
Reactions of *N*- and *C*-Alkenylanilines: III.* Synthesis and Cyclization of Substituted 2-(1-Methyl-2-butenyl)anilines

R. R. Gataullin, F. F. Minnigulov, A. A. Fatykhov, L. V. Spirikhin, and I. B. Abdrakhmanov

Institute of Organic Chemistry, Ufa Research Center, Russian Academy of Sciences, pr. Oktyabrya 69, Ufa, 450054 Bashkortostan, Russia fax: (3472)356066; e-mail: chemorg@anrb.ru

Bashkir State Agrarian University, Ufa, Bashkortostan, Russia

Received January 12, 2001

Abstract—Reactions of substituted 2-(1-methyl-2-butenyl)anilines with iodine result in cyclization and formation of 3-iodo-1,2,3,4-tetrahydroquinolines; *N*-methylsulfonyl-2-(1-methyl-2-butenyl)anilines give rise exclusively to the corresponding 2-(1-iodoethyl)-3-methyl-2,3-dihydroindoles.

2-(1-Methyl-2-butenyl)aniline derivatives, which are readily obtained from commercially available piperylene [2], exhibit biological activity [3] and are used in the synthesis of heterocyclic compounds [4]. Depending on the reagent nature, their cyclizations give dihydroindoles and aminoindans [4], mixtures of dihydroindoles with tetrahydroquinolines [5], or

indoles. In continuation of our studies on heterocyclization of alkenylanilines [5], we have synthesized substituted 2-(1-methyl-2-butenyl) anilines and examined their reactions with iodine I_2 .

By alkenylation of p-toluidine (**I**) with piperylene in benzene in the presence of $AlCl_3$ at $130^{\circ}C$ we obtained products **II** and **III** (Scheme 1). The reaction

I, II, III, R = Me; IV, VI, VIII, R = OMe.

^{*} For communication II, see [1].

Scheme 2.

of *p*-anisidine (**IV**) with 2-chloro-3-pentene in triethylamine gives *N*-(1-methyl-2-butenyl)-4-methoxyaniline (**V**) [6] which undergoes Claisen rearrangement to aniline **VI** [6]. Repeated alkylation of amine **VI** with 2-chloro-3-pentene in triethylamine [6] yields N-substituted derivative **VII**. The Claisen rearrangement of the corresponding hydrochloride in *o*-xylene at 144°C leads to formation of compound **VIII** (Scheme 1).

2-Chloro-3-pentene reacts with excess *o*-anisidine (**IX**) to give both mono- and dialkylated products **X** and **XI** (Scheme 2). Due to the presence of a methoxy group in the *ortho* position, the reaction time and temperature (160°C) strongly increase, as compared to aniline [2] and alkyl-substituted anilines. Products **II**, **III**, **VI–VIII**, **X**, and **XI** were reported by us previously [6–9].

By reactions of amines **II**, **VI**, and **X** with iodine [10] we obtained stereoisomeric 3-iodo-1,2,3,4-tetra-hydroquinolines **XII**–**XVII** (Scheme 3). The reactions were carried out in various solvents, but in all cases isomers **XII**–**XIV** were the major products (Table 1). From amines **II** and **VI** quinolines **XVIII** and **XIX** were obtained. Probably, the aromatization of **XII**–**XVII** involves formation of intermediate ion **XX**;

elimination of a proton from the latter yields dihydroquinoline **XXI** [11] which is sensitive to oxidants.

The structure of the resulting tetrahydroquinolines suggests that the process occurs only as 6-endocyclization [12] of two possible complexes $\bf A$ and $\bf B$ (Scheme 4) in which intramolecular nucleophilic attack by the nitrogen atom is directed exclusively at the $\bf C^3$ atom of the alkenyl fragment.

Under analogous conditions, the reactions of anilines **III** and **VIII** with iodine gave complex mixtures of products. Judging by the 13 C NMR spectra, the major products were isomers **XXIIa** (**XXIIIb**) and **XXIIIa** (**XXIIIb**) (Scheme 5). Presumably, the formation of compounds with *cis*-arrangement of the 4-methyl group and 3-iodine atom is preferred. We failed to isolate pure isomers, and their structure was assigned on the basis of characteristic signals from C^2 at δ_C 50.4 and 50.8 ppm and C^4 at 36.6 and 37.0 ppm, by analogy with the 13 C NMR spectra of tetrahydroquinolines **XII**–**XIV**.

Treatment of amines **II** and **VI** with methanesulfonyl chloride gave sulfonamides **XXIV** and **XXV**; the latter reacted with iodine to afford dihydroindoles **XXVI**–**XXIX** among which *trans* isomers **XXVI** and

Scheme 3.

II, XII, XV, XVIII, XXa, XXIa, R = Me, R' = H; VI, XIII, XVI, XIX, XXb, XXIb, R = OMe, R' = H; X, XIV, XVII, R = H, R' = OMe.

Scheme 4.

$$\begin{array}{c} \text{Me} \\ \text{I}' \\ \text{NH}_2 \\ \text{Me} \\ \text{A} \\ \\ \text{R}' \\ \\ \text{NH}_2 \\ \text{Me} \\ \\ \text{R}' \\ \\ \text{NH}_2 \\ \\ \text{Me} \\ \\ \text{R}' \\ \\ \text{NH}_2 \\ \\ \text{Me} \\ \\ \text{R}' \\ \\ \text{NH}_2 \\ \\ \text{Me} \\ \\ \text{R}' \\ \\ \text{NH}_2 \\ \\ \text{Me} \\ \\ \text{R}' \\ \\ \text{NH}_2 \\ \\ \text{Me} \\ \\ \text{R}' \\ \\ \text{NH}_2 \\ \\ \text{Me} \\ \\ \text{R}' \\ \\ \text{NH}_2 \\ \\ \text{Me} \\ \\ \text{NH}_3 \\ \\ \text{NH}_4 \\ \\ \text{NH}_2 \\ \\ \text{NH}_3 \\ \\ \text{NH}_4 \\ \\ \text{NH}_4 \\ \\ \text{NH}_5 \\ \\ \text{NH}_5 \\ \\ \text{NH}_6 \\ \\ \text{NH}_6$$

R = Me, R' = H; R = OMe, R' = H; R = H, R' = OMe.

Scheme 5.

XXII, **XXIII**, R = Me(a), R = OMe(b).

Scheme 6.

XXIV, XXVI, XXVIII, R = Me; XXV, XXVII, XXIX, R = OMe.

XXVII prevailed (Scheme 6). Analogous reaction with iodine of enantiomeric methanesulfonamides **XXX** and **XXXI** resulted in formation of four pairs of diastereoisomeric dihydroindoles **XXXII**–**XXXV** (Scheme 7).

The structure of the products was unambiguously proved by the data of elemental analysis and ¹H and ¹³C NMR spectroscopy. The configuration of isomers **XII**–**XVII** was established on the basis of the NMR spectra. The 4-H and 2-H signals appear in the ¹H NMR spectra as doublets of quartets, and the 3-H signal is a doublet of doublets. The larger coupling

constants for the 3-H signal of **XV–XVII** (10.4 and 10.3 Hz) indicates a double axial–axial interaction, i.e., these compounds are diastereoisomers with *trans,trans* arrangement of the substituents at C^2 , C^3 , and C^4 , and the conformational equilibrium is displaced toward conformer **E** (Scheme 8). Isomers **XII–XIV** are characterized by different orientation of the 4-methyl group. The chemical shift of the 4-CH₃ protons changes from δ 1.69–1.72 ppm for equatorial orientation to 1.41–1.44 ppm for axial orientation. In going from the equatorial to axial isomer, the 3-H–4-H coupling constant decreases from 10.4 to

Scheme 7.

Scheme 8.

3.9 Hz, while the coupling constant between 3-H and 2-H remains large (J = 7.4–7.8 Hz); these data suggest the occurrence of axial–axial interactions. Hence compounds **XII–XIV** are diastereoisomers with *trans,cis* arrangement of the substituents at C^2 , C^3 , and C^4 , and the conformational equilibrium is displaced toward conformer (**C**) (Scheme 8) [13].

The methyl groups on C^2 and C^4 are characterized by different geminal coupling constants with 2-H and 4-H, respectively: $J(2\text{-H}, 2\text{-CH}_3) = 6.3\text{-}6.4$ Hz and $J(4\text{-H}, 4\text{-CH}_3) = 7.3\text{-}7.4$ Hz. The signals were reliably assigned on the basis of the C-H correlation spectrum, where the chemical shifts of C^2 and C^4 differ considerably from each other. In the ¹³C NMR spectra of these compounds the greatest change of chemical shift is observed for C^4 : the C^4 signal of stereoisomers **XII**-**XIV** is located in a stronger field, δ_C 36–37 ppm (conformer **C**), relative to the corresponding signal of isomers **XV**-**XVII**, δ_C 42–43 ppm (conformer **D**). This is consistent with the known data [14] on the upfield shift of signals due to 1,2-cis-interaction of substituents at such carbon atoms.

The iodine atom in position 3 and 2-methyl group in streoisomeric quinolines XII-XIV and XV-XVII are arranged trans. Presumably, the difference in the chemical shifts of C² is determined by orientation of the methyl group on C⁴, other conditions being equal. It is known that equatorial substituents in cyclohexanes exert a stronger deshielding effect on the αand β-carbon atoms than do the corresponding axial substituents. Therefore, the chemical shifts of C⁴ and C³ in conformer C, where the 4-CH₃ group occupies the axial position, are smaller than those found for conformer **E** with equatorial 4-methyl group. It is also known that the presence of an axial substituent in cyclohexane induces an upfield shift of the γ-carbon signal [15]. The C² and C⁴ signals of 2,4-dimethyltetrahydroquinolines with trans arrangement of the methyl groups appear in a stronger field relative to those of the *cis* isomer [5, 16]. Therefore, the C^2 signal of stereoisomers **XII**–**XIV** (conformer **C**) with *trans* arrangement of the 2-Me and 4-Me groups is observed at δ_C 50–51 ppm, whereas the corresponding signal of isomers **XV**–**XVII** (conformer **E**) is located in a weaker field (δ_C 53–54 ppm).

In the ¹H NMR spectra of *cis*-dihydroindoles XXVIII and XXIX the 2-H signal appears as a doublet of doublets at δ 4.7 ppm ($J_{2,3} = 8.4, J_{2,1} =$ 4.0 Hz). The large value of the first coupling constant indicates cis arrangement of 2-H and 3-H. The signal from 3-H is observed at δ 3.7 ppm as a doublet of quartets ($J_{3,2} = 8.4$, $J_{3,3-\text{Me}} = 7.3$ Hz). In the spectra of *trans*-isomers **XXVI** and **XXVII** the 2-H signal shifts upfield ($\Delta\delta$ 1.3 ppm) due to *cis*-effect of the 3-methyl group and is observed as a doublet at δ 3.4 ppm ($J_{2,3} = 3.0, J_{2,1'} = 5.4$ Hz). The low couling constant is indicative of trans arrangement of the 2-H and 3-H protons, their equatorial orientation, and shift of the conformational equilibrium toward conformer with axial substituents. The 3-H signal (due to ciseffect of the 1-iodoethyl group) appears in a stronger field (δ 3.3 ppm) as a doublet of quartets ($J_{3,2} = 3.0$, $J_{3.2-\text{Me}} = 7.2 \text{ Hz}$).

The *trans* isomers of methanesulfonamides **XXVI** and **XXVII** are characterized by more downfield signals from C^2 and C^3 , as compared to *cis* isomers **XXVIII** and **XXIX** in which *cis*-interaction of the substituents exists.

The positions and splitting modes of the 2-H signal of dihydroindoles **XXVIII** and **XXIX** and of the 3-H signal of quinolines **XII**—**XIV** are similar; therefore, in order to perform a more reliable structural assignment, quinoline **XII** was treated with methanesulfonyl chloride with a view to obtain compound **XXXVI** and compare its spectral parameters with those of dihydro-

Scheme 9.

XXXVII

Table 1. Reactions of compounds **II**, **IV**, and **X** with iodine in the presence of NaHCO₃

Initial comp.	Solvent	Time, min	ε	B^{a}	Molar ratio XII : XV	
II	CH ₂ Cl ₂	24	9.08	23	3:2	
II	C_6H_6	48	2.28	48	4:1	
II	CICH ₂ CH ₂ Cl	24	10.36	40	4:3	
II	CCl ₄	72	2.23	0	3:1	
II	MeCN	108	37.4	160	2:1	
VI	ClCH ₂ CH ₂ Cl	72	10.36	40	b	
X	CH ₂ Cl ₂	45	9.08	23	С	

^a B is the solvent nucleophilicity.

indole **XXVIII**. The reaction of **XII** with MeSO₂Cl was carried out in pyridine (Scheme 9). It resulted in formation of a mixture of 1-methylsulfonyl-2,4,6-trimethyl-1,2,3,4-tetrahydroquinoline (**XXXVI**) and 1-methylsulfonyl-2,4,6-trimethyl-1,2-dihydroquinoline (**XXXVII**), which were identified without isolation from the mixture.

The ¹H NMR spectrum of quinoline mixture **XXXVI/XXXVII**, recorded by the double-resonance technique, contained 5 groups of signals in the region δ 3.7–5.8 ppm. The 2-H, 3-H, and 4-H signals of **XXXVI** were located at δ 4.1, 4.55, and 3.7 ppm, respectively. The signal from 3-H of dihydroquinoline **XXXVII** appeared at δ 5.8 ppm as a doublet (J = 5.6 Hz), and the 2-H signal was observed as a doublet of quartets at δ 4.75 ppm (J_1 = 5.6, J_2 = 7.2 Hz).

EXPERIMENTAL

The ^1H and ^{13}C NMR spectra were recorded on a Bruker AM-300 spectrometer at 300 and 75 MHz, respectively, using CDCl₃ as solvent and TMS as internal reference. The IR spectra were measured on a UR-20 spectrometer in mineral oil. The progress of reactions was monitored by TLC on Silufol UV-254 plates; development with iodine vapor. The yields, melting points, $R_{\rm f}$ values, and elemental analyses of compounds **XII–XIX** and **XXIV–XXXI** are given in Table 2.

Reactions of compounds II, III, and VI with methanesulfonyl chloride. Methanesulfonyl chloride, 0.6 ml, was added dropwise to a solution of 3 mmol of aniline II, III, or VI in 4 ml of pyridine. The mixture was kept for 24 h at room temperature, 20 ml of

b Molar ratio XIII:XVI = 4:3.

^c Molar ratio **XIV**: **XVIII** = 4:1.

Comp.	Yield, %	$R_{\rm f}$ or mp, °C	Found, %				Formula	Calculated, %					
			С	Н	I	N	S	Formula	С	Н	I	N	S
XII	37	0.4 ^a	47.67	4.86	41.87	4.92		C ₁₂ H ₁₆ IN	48.00	5.33	42.00	4.67	
XIII	33	0.4^{a}	44.98	4.71	39.58	4.14		$C_{12}H_{16}INO$	45.44	5.08	40.01	4.42	
XIV	53	110 ^b	45.07	4.81	39.63	4.02		$C_{12}H_{16}INO$	45.44	5.08	40.01	4.42	
XV	30	0.5 ^a	47.82	5.40	40.00	4.92		$C_{12}H_{16}IN$	48.00	5.33	42.00	4.67	
XVI	29	0.4 ^a	44.98	4.65	39.58	4.42		$C_{12}H_{16}INO$	45.44	5.08	40.01	4.42	
XVII	12	0.4^{a}	44.98	4.65	39.58	4.42		$C_{12}H_{16}INO$	45.44	5.08	40.01	4.42	
XVIII	20	125 ^b	83.85	7.32		7.78		$C_{12}H_{13}N$	84.21	7.60		8.19	
XIX	26	0.3 ^c	76.77	6.64		7.11		$C_{12}H_{13}NO$	76.98	7.00		7.48	
XXIV	91	0.5 ^c	61.24	7.27		5.15	12.25	$C_{13}H_{19}NO_2S$	61.63	7.56		5.53	12.64
XXV	88	0.6 ^c	57.54	6.74		4.85	11.51	$C_{13}H_{19}NO_3S$	57.97	7.11		5.20	11.90
XXVI	42	119–120 ^d	40.87	4.33	32.98	3.24	8.03	$C_{13}H_{18}INO_2S$	41.17	4.78	33.46	3.69	8.45
XXVII	43	116–117 ^d	39.15	4.21	31.73	3.08	8.11	$C_{13}H_{18}INO_3S$	39.50	4.59	32.11	3.54	7.69
XXVIII	12	121–122 ^d	40.87	4.33	33.07	3.24	8.15	$C_{13}H_{18}INO_2S$	41.17	4.78	33.46	3.69	8.45
XXIX	11	0.4 ^c	39.16	4.18	31.86	3.32	7.94	13 10 3	39.50	4.59	32.11	3.54	7.69
XXX,	90		67.32	8.47		4.01	9.62	$C_{18}H_{27}NO_2S$	67.32	8.24		4.36	9.97
XXXI													

Table 2. Yields, melting points, R_f values, and elemental analyses of compounds **XII–XIX** and **XXIV–XXXI**

water was added, and the mixture was stirred for 30 min and treated with 40 ml of chloroform. The organic phase was separated, washed with 20 ml of a 10% aqueous solution of NaHCO₃ and 20 ml of water, and dried over Na₂SO₄. The solvent was distilled off under reduced pressure, and the residue was passed through a thin layer of silica gel usig carbon tetrachloride as eluent to isolate a mixture of stereoisomeric *N*-methylsulfonyl-2,6-bis(1-methyl-2-butenyl)-4-methylanilines **XXVIII** and **XXIX** as a light yellow oily substance.

Cyclization of alkenylanilines II, VI, and X. A mixture of 10 mmol of aniline II, VI, or X, 1.5 g of NaHCO₃, and 0.51 g of I_2 in 10 ml of appropriate solvent (Table 1) was shaken for 24–130 h at 20°C, the progress of the reaction being monitored by TLC (eluent hexane–methanol, 9.8:0.2). When the reaction was complete, the mixture was diluted with 50 ml of methylene chloride, and the precipitate was filtered off and washed with methylene chloride (3×10 ml). The organic phase was treated with a 5% aqueous solution of $Na_2S_2O_3$ (3×10 ml) and water (20 ml), dried over Na_2SO_4 , and evaporated under reduced pressure. Carbon tetrachloride was added to the residue, and the crystalline product (quinoline XVIII

or **XX**) was filtered off, washed with CCl₄, and dried under reduced pressure. The filtrate was evaporated to a minimal volume, and the residue was subjected to chromatography on silica gel (10 g, eluent CCl₄) to isolate compounds **XII–XVII**.

The cyclization of N-methylsulfonyl derivatives XXIV and XXV was performed in a similar way. After treatment with Na₂S₂O₃ and drying over Na₂SO₄, the solvent was evaporated under reduced pressure, and the residue was recrystallized from 8 ml of isopropyl alcohol to isolate dihydroindole XXVI or XXVII. The mother liquor was evaporated under reduced pressure, the residue was dissolved in 1 ml of methylene chloride, and the solution was applied to a column charged with 3 g of silica gel. Using carbon tetrachloride as eluent, cis-dihydroindole XXVIII or XXIX was isolated.

REFERENCES

- 1. Gataullin, R.R., Minnigulov, F.F., Fatykhov, A.A., Spirikhin, L.V., and Abdrakhmanov, I.B., *Russ. J. Org. Chem.*, 2001, vol. 37, no. 9, pp. 1289–1296.
- 2. Abdrakhmanov, I.B., Sharafutdinov, V.M., and Tolstikov, G.A., *Zh. Org. Khim.*, 1984, vol. 20, no. 3, pp. 620–622.

a Eluent CCl4.

b From CHCl₃.

^c Eluent CHCl₃.

d From 2-propanol.

- 3. Gataullin, R.R., Kazhanova, T.V., Davydova, V.A., Ismagilova, A.F., Zarudii, F.S., and Abdrakhmanov, I.B., *Khim.-Farm. Zh.*, 2000, no. 2, pp. 18–21.
- 4. Abdrakhmanov, I.B., Mustafin, A.G., and Tolstikov, G.A., *Izv. Akad. Nauk SSSR*, *Ser. Khim.*, 1983, no. 10, pp. 2171–2172.
- Gataullin, R.R., Kazhanova, T.V., Il'yasova, L.T., Fatykhov, A.A., Spirikhin, L.V., and Abdrakhmanov, I.B., *Izv. Ross. Akad. Nauk, Ser. Khim.*, 1999, no. 5, pp. 975–978.
- Abdrakhmanov, I.B., Sharafutdinov, V.M., Dzhemilev, U.M., Tal'vinskii, E.V., Sagitdinov, I.A., and Tolstikov, G.A., *Zh. Prikl. Khim.*, 1982, vol. 55, no. 9, pp. 2121–2123.
- 7. Abdrakhmanov, I.B., Sharafutdinov, V.M., Nigmatullin, N.G., Sagitdinov, I.A., and Tolstikov, G.A., *Zh. Org. Khim.*, 1982, vol. 18, no. 7, pp. 1466–1471.
- 8. Abdrakhmanov, I.B., Shabaeva, G.B., Nigmatullin, N.G., and Tolstikov, G.A., *Izv. Akad. Nauk SSSR*, *Ser. Khim.*, 1985, no. 6, pp. 1372–1378.

- 9. Abdrakhmanov, I.B., Shabaeva, G.B., Mustafin, A.G., and Tolstikov, G.A., *Zh. Org. Khim.*, 1984, vol. 20, no. 3, pp. 663–664.
- 10. Cardillo, C. and Orena, M., *Tetrahedron*, 1990, vol. 46, pp. 3321–3407.
- Comprehensive Organic Chemistry, Barton, D. and Ollis, W.D., Eds., Oxford: Pergamon, 1979, vol. 4. Translated under the title Obshchaya organicheskaya khimiya, Moscow: Khimiya, 1985, vol. 8, p. 201.
- 12. Baldwin, J.E., *J. Chem. Soc.*, *Chem. Commun.*, 1976, no. 18, p. 734.
- 13. Pretsch, E., Clerk, T., Seible, J., and Simon, W., Tables of Spectral Data for Structure Determination of Organic Compounds, Berlin: Springer, 1983.
- 14. Jackman, L.M. and Sternhell, S., Application of Nuclear Magnetic Resonance in Organic Chemistry, Oxford: Pergamon, 1969, p. 236.
- 15. Rajan, S.P. and Manimekalai, A., *Magn. Reson. Chem.*, 1991, vol. 29, no. 9, pp. 904–911.
- Stothers, J.B. and Tan, C.T., Can. J. Chem., 1974, vol. 52, no. 2, pp. 308–314.