

RSC Advances

This article can be cited before page numbers have been issued, to do this please use: K.P. R. Kartha and S. K. Giri, RSC Adv., 2015, DOI: 10.1039/C4RA16916F.

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available.

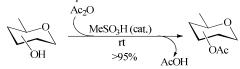
You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

Acyl transfer reactions of carbohydrates, alcohols, phenols, thiols and thiophenols under green reaction conditions

Santosh Kumar Giri and K. P. Ravindranathan Kartha*^a

5 Received (in XXX, XXX) XthXXXXXXXXX 20XX, Accepted Xth XXXXXXXXX 20XX DOI: 10.1039/b000000x


phenols thiols and thiophenols were achieved at room temperature in high yields and catalytic efficiency in the presence 10 of methane sulfonic acid, a green organic acid, under solvent-free conditions in short time periods. The method is mild enough to allow acid labile substituents such as isopropylidene acetals and trityl ethers on the reacting substrates to be left completely unaffected. Esterification of free mono- and dicarboxylic acids 15 such as acetic acid, cinnamic acid, sialic acid and tartaric acid with alcohols such as menthol, ethanol, methanol or propylene glycol has also been achieved efficiently at room temperature. A comparative study of the method with the not-so-green

20 Introduction

compounds required during synthetic processes addressing environmental concerns are of increasing topical relevance. Acyl transfer reactions of carbohydrates, alcohols, phenols, amines and 25 thiols form perhaps one of the commonest reactions required to be carried out routinely during synthetic transformations of these classes of organic compounds. Both acids as well as bases serve equally well as catalysts for this purpose. Among the wide variety of Lewis acids that have been in use in this context, a majority such as BF₃/BF₃.Et₂O, ¹ FeCl₃, ² SnCl₄, ³ TiCl₄, ⁴ ZnCl₂, ⁵ TMSOTf, ⁶ etc. are extremely sensitive to moisture and are difficult to handle. Among the more recently introduced metal-based Lewis acid substances are the different triflates such as In(OTf)₃, ^{7,8} Cu(OTf)₂, Sc(OTf)₃, La(OTf)₃, Bi(OTf)₃, L2,13 etc. Among others, iodine¹⁴ and sulfamic acid¹⁵ also have been found good for various acyl transfer reactions, although in the case of the latter the reaction is required to be carried out at 60 °C to be effective. Immobilized catalysts such as solid-supported acids¹⁶ have also been used for acid-catalyzed acetylations. Apart from 40 the acids, basic reagents have also been used extensively as acyl transfer agents. Pyridine, ¹⁷ by far the most widely used reagent, DMAP¹⁸ and DABCO¹⁹ have all been found to be well suited for this purpose although they are used in stoichiometric quantities (or in excess of it, for example, as solvent in the case of pyridine). 45 Pyridine and their derivatives are toxic/hazardous compounds. New catalysts of high catalytic efficiency and low hazard have

Methanesulfonic acid (MeSO₃H, MeSA) is a high boiling liquid, 50 non-corrosive, non-volatile, stable, inexpensive and readily available green chemical reagent. These unique features of MeSO₃H attracted us to exploring its potential as an acid catalyst for various organic reactions. It was also felt that another closely related acid, namely, chlorosulfonic acid (CISO₃H, CSA) will be 55 also evaluated for comparative purposes. The latter however is corrosive, volatile/fuming and is a very strong acid and hence would be used as supported on silica (SiO₂-OSO₃H, SiSA, in the form of free-flowing powder)²¹ thus making it comparatively

conditions was carried out using D-glucose (3, entry 2, Table 1) as the starting material, the corresponding pentaacetate 4 was obtained in 99% yield. A generalized view of this acid-catalysed 105 acetylation has been depicted in Scheme 1.

Scheme 1 MeSO₃H-catalysed acetylation of carbohydrates using Ac2O as the acyl donor agent

It becomes evident that MeSA serves to extremely efficiently activate the acyl centre of the acid anhydride for a facile reaction of alcoholic nucleophiles that are known to be only poorly nucleophilic in nature giving rise to the desired esters. Moreover, 5 the AcOH generated as a by-product of the reaction being an excellent solvent serves to bring the desired acetylated sugars to solution, thus perhaps also aiding further in the overall process. It may be recalled that the vast majority of unprotected sugars and their simple glycosides are insoluble in acetic anhydride. 10 Therefore a reaction mixture that is heterogeneous at start culminates as a clear colourless solution at finish. In view of the excellent results obtained in the acetylation reactions described above, and with a view to demonstrating the generality of its application to other carbohydrates, the method was extended to 15 some of the other commonly required carbohydrate substrates as well. Thus, excellent results were also obtained in the per-Oacetylation of monosaccharides [hexoses: D-mannose (5), Dgalactose (7)], disaccharides [D-lactose (9), D-cellobiose (11), Dmaltose (13)] and trisaccharide [D-raffinose (15)] and yielded the 20 desired products 6, 8, 10, 12, 14 and 16 respectively in near quantitative yields (entries 3-8, Table 1). 8a, 15 Importantly, while the results are well comparable to those obtained using iodine as the Lewis acid catalyst for the reaction, 14 it is much superior to the more recent sulfamic acid-assisted acetylation. 15 Thus, not 25 only that the current method is faster but also require no heating, unlike the method using sulfamic acid in which it is done at 60 °C to be effective.

Published on 07 January 2015. Downloaded by University of Massachusetts - Boston on 08/01/2015 03:30:30.

Further, to evaluate the applicability of MeSA for the acylation of 30 compounds bearing acid-sensitive groups, in particular those that are easily amenable to acetolysis by the iodine-Ac₂O system, various anomeric O-/S-acetals and cyclic O-acetonides were subjected to acetylation conditions as optimized in the foregoing studies. Acetylation of the β -O-glycoside 17 (entry 9, Table 1) to 35 yield the desired tetra-O-acetate 18 occurred, as in the case of 1, without any difficulty. More importantly, the phenylthio- and methylthioglucosides (19, 21, entries 10 and 11, Table 1) when subjected to the acetylation conditions as above, both could be globally acetylated without affecting either the thioacetal 40 protection at the anomeric centre or its configuration. The acetolytically unstable acetonide 23 (entry 12, Table 1) also on subjecting to the acetylation reaction yielded the desired acetate 24 as neat product with the NMR spectra of even the crude product (see Supplementary Information for the spectra) showing 45 it to be virtually pure and suitable for any subsequent further reaction. The acid sensitive trityl ethers 25 and 27 (entries 13 and 14, Table 1) on the other hand when subjected to the above conditions of acetylation, although gave the desired triacetates 26 and 28 in excellent yields of 93 and 92% respectively, did also 50 yield small amounts of some acetolytic by-products, methyl 2,3,4,6-tetra-O-acetyl- α -D-glucopyranoside (2) and phenyl 2,3,4,6-tetra-*O*-acetyl-1-thio-β-D-glucopyranoside (20),respectively, in 6-7% yields.

55 In the presence of MeSA, alditols [D-sorbitol (31) and D-mannitol (33)] could also be successfully acetylated to yield the desired products [32 and 34 respectively] in excellent yields (entries 16 and 17, Table 1). Further, α-cyclodextrin (35, entry 18, Table 1) when subjected to the MeSA -catalyzed acetylation, also gave the 60 desired per-*O*-acetylated α-cyclodextrin 36 in excellent yields. The per-*O*-acetylation of the 2-acetamido-2-deoxy sugar, *N*-acetyl-D-glucosamine (37) was comparatively slow, but also yielded the desired acetylated derivative 38 in good yields (entry 19, Table 1).

65 After having demonstrated successfully the suitability of the MeSA -Ac₂O system for the efficient acetylation of carbohydrate substrates, its applicability in the acetylation of non-carbohydrate natural products such as cholesterol (39), menthol (41) and linalool (43) was also evaluated (entries 20-22, Table 1). 70 Satisfyingly, all of the reactions led to the formation of the respective desired acetates 40, 42 and 44 efficiently and in excellent yields without affecting the optical purity in the case of the optically active substrates. Likewise, the reaction of poorly nucleophilic phenols such as p-nitro- (45) and m-nitro- (47) 75 phenols (entries 23 and 24, Table 1) with Ac₂O in the presence of catalytic amounts (2 mol%) of MeSA yielded the desired products 46 and 48, respectively, in near quantitative yields in 25 min at rt. These results are well comparable to those obtained by using Mg(ClO₄)₂ (a highly efficient and powerful Lewis acid 80 used at 1 mol% catalyst concentration) for the same examples with the added advantage that doing the reaction at ambient temperature was adequate under the current protocol unlike the Mg(ClO₄)₂-catalyzed reaction that required heating at 80 °C for the reaction to be effective. 16b In the same manner, when m-85 hydroxy benzoic acid (49, entry 25, Table 1) was subjected to acetylation under similar conditions, it also led to the formation of the desired neat mono-O-acetate 50 in very short reaction time without any difficulty. From among the classes of thiols and thiophenols also a set of representative compounds were 90 acetylated in order to evaluate the applicability of the method to these classes of compounds. Thus, the dithiothreitol 51 (entry 26, Table 1) gave the tetra-O-/S-acetylated 52 almost instantaneously in the presence of catalytic MeSA. The acetylation was so quick that no chemo-discrimination in the -OH and the -SH groups of 95 51 towards the reaction was observed. Likewise, the substituted thiophenols, p-toluenethiol (53, bearing electron donating parasubstituent) and p-nitrothiophenol (55, bearing an electron withdrawing para-substituent) could also be acetylated neatly and in very short time by acetic anhydride in the presence of MeSA to 100 yield 54 and 56 respectively(entries 27 and 28, Table 1). Notably thus, acetylation of sugars, alcohols, phenols, thiols and thiophenols took place extremely efficiently yielding products without having to resort to any chromatographic purification for the isolation of the product in practically pure form. In the 105 majority of cases studied the products were obtained following a simple aqueous work-up involving precipitation and separation of solids by filtration. The exceptions to this were those at entries 3, 4, 14, 15, 21, 22, 27 and 30 (Table 1) wherein the respective products were obtained as syrup following an extractive work-up in a separatory funnel, the organic solvent used for the extraction

Based on the fact that per-O-acetylated sugars usually serve as bulk starting materials in multi-step synthetic carbohydrate 115 reactions, a preparative scale model acetylation using D-glucose (3) as the substrate (at 50 g-scale) was also carried out. As can be seen from entry 29 (Table 1), the desired pentaacetate 4 could be isolated in excellent yields making this method one of the best hitherto reported procedures for acid-catalyzed acetylation 120 reactions. In large scale reactions, in order to avoid the reaction mixture getting overheated, adding the sugar portion-wise to a solution of the catalyst in the required measure of acetic anhydride was found, however, beneficial. It was observed that usually the reaction was complete with the completion of the 125 addition and the dissolution of the sugar. Further, as a part of the attempt to evaluate the scope of the reaction in other acylations, methyl β-D-galactoside 17 (1 g, entry 30, Table 1) was propionylated using propionic anhydride under the same conditions as optimized for acetylation. Indeed, the desired tetra-

being EtOAc.

O-propionate **57** was also obtained in excellent yields as for the corresponding acetylation reaction.

CSA-Catalyzed acetylation (Method B): CSA is a strong organic s acid but unlike MeSA, suffers from two major deficiencies that it is a fuming liquid and is corrosive. It may have been for the latter

Table 1 MeSA-/SiSA-Catalyzed per-acetylation of sugars, alcohols, phenols, thiols and thiophenols

Entry	Substrate	Product	roduct Method A' (Using MeS. Time Yield,				Ref.
			(min)	$(\alpha:\beta)$	(min)	$(\alpha:\beta)$	RC1.
1	HO OH HO OMe	AcO OMe	5	96	4	95	15
2	HO OH HO OH	AcO OAc OAc 4	5	99 (1:1)	3	99 (2:1)	15
3	HO OH OH OH OH	OAc OAc AcO OAc	2	95 (1:1.2)	2	98 (1:2)	15
4	HO OH HO OH	AcO OAc AcO OAc	3	98 ^b	2	98 ^b	15
5°	HO OH OH OH	AcO OAc OAc OAc AcO OAc	15	95 (3:4)	10	96 (1:1)	15
6°	HO HO HO OH HO HO HO OH	AcO OAc OAc OAc OAc OAc 12	25	97 (1:3)	15	95 (1:3)	22
7°	HO OH OH OH OH OH	AcO AcO OAc AcO AcO OAc	20	98 (1:1)	10	97 (1:1)	15
8°	HO OH HO HO HO HO OH O	AcO	20	94	10	92	16c
9	HO OH HO OMe 17 HO	AcO OAc OMe 18 AcO	6	98	5	96	15

8/01/2015 03:30:30.
00 O
Boston
ts -
ssachuset
Ĭ
y University of
by 1
5. Downloaded
15. I
, 20
07 January
0 uc
Published or

10	HO OH SPh	AcO SPh AcO SPh	10	92	8	93	19a
11	HO OH SMe	AcO O SMe	10	98	15	97	23
12	O OH O O 23	O OAC O O O O O O O O O O O O O O O O O	15	99	10	99	19a
13	HO OMe 25 OTr OOMe	AcO OTr AcO OMe	15	93	10	95	19b
14	HO OTr OH SPh	AcO OAc SPh	10	92	8	93	
15	HO OH OH	AcO OAc OAc	60	95	45	93	24
16	OH OH OH OH 31	OAc OAc OAc OAc OAc OAc OAc	5	96	4	95	25
17	OH OH OH OH 33	AcO OAc OAc OAc OAc OAc OAc	60	99	25	98	25
18	$ \begin{bmatrix} CH_2OH \\ OH \end{bmatrix} $ HO OH $ GH$	CH ₂ OAc OOAc AcO OAc	10	98	8	96	19a
19 ^c	HO OH ACNH OH	AcO AcNH OAc	120	80 (2:1)	60	85 (2:1)	15
20	HO H H H 39	AcO HH H H	30	95	20	92	19a
21	OH	OAc 42	10	100	5	100	16a

22	HO 43	AcO 44		90	10	92	16a
	$ \begin{array}{c} R^1 \\ R^2 \\ R^3 \end{array} $	$ \begin{array}{c} R^1 \\ R^2 \\ R^3 \end{array} $					
		46 $R^1 = OAc$, $R^2 = R^3 = H$, $R^4 = NO_2$	25	98	15	96	16a
24	47 $R^1 = OH$, $R^2 = R^4 = H$, $R^3 = NO_2$	48 $R^1 = OAc$, $R^2 = R^4 = H$, $R^3 = NO_2$	25	97	15	95	16b
25	49 $R^1 = COOH$, $R^2 = R^4 = H$, $R^3 = OH$	50 $R^1 = COOH$, $R^2 = R^4 = H$, $R^3 = OAc$	5	95	5	95	26
26	AcS SAc SAc 51	AcS SAc SAc 52	5	98	5	98	27
	R^1 R^2 R^3	R^1 R^2 R^3 R^4					
	53 $R^1 = SH$, $R^2 = R^3 = H$, $R^4 = Me$	54 $R^1 = SAc$, $R^2 = R^3 = H$, $R^4 = Me$	15	95	10	94	16b
28	55 $R^1 = SH$, $R^2 = R^3 = H$, $R^4 = NO_2$	56 $R^1 = SAc$, $R^2 = R^3 = H$, $R^4 = NO_2$	10	99	5	97	28
29	3 (at 50 g scale)	4	30	99			15
30 ^d	17	PropO OProp PropO OMe PropO PropO OMe PropO STORY PropO STORY PropO OProp	10	96	10	98	29

^a The substrate was treated with Ac₂O (1.1 mol equiv per OH/SH group) in the presence of either MeSA, 1.5-3 mol% (Method A) or SiSA, 1 mol % (Method B) and the yields reported are those obtained after isolation of the pure product; ^b Was obtained as a mixture of furanose:pyranose, 1:1; ^c2 mol% SiSA was used under Method B; ^d For the propionylation 1.05 mol equiv. of propionic anhydride per OH group was used at room temperature.

reasons that a literature search on the applications of this acid revealed that it has not yet been investigated in any detail for its possible applications in some of the routine organic reactions such as those described above. Nevertheless, besides being an 10 excellent sulfonating agent, it indeed finds applications in alkylation, halogenation, rearrangements, cyclization and polymerization reactions.³⁰ In view of these factors, alongside the work on MeSA reported above, an investigation of the applications of CSA in the context of the acyl transfer reactions 15 described above was also undertaken. Further, as it was possible to contain the corrosive and fuming nature of the acid by immobilizing it on to the surface of silica, the silica-bound acid (SiSA) prepared in the lab was also investigated simultaneously (see Scheme 2) for its suitability in the acyl transfer reactions as 20 enumerated above. Interestingly, the acid in both the free and the bound forms were found to be exceedingly efficient for all the acyl transfer reactions investigated as can be seen from the results presented below.

$$\begin{array}{c} Ac_2O \\ \hline OH \\ \hline OH \\ \hline \\ OH \\ \hline \\ SiO_2-OSO_3H \\ \hline \\ rt, 2 \min - 1 \text{ h} \\ \hline \\ >95\% \\ \hline \\ AcOH \\ \hline \end{array}$$

Scheme 2 SiO₂-OSO₃H-catalysed acetylation of free sugars

Thus, when SiSA (1 mol%) was added to a suspension of Dglucose (1 g, 5.55 mmol) in Ac₂O the sugar went into solution 30 within 3 min and the subsequent TLC of the reaction mixture revealed complete conversion of the sugar (3) to its pentaacetate 4 which was obtained in nearly quantitative yield (98%, entry 2, Table 1). The same reaction was also performed using free CSA in place of the bound form (SiSA) for comparison (results not 35 presented in the Table). The yield of the pure product 4 obtained in the latter was also excellent, but up to 92% only. It was observed that both reactions were exothermic in nature, as was the case when it was carried out in the presence of MeSA, but between the CSA-promoted and the SiSA-promoted acetylations, 40 the latter was seen as undoubtedly more attractive. There were two important differences observed in the two latter reactions. Firstly, the reaction mixture in the case of the CSA-catalyzed acetylation invariably appeared slightly colored (light amber) in contrast to the colorless reaction mixture that had always resulted 45 in the case of the SiSA-catalyzed reactions. And secondly the somewhat reduced yields obtained in the case of the reactions employing the neat acid, CSA. On close observation it was found that at the time of the addition of the neat acid to the sugar, the solid particles (sugar) that happen to come into its immediate 50 contact gets partially burnt. However, as the dissolution of the acid in Ac₂O is also very fast, they become homogeneous with each other very soon thereby leading to an effective dilution of the acid. Thus the detrimental effect caused on the sugar substrate (that affects the yield) gets fortuitously limited. It was found that vigorous stirring at the time of the introduction of the acid could effectively address this problem with near-complete restoration of 5 yields to those comparable to the SiSA-mediated reactions. Addition of the acid prior to the addition of the sugar was also useful in addressing this deficiency. In any case, it may be recalled, the difficulty in handling the corrosive liquid in the case of CSA when it is needed to be used neat indeed remains. In contrast, the SiSA reagent was very easy and convenient to handle. It can be seen from the results presented in Table 1 that the SiSA-catalyzed reactions are as efficient as those catalyzed by MeSA although the latter may be rated as more green and hence the catalyst of choice for the reactions described.

In the light of the above observations a comparison of the current method of acetylation with some of the literature methods was made using the acetonide 23, a somewhat difficult substrate (sensitive to acidic conditions) as the example and the results are 20 shown in Table 2. It was seen that the reaction took place very successfully to afford the desired acetylated product in both the MeSA - as well as the SiSA-catalyzed reactions; and the yields were as good as or better than the methods compared (Table 2). While the literature methods require either controlled reaction 25 conditions or use of a solvent, the current protocols allow the reaction to be performed solvent-free at room temperature.

Table 2 Comparison of the current method with some of the reported methods using the acetonide 23 as the substrate for 30 acetylation^a

Published on 07 January 2015. Downloaded by University of Massachusetts - Boston on 08/01/2015 03:30:30.

t y lation				
Substrate	Catalyst	Time	Yield of	Ref.
		(min)	24 (%)	
	Pyridine ^b	45	95	17
OOH	Imidazole ^c	2	98	31
$\times \sim 0$	DABCO	25	98	19
6 L	Al_2O_3	12	30^{d}	32
0	Cu(OTf) ₂	5	80	9
	Iodine	30	98 ^e	14
23	MeSO ₃ H	15	99	
	SiO ₂ -OSO ₃ H	10	99	

^a Substrate (1 g) was treated with Ac₂O (1.2 mol equiv) at 25 °C in the presence of either MeSA (2 mol%) or SiSA (1 mol%). For the literature catalysts, the method as reported was used; ^b Pyridine also served as the solvent; ^cMeCN was used as the solvent; ^d The reaction was not complete; ³⁵ °The reaction was held at ice-bath temp or below.

On the MeSA -catalyzed acylations turning out to be efficient and successful [with respect to factors such as: catalytic efficiencyonly 1.5-3 mol% catalyst in the case of MeSA and 1 mol% in the 40 case of SiSA), reaction time (short reaction time of a few minutes to 1 h in most cases), reaction conditions (ambient temperatures with no requirement of heating or cooling), solvent-free, yield (nearly quantitative in most cases) and purity of product (practically pure and suitable for further reaction with no 45 requirement for chromatographic purification)] as seen above, a comparison of the cost of the reagent needed for the reaction was attempted (Table 3). Both basic as well as acidic catalysts from among the traditional and more recent categories were chosen for the comparison using the amounts as specified in the respective 50 literature as the basis for the calculation of the cost. It can be seen from the Table that the method using MeSA as the catalyst was proved the cheapest among the lot. In general, it was observed that, using basic catalysts was more expensive than others. Pyridine, the traditional and one of the most trusted/popular 55 catalysts, was seen as the most expensive among the lot

compared, not surprisingly though because it is also employed as the solvent in the reaction. Incidentally, it also must generate significantly higher amounts of waste products.

In general, although environmental benefits accrued from catalyst/by-product recovery in chemical reactions may outweigh the cost concern, considering the fact that the method using MeSA is not only environmentally non-hazardous but also is cheap, a need for its recovery after the reaction was not felt very rewarding (lest the cost of recovery overshoot the reagent-cost).

sign In the case of the SiSA-catalyzed reactions also the catalyst is cheap but the possibility for an easy recovery of the silica-bound acid by simple filtration and washing does exist.

Table 3 Comparison of the reagent-cost involved in the per-*O*-70 acetylation of D-glucose on employing various catalysts for the reaction^a

Entry	Description	Pack	Price ^b	Requir		
		size	()	50 g D-g	glucose	
				Amount	Cost	
					()	
1	Pyridine ¹⁷	100 mL	3,551	250 mL	8877	
2	$DMAP^{18}$	25 g	1,690	27 g	1825	
3	DABCO ¹⁹	25 g	2,950	31 g	3658	
4	Iodine ¹⁴	100 g	1,520	2.5 g	38	
5	$In(OTf)_3^{7,8}$	25 g	3,114	100 mg	53	
6	Cu(OTf) ₂ ⁹	5 g	6,812	50 mg	68	
7	$Sc(OTf)_3^{10}$	5 g	10,666	150 mg	320	
8	$La(OTf)_3^{11}$	25 g	4,703	500 mg	94	
9	CoCl ₂ ³³	25 g	23,786	1.8 g	1712	
10	$NH_2SO_3H^{15}$	100 g	1,968	10.7 g	212	
11	MeSO ₃ H	100 mL	3,692	0.2 mL	7	
12	SiO ₂ -OSO ₃ H	100 mL	11,660	1.0 g	7 ^c	

a The price of the reagent was based on the amount needed for a practical-scale (of 50 g) reaction and was based on the respective literature;
 b Aldrich India catalogue price. Wherever possible the listed price of a
 75 pack-size of 100 g (or mL) of the reagent was used for the calculation of the cost. Wherever such a pack is not available commercially, the listed price of 25 g or 5 g pack as applicable was used for the calculation. As far as possible the cost of the same grade of the reagent was chosen for the comparison. 100 = £1, approximately; c Price of the acid only has been used for the calculation.

Acetylation using AcOH as the acyl donor reagent

Although the reactions using Ac₂O reported thus far have been solvent-free and only a small excess over the stoichiometrically 85 required acyl donor reagent had been employed in the acetylations, considering using the free acid as the donor reagent in the reaction wherever possible would also be in context. For this reason a model reaction using (-)-menthol as the alcohol substrate and HOAc (glacial) as the acyl donor was carried out in 90 the presence of MeSA (2 mol%, Scheme 3). It was found that a neat reaction occurred and the acetate 42^{16a, 34} could be obtained in quantitative yields when a menthol:AcOH mole ratio of 1:2 was used for the reaction (Scheme 3). Washing with cold aqueous bicarbonate was the only major step involved in the isolation of 95 the product. At mole ratios of 1:1.2 and 1:1.5 the conversion of the alcohol to the desired acetate occurred only to the extent of 90 and 95% respectively as determined by chromatography. The latter reactions also required longer reaction time with the added observation that extending the reaction time beyond 4 h did not 100 result in any significant enhancement in the per cent conversion (Scheme 3). Measurement of the optical rotation of the product isolated confirmed beyond doubt that the reaction did not affect the optical purity of the chiral compound. It is noteworthy that for

the same substrate HClO₄-Silica gave comparable yields of the acetate, when used at 1 mol% level, in a reaction for 6 h at 80 °C

Scheme 3 Acetylation of (-)-menthol using acetic acid as the acyl donor reagent (% Conversions were determined by GC & HPLC)

in excess of AcOH (35 mol equiv). 16a The Keggin-type 10 heteropolyacids on the other hand had been reported to be ineffective even under microwave irradiation.34 A similar esterification protocol for (-)-menthol catalyzed by a functionalized carbon material that appeared while this manuscript was under preparation³⁵ required heating in heptane 15 for a period of 8-10 h at 70 °C to be complete. Likewise, another esterification reaction of the same kind, but using a functionalized ionic liquid-based mesoporous organosilica as the catalyst, described during the preparation of this manuscript, also required heating at 60-75 °C for 12-24 h for the reaction to be effective.³⁶ $_{20}$ As in the case of menthol, treatment of other alcohols such as noctanol (58) and propylene glycol (60) with acetic acid also led to the expected mono- and di-O-acetates (59 and 61, respectively) in near quantitative yields (entries 2 and 3, Table 4). Similarly, treatment of other carboxylic acids such as cinnamic acid (62) 25 and tartaric acid (64) with EtOH also afforded with ease the expected cinnamate 63 and tartrate 65 (mono- and diesters) respectively (entries 3 and 4, Table 4). It may be recalled that a recently reported N-methyl-boronopyridinium iodide^{40a} required heating at reflux for 18 h for the conversion of the dicarboxylic 30 acid 64 to its diester 65. Again, when sialic acid (66) was stirred in anhydrous MeOH in the presence of catalytic MeSA, a complete conversion of the acid to its methyl ester 67 also occurred with ease. The latter reactions were conveniently held in the respective alcoholic solutions, and on completion of the 35 reaction, were recovered at ease by distillation under reduced pressure; and the products in these cases were crystalline and sufficiently pure for subsequent reactions.

Table 4 Esterification of various mono- and dicarboxylic acids

under neat conditions in the presence of catalytic MeSA "							
	Entry	Acid	Alcohol	Time	Product		
		(R ¹ -COOH)	$(R^2\text{-OH})$	(h)	(% Yield)		
	1	Acetic	(-)-Menthol	2	(-)-Menthyl acetate		
			(41)		(42) (100)		
	2	Acetic	<i>n</i> -Octanol (58)	10	Octyl acetate (59)		
					(98)		
	3	Acetic	1,2-Propanediol	6	1,2-Diacetoxy		
			(60)		propane (61) (97)		
	4	Cinnamic	Ethanol	15	Ethyl cinnamate		
		(62)			(63) (95)		
	5	L-(+)-	Ethanol	12	(+)-Diethyl-L-		
		Tartaric (64)			tartrate (65) (99)		
	6	Sialic (66)	Methanol	10	Sialic acid methyl		
		, ,			ester (67) (98)		

^a The reactions were held at rt in the presence of 2 mol% MeSA.

Conclusions

45 MeSO₃H and SiO₂-OSO₃H have been found to be two highly efficient catalysts for acyl transfer reactions of mono-, di- and trisaccharides and their various partially protected derivatives, as well as various alcohols, phenols, thiols and thiophenols. The method is tolerant to acid sensitive functional groups and can therefore be present on the substrate for acylation. The new method of acetylation using the green organic acid, MeSO₃H, is economical, solvent-free, and benign and serves to fulfill most other qualities desired of a green method. Acetylation in the case of an optically active alcohol, menthol by reaction with acetic acid as well as other examples of successful alcohol-carboxylic acid esterifications, without affecting the chiral integrity of the compound, clearly indicate future possibilities of application of this method.

60 Experimental

General

All reagents (Aldrich India Ltd) used were of analytical grade and were used as purchased without further purification. Reactions 65 were monitored by TLC, which was performed with 0.2 mm Merck pre-coated silica gel 60 F₂₅₄ aluminium sheets. Compounds were detected by dipping the TLC plates in an ethanolic solution of sulphuric acid (5%, v/v) and heating or using a reagent prepared by dissolving a mixture of 4.2 g 70 ammonium molybdate, 0.2 g cerium sulphate tetrahydrate and 6.2 mL sulphuric acid in 94 mL water. Column chromatography was performed using silica gel (100-200 mesh ASTM). ¹H/¹³C NMR spectra were recorded in CDCl₃ at 400/100 MHz on a Bruker Avance^{III} spectrometer. The chemical shifts have been reported in 75 ppm using TMS as the internal standard. The multiplicity of the signals have been shown as, s = singlet, d = doublet, t = triplet, q= quartet, m = multiplet) with the coupling constant (J value) expressed in Hz. The anomeric ratio of products reported in Table 1 were determined from their NMR spectra. Mass spectra were 80 obtained on an Ultraflex TOF/TOF MALDI or Maxis HRMS equipment. Specific rotations were determined on an AUTOPOL IV polarimeter at 20 °C. IR spectra were recorded on a Nicolet FT-IR Impact 410 instrument either as neat or KBr pellets. Melting points were determined on a Buchi melting point 85 apparatus. All compounds reported here (except compound 28) have been reported previously (2, ¹⁵ 4, ¹⁵ 6, ¹⁵ 8, ¹⁵ 10, ¹⁵ 12, ²¹ 14, ¹⁵ 16, ^{16c} 18, ¹⁵ 20, ^{19a} 22, ²² 24, ^{19a} 26, ^{19b} 30, ²³ 32, ²⁴ 34, ²⁴ 36, ^{19a} 38, ¹⁵ 40, ^{19a} 42, ^{16a} 44, ^{16a} 46, ^{16a} 48, ^{16b} 50, ²⁵ 52, ²⁶ 54, ^{16b} 56, ²⁷ 57, ²⁸ 59, ³⁷ 61, ³⁸ 63, ³⁹ 65⁴⁰ and 67⁴¹), many are commercially available and 90 therefore only the spectral data for the new compound (28) are reported.

Preparation of SiO₂-sulfuric acid (SiSA) catalyst

CSA (1.45 g, 12.5 mmol) was added to a suspension of SiO₂ (23.7 g, 230-400 mesh) in Et₂O (70.0 mL). Release of HCl gas that followed immediately after the addition of CSA was found to subside in a short while. The mixture after stirring for a few minutes was concentrated to dryness followed by heating at 100 °C for 48 h in a vacuum oven to furnish SiSA as a free flowing powder. 10 mg of the powder contains approximately 0.005 mmol of the acid enough for the acetylation of a gram of the sugar.

Typical Procedure for acetylation using Ac₂O as the acyl donor reagent: Acetylation of D-Glucose

Method A, using MeSO₃H:

To a suspension of D-glucose (entry 2, Table 1, 1 g, 5.55 mmol) in acetic anhydride (2.88 mL, 30.53 mmol) taken in a round bottom flask was added, while being stirred at rt (approximately 5 30-35 °C), MeSA (5-7 μL, 1.5-1.8 mol%) and the stirring was continued until complete dissolution of the sugar occurred. Warming of the reaction mixture occurred immediately following the addition of the catalyst and was indicative of the onset of acetylation. It was soon led to the dissolution of the sugar 10 indicating completion of the reaction which was confirmed by TLC (EtOAc: n-Heptane, 2:3, v/v) by comparison with authentic penta-O-acetyl-D-glucopyranose. A colorless homogeneous solution was obtained within a few minutes. The reaction mixture was poured into a beaker containing crushed ice and aqueous 15 NaHCO₃ during stirring which resulted in the separation of the product as a colorless solid. It was left for a few hours in a refrigerator for solidification of the product to complete. The solids were separated by filtration at the pump and, after washing with cold deionized water to neutrality, was dried (first in the air 20 and then in a vacuum oven/Kugelrohr) when the title product was obtained (2.14 g) as a colorless solid (99% yield). In large scale preparations (5-50 g or more), the sugar was added portion-wise to acetic anhydride containing the catalyst (180 µL MeSA in 145 mL Ac₂O for a 50 gram-scale reaction) and upon 25 completion of the reaction, the product was isolated as described above and was obtained (107 g pentaacetate from 50 g of glucose) as white powder in near quantitative yield.

Method B, using SiO_2 -OSO₃H (SiSA):

Published on 07 January 2015. Downloaded by University of Massachusetts - Boston on 08/01/2015 03:30:30.

To a suspension of D-glucose (entry 2, Table 1, 1 g, 5.55 mmol) in acetic anhydride (2.88 mL, 30.53 mmol) taken in a round bottom flask was added, while being stirred at rt (approximately 30-35 °C), SiSA (10 mg, 1 mol%) and the stirring was continued until complete reaction occurred. The product was isolated as described under Method A above. The title compound was obtained in near quantitative yield as colourless solid (2.14 g, 99%).

Acylation using free carboxylic acid as the acyl donor 40 reagent: Acetylation of (-)-menthol (41)

To a solution of (-)-menthol (41, 1 g, 6.4 mmol) in glacial AcOH (I mL) was added MeSA (10 μL, 2 mol%) under stirring at room temperature and the stirring was continued for an hour. TLC at this time showed complete consumption of the alcohol. The reaction mixture was poured into crushed ice in a beaker containing NaHCO₃. On neutralization the product, (-)-menthyl acetate (42), was isolated by extraction with EtOAc in a separatory funnel. Yield, 1.26 g, quantitative, colorless liquid. The physical constants and the NMR data were in agreement with 50 literature data. ^{16a}

Esterification of tartaric acid: Preparation of (+)-diethyl-L-tartrate $(65)^{40}$

MeSA (10 μL, 2 mol%) was added to a solution of (+)-L-tartaric solution (64, 1 g, 6.6 mmol) in absolute alcohol (50 mL) and the solution was stirred for 12 h at room temperature when TLC (EtOAc:n-Hept) showed complete disappearance of the tartaric acid. EtOH (up to 40 mL) was recovered from the reaction mixture by vacuum distillation. The residue was diluted with 60 EtOAc (25 mL) and was washed successively with cold aqueous NaHCO₃ solution (to neutrality) and the product was isolated as described above. Colorless liquid, 1.36 g, 99%). Physical constants and spectral data were in agreement with literature values for (+)-diethyl-L-tartrate (65).

2,3,4tri-O-acetyl-6-O-trityl-1-thio-β-D-Phenyl **glucopyranosi-de (28):** Colourless liquid; $[\alpha]_D^{20} = +1.2$ (c = 1, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃, 25 °C, TMS): δ (ppm) = 7.64-7.61 (m, 2H, ArH), 7.45-7.42 (m, 6H, ArH), 7.30-7.20 (m, ⁷⁰ 12H, ArH), (5.17 (t, J = 9.2 Hz, 1H, H-2), 5.09 (dd, $J_a = 9.8$ Hz, $J_b = 6.8 \text{ Hz}$, 1H, H-3), 5.04 (dd, $J_a = 7.2 \text{ Hz}$, $J_b = 9.1 \text{ Hz}$, 1H, H-4), 4.73 (d, J = 10.0 Hz, 1H, H-1), 3.58 (m, 1H, H-5), 3.27 (dd, J_a = 2.1 Hz, J_b = 10.1 Hz, 1H, H-6a), 3.15 (dd, J_a = 5.2 Hz, J_b = 10.5 Hz, 1H, H-6b), 2.09 (s, 3H, COCH₃), 1.96 (s, 3H, COCH₃), 1.69 75 (s, 3H, COCH₃). ¹³C NMR: (100 MHz, CDCl₃, 25 °C): δ (ppm) = 170.3 (CO of COCH₃), 169.3 (CO of COCH₃), 168.9 (CO of COCH₃), 143.5, 133.2, 131.8, 129.0, 128.7, 128.3, 127.8, 127.0, 86.7 (C-1), 85.6, 74.3, 70.1, 68.3, 62.0, 20.8 (CH₃ of COCH₃), 20.6 (CH₃ of COCH₃), 20.3 (CH₃ of COCH₃); IR (cm⁻¹): 2924, 80 2853, 2104, 1756, 1634, 1490, 1448, 1373, 1242, 1218, 1155, 1047, 912, 765, 748, 703, 632. HRMS-ESI (m/Z) calculated for $C_{37}H_{36}NaO_8S$, $[M + Na]^+$ 663.2029, found 663.2021.

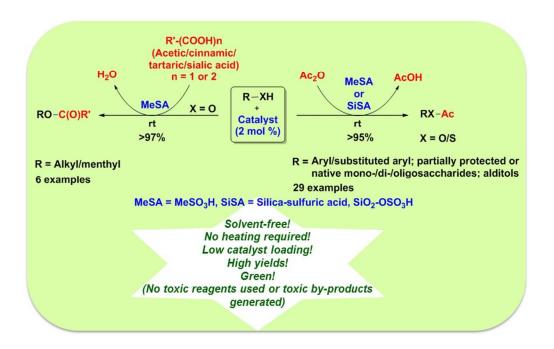
Acknowledgements

85 S.K.G. thanks NIPER, S.A.S. Nagar and the Ministry of Chemicals and Fertilizers, Govt. of India for permission to pursue PhD under its staff development scheme.

Notes and references

^aDepartment of Medicinal Chemistry, National Institute of 90 Pharmaceutical Education and Research, SAS Nagar, Punjab 160062, India, *E-mail: rkartha@niper.ac.in †Electronic Supplementary Information (ESI) available: [Archive entries of ¹H and ¹³C spectra of parent compounds synthesized.]. See

DOI: 10.1039/b000000x/


- F. L. M. Rajabalee, *Angew. Chem., Int. Eng. Ed.*, 1971, 10, 75; G. Agnihotri, P. Tiwari and A. K. Misra, *Carbohydr. Res.*, 2005, 340, 1393.
- 2 F. Dasgupta, P. P. Singh and H. C. Srivastava, Carbohydr. Res., 1980, 80, 346; A. I. Vogel, Vogel's Textbook of Practical Organic Chemistry, 5th edn., Wiley, New York, 1989, 644; M. L. Wolfrom and A. Thomson, Methods Carbohydr. Chem., 1963, 2, 211.
- J. K. Groves, *Chem. Soc. Rev.*, 1972, 1, 73; S. Yan, N. Ding,
 W. Zhang, P. Wang, Y. Li and M. Li, *J. Carbohydr. Chem.*,
 2012, 31, 571.
- 4 M. Miyashita, I. Shiina, S. Miyoshi and T. Mukaiyama, *Bull. Chem. Soc. Jpn.*, 1993, **66**, 1516.
- R. H. Baker and F. G. Bordwell, Org. Syn. 1944, 24, 18; R. H. Baker and F. G. Bordwell, In Organic Syntheses Collective Volume 3, Wiley: New York, 1955, p. 141; H. B. Wood, Jr., H. W. Diehl and, H. G. Fletcher, Jr. J. Am. Chem. Soc., 1957, 79, 1986; C. Limousin, J. Cleophax, A. Petit, A. Loupy and G. Lukacs, J. Carbohydr. Chem., 1997, 16, 327.
- 115 6 P. A. Procopiou, S. P. D. Baugh, S. S. Flack, and G. G. A. Inglis, *J. Org. Chem.*, 1998, 63, 2342.
 - 7 K. K. Chauhan, C. G. Frost, I. Love and D. Waite, *Synlett*, 1999, 1743.
- 8 (a) S. K. Giri, M. Verma and K. P. R. Kartha, J. Carbohydr. Chem., 2008, 27, 464; (b) S. K. Giri and K. P. R. Kartha, Synth. Commun., 2010, 40, 3378.
 - C.-A. Tai, S. S. Kulkarni and S.-C. Hung, J. Org. Chem., 2003, 68, 8719.
- 10 R. Shogren, *Carbohydr. Polym.*, 2008, **72**, 439-443; J-C. Lee, C-A.Taiand S-C. Hung, *Tetrahedron Lett.*, 2002, **43**, 851.
- 11 S. Dasgupta, V. K. Rajput, B. Roy, B. Mukhopadhyay, J. Carbohydr. Chem., 2007, 26, 91; A. Dzudza and T. J. Marks, J. Org. Chem., 2008, 73, 4004.

- 12 A. Orita, C. Tanahashi, A. Kakuda and J. Otera, *Angew. Chem., Int. Eng. Ed.*, 2000, **39**, 2877; A. Orita, C. Tanahashi, A. Kakuda and J. Otera, *J. Org. Chem.*, 2001, **66**, 8926.
- 13 M. D. Carrigan, D. Freiberg, R. C. Smith, H. M. Zerth and, R. S. Mohan, *Synthesis*, 2001, 2091.
- 14 K. P. R. Kartha and R. A. Field, *Tetrahedron*, 1997, 53, 11753
- 15 A. Santra, G. Guchhait and A. K. Mishra, *Green Chem.*, 2011, 13, 1345.
- 10 16 (a) A. K. Chakraborti and R. Gulhane, *Chem. Commun.*, 2003, 1896; (b) A. K. Chakraborti, L. Sharma, R. Gulhane and Shivani, *Tetrahedron*, 2003, 59, 7661;. (c) A. K. Misra, P. Tiwari and S. K. Madhusudan, *Carbohydr. Res.*, 2005, 340, 325; (d) B. Mukhopadhyay, D. A. Russell and R. A. Field, *Carbohydr. Res.*, 2005, 340, 1075.
- C. S. Hudson and J. K. Dale, J. Am. Chem. Soc., 1915, 37, 1264; T. G. Bonner and P. McNamara, J. Chem. Soc. (B), 1968, 795.
- 18 G. Hofle, W. Steglich and H. Vorbruggen, *Angew. Chem. Int. Ed.*, 1978, **17**, 569; E. F. V. Scriven, *Chem. Soc. Rev.*, 1983, **12**, 129; T. W. Greene and P. G. M. Wuts, *Protective Groups in Organic Synthesis*, Wiley, New York, 3rd edn., 1999; J. R. Hanson, *Protective Groups in Organic Synthesis*, Blackwell Science Inc., MA, 1st edn., 1999.
- ²⁵ 19 (a) R. Ch., M. Tyagi, P. R. Patil and K. P. R. Kartha, *Tetrahedron Lett.*, 2011, **52**, 5841.; (b) B. K. Gadakh, P. R. Patil, S. Malik, K. P. R. Kartha, *Synth. Commun.*, 2009, **39**, 2430.
- R. Boyle and E. S. Venkataramani, *PCT Int. Appl.* WO 9521135 (CAN 123:207938), 1995; M. C. Wilkinson, *Org. Lett.*, 2011, 13, (9), 2232; M. Jamshad, J. C. Murrell and V. Fülöp, *Protein Expr. Purif.* 2007, 52, 472.
- 21 M. A. Zolfigol, *Tetrahedron*, 2001, 57, 9509; M. A. Zolfigol, E. Madrakian and E. Ghaemi, *Molecules*, 2002, 7, 734; A. R. Hajipour, A. Zarei, L. Khazdooz, S. A. Pourmousavi, S. Zahmatkesh and A. E. Ruoho, *Indian J. Chem.*, 2006, 45B, 305; D. M. Pore, U. V. Desai, R. B. Mane and P. P. Wadgaonkar, *Indian J. Chem.*, 2006, 45B, 1291; A. R. Modarresi-Alam, M. Nasrollahzadeh and F. Khamooshi,
- Arkivoc, 2007, 16, 238; F. Heidarizadeh and S. Elahi, Orient. J. Chem., 2011, 27, 1531; B. Datta and M. A. Pasha, Chin. J. Catal., 2011, 32, 1180; A. Khalafi-Nezhad, H. Foroughi, M. M. Doroodmand and F. Panathi, J. Mater. Chem., 2011, 21, 12842; L. Torkian, P. Salehi, M. Dabiri and S. Kharrazi,
- Synth. Commun., 2011, 41, 2115; K. Niknam, D. Saberi and M. Baghernejad, Phosphorus, Sulfur Silicon Relat. Elem.,

- 2010, **185**, 875; R. Badri, A. Alireza-haddad, M. adlu and M. K. Mohammadi, *Bull. Chem. Soc. Ethiop.*, 2013, **27**, 131; S. Pathak, K. Debnath and A. Pramanik, *Beilstein J. Org. Chem.*, 2013, **9**, 2344.
- 22 C. S. Hudson and J. K. Dale, J. Am. Chem. Soc., 1918, 40, 992
- 23 C. A. Sanhueza, R. L. Dorta and J. T. Va'zquez, *Tetrahedron: Asymmetry*, 2008, 19, 258.
- 55 24 C. C. Joseph, H. Regeling, B. Zwanenburg and G. J. F. Chittenden, *Tetrahedron*, 2002, 58, 6907.
 - 25 M. K. Hlggins, R. S. Bly, and S. L. Morgan, *Anal. Chem.*, 1994, 66, 2656.
- 26 A. Cipiciani, F. Fringuelli and A. M. Scappini, *Tetrahedron*, 1996, **52**, 9869.
- 27 M. E. Shoman, J. F. DuMond, T. S. Isbell, J. H. Crawford, A. Brandon, J. Honovar, D. A. Vitturi, C. R. White, R. P. Patel, and S. B. King, J. Med. Chem., 2011, 54, 1059.
- 28 A. V. D. Hoogenb, Jos H. M. Lange, R. P. J. Bronger, A. R. Stoit, and J. W. Terpstra, *Tetrahedron Lett.*, 2010, **51**, 6877.
- 29 C. D. Hurd and R. W. Liggett, J. Am. Chem. Soc., 1941, 63, 2657
- 30 R. J. Cremlyn, *Chlorosulfonic acid A Versatile Reagent*, Royal Society of Chemistry, Cambridge, UK, 2002.
- 70 31 P. Tiwari, R. Kumar, R. M. Prakash and A. K. Mishra, *Eur. J. Org. Chem.*, 2005, **20**, 4265.
 - 32 V. K. Yadav and G. K. Babu, J. Org. Chem., 2004, 69, 577.
- 33 J. Iqbal and R. R. Srivastava, J. Org. Chem., 1992, 57, 2001.
- 34 E. Rezaei-Seresht, F. M. Zonoz, M. Estiri and R. Tayebee, *Ind. Eng. Chem. Res.*, 2011, **50**, 1837.
- 35 X-C. Tao, S. Zhan, L. Cai, X. Liu and T. Liu, *Green Chem.*, 2014, accepted manuscript, DOI: 10.1039/C4GC01395F.
- 36 D. Elhamifar, B. Karimi, A. Moradi and J. Rastegar, ChemPlusChem, 2014, accepted manuscript, DOI: 10.1002/cplu.201402071.
- 37 A-X. Li, T-S. Li and T-H. Ding, Chem. Commun., 1997, 1389.
- 38 L. Zhu and X. Liang, Kinet. Catal., 2012, 53, 728.
- 39 K. C. Nguyen and H. Weizman, J. Chem. Educ., 2007, 84, 119
- 85 40 (a) T. Maki, K. Ishihara and H. Yamamoto, Org. Lett.., 2005, 7, 5047; (b) Yu. N. Belokon', V. I. Maleev, Z. T. Gugkaeva, M. A. Moskalenko, A. T. Tsaloev, A. S. Peregudov, S. Ch. Gagieva, K. A. Lyssenko, V. N. Khrustalev, and A. V. Grachev, Russ. Chem. Bull., 2007, 56, 1507.
- 90 41 R. Kuhn, P. Lutz and D. L. MacDonald, *Chem. Ber.*, 1966, 99, 611.

Acyl transfer reactions of carbohydrates, alcohols, phenols, thiols and thiophenols under green reaction conditions

Santosh Kumar Giri and K. P. Ravindranathan Kartha

