stable range of wave numbers in the in-
viscid case was destabilized by increasing viscosity.

It can be pointed out that this destabilizing influence of
viscosity can appear in other flows like boundary layer or
parallel flows.3,8,9

FIG. 2. The variation of the imaginary
part of the velocityci* as a function of
log Re, fora* 512 anda* 524. In the
first case (a* ,2D), the growth rate
has a maximum at the value Re
514.6, while in the second one (a*
.2D), the mode is most unstable as
Re→`.
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The dependence ofci* as a function of log Re is shown
in Fig. 2. For wave numbers less than 2D, the growth rate has
a maximum for a relative low Re, and tends to zero as Re
→`, decreasing with 1/Re.

On the other hand, for a fixed wave numbera* .2D,
the disturbance is most unstable as Re tends to infinity.

It is interesting to compare these results with those ob-
tained in recent works by Mayer and Powell6 and Khorrami,7

in which the stability of the trailing vortex is studied by
numerical methods. Results from these earlier investigations
have several similar features to what we have observed. In
particular, in Ref. 6 the authors report instabilities with
growth rate decreasing as 1/Re at a fixed wave number, in
agreement with the expression forc* in Eq. ~6!. These co-
incidences are remarkable, taking into account the differ-
ences in the models.

In the limit of large a ~finite Re!, the approximation
m* .a* 2(1/2)i (c* 21)Re holds and hence Eq.~5! be-
comes a quadratic equation with solutions

c* 51/2~12 ia* /Re!

611/2A~ ia* /Re11!22212D/a* .

Taking the limit a* →`, we find the two solutions for
the complex velocity approachc* →1, c* →2 ia* /Re. The
first one is the unstable solution, and its imaginary part tends
to zero as 1/a* in the limit a* →`. Then the growth rate
approaches a constant value for large wave numbers, for all
values of Re~see Fig. 1!. The situation is quite different from
the strictly inviscid model case, for whichc* →1/2(16 i ) as
a* →`, and as a consequence, the growth rate tends to in-
finity in the limit of large wave numbers. Viscous analysis
thus demonstrates that although large wave number modes
are the most unstable in the strictly inviscid case, they are
also the most susceptible to the stabilizing action of the vis-
cosity.

In this work, we present analytical evidence of the novel

phenomenon that a swirling flow can be destabilized by the
presence of the viscosity, without the presence of rigid walls.
Rayleigh stability predominates in the region of small wave
numbers. However, the stable region is reduced in the pres-
ence of viscosity.

These results show that the effects of the viscosity are
drastic in the range of large wave numbers. The conclusions
drawn from inviscid models require great care in the short
wave region.

The present model is restrictive since it takes the fluid to
be viscous in a limited zone of the volume. Analytically, we
have obtained results which are in agreement with the more
computationally intensive investigations performed in Refs.
6 and 7.
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