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Abstract: We report herein a practical method for taming

Langlois’ reagent CF3SO2Na to generate CuSCF3 by a tri-
phenylphospine-mediated deoxygenative reduction pro-

cess. This chemistry highlights a novel utilization of the in-
herent CF3S skeleton of Langlois’ reagent as a CF3S feed-

stock under mild conditions. The CuSCF3 intermediate

generated by this protocol can react with a wide array of
supporting ligands to furnish several air-stable [LCu(SCF3)]

complexes as valuable trifluoromethylthiolating agents. In
addition, the CuSCF3 intermediate can be directly em-
ployed for the trifluoromethylthiolation of (hetero)aryl io-
dides with operational simplicity and atomic efficiency.

The incorporation of fluorine-containing groups into bioactive

molecules has become a valuable tactic for modifying and dis-
covering new drugs.[1] The highly lipophilic and electron-with-

drawing SCF3 moiety[2] is highly prized within the family of
fluorine-containing substituents in this field, exemplified by
several commercial products, such as Toltrazuril and Tiflorex.
Various approaches for the direct installment of a SCF3 moiety

have been reported and represent more attractive approaches
to RSCF3 products than traditionally indirect methods (halo-

gen–fluorine exchange, trifluoromethylation of sulfur-contain-

ing precursors, and so forth).[3] Diverse electrophilic trifluoro-
methylthiolating reagents[4] have recently been developed that

have greatly enriched the “SCF3” toolbox (Figure 1). The Pd/Ni-
catalyzed[5, 6] or Cu-mediated[7] trifluoromethylthiolation of aryl

halides with MSCF3 nucleophiles (AgSCF3, Me4NSCF3, [(bpy)-
CuI(SCF3)]), as well as oxidative trifluoromethylthiolation[8] also

provide elegant access to RSCF3 molecules. Additionally, sever-

al impressive trifluoromethylthiolation reactions were estab-
lished using the combination of external sulfur sources and tri-

fluoromethylating reagents, such as FSO2CF2CO2Me, TMSCF3,
and CF3CO2Na.[9] However, despite the great progress on all

the aforementioned direct trifluoromethylthiolation methods,
there are still serious practical limitations in the field. For in-

stance, the use of precious metals, expensive ligands, and elec-

trophilic/nucleophilic trifluoromethylthiolating reagents are all
concerns for developing scale-up processes.

In this context, it is an ongoing quest to develop cheaper,
milder, and more convenient methods for the synthesis of or-

ganic trifluoromethyl sulfides.[3] Copper–SCF3 complexes,[7, 10] in
many regards, are attractive reagents for converting aryl hal-
ides into the corresponding aryl trifluoromethyl sulfides

(ArSCF3). However, the classic reported methods for prepara-

tions of CuSCF3 still have several shortcomings that lie in steps
inefficiency or use of expensive AgSCF3 and toxic CF3SSCF3 as

starting materials (Scheme 1a–c).[10] Recently, Weng et al. re-

ported the generation of CuSCF3 by utilizing CuF2, elemental
sulfur, and TMSCF3 combination strategy (Scheme 1 d).[7c] Nev-

ertheless, this protocol still depends on excessive addition of

TMSCF3 and a redox event converting CuII to CuI. To address
these drawbacks, we sought to develop a synthetic strategy

that could generate CuSCF3 from a commercially available and
inexpensive reagent. The Langlois’ reagent (CF3SO2Na) could

conceivably generate SCF3 without any additional sulfur sour-
ces (Scheme 2), although it is known to act as a trifluoromethyl
radical source under oxidative conditions.[11] With the inspira-

tion from Shibata’s report on using trifluromethanesulfonyl hy-
pervalent iodonium ylide (featuring an inherent CF3SO2 moiety

Figure 1. Toolbox of trifluoromethylthiolating reagents.

Scheme 1. Classic methods for the preparation of CuSCF3.

Scheme 2. Reaction development considerations for the use of CF3SO2Na to
generate CuSCF3.
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and a neighboring ylide group) as an effective trifluorome-
thylthiolation reagent,[12] we were excited about the possibility

to exploit the simpler reagent CF3SO2Na for the synthesis of
CuSCF3 under appropriate deoxygenative conditions in the ab-

sence of external sulfur sources.
Initial studies were focused on searching for reductants ca-

pable of abstracting the oxygen atoms from CF3SO2Na. We
found that simple phosphine compounds (Table 1; 3 a–e) could

convert CF3SO2Na to CF3SSCF3 with moderate success, whereas
hexaethylphosphorous triamide (P(NEt2)3 ; 3 f) and metal-based

reductants, like zinc powder, were inert, even at elevated tem-

peratures (Table 1). The ability of phosphines to extrude
oxygen atoms from CF3SO2Na is consistent with the strong

thermodynamic impetus of P=O bond formation
(�544 kJ mol¢1).[13] With the phosphine reducing agents identi-

fied, we investigated whether this deoxygenative process
could be exploited for the construction of desired CuSCF3

(Table 2). Initially, copper powder was used to trap the

CF3SSCF3 generated in situ. However, only trace amount of
CuSCF3 was observed, even when stirred for several days at

room temperature or heated at 50–60 8C, overnight (entry 1).
Gratifyingly, CuSCF3 was generated in 70 % yield according to
19F NMR analysis (signal at ¢27.5 ppm) when the copper
source was CuCl (entry 2). Addition of Ph3P to a pre-cooled

CuCl/CF3SO2Na solution in CH3CN, and then warming to room
temperature minimized side reactions and improved the yield
to 83 % (entry 3). Further solvent and reducing agent screening

confirmed that CuCl/CF3SO2Na/Ph3P combination in a 1:1:2
equivalent ratio, respectively, in acetonitrile solvent represent-

ed the optimal conditions for the efficient production of
CuSCF3 in terms of low cost, air stability and yield (entries 3–9).

Notably, the phosphines (3 a–c) bearing a phenyl ring showed

good reaction efficiency in the generation of CuSCF3, whereas
the more electron-rich Me3P (3 d) and Bu3P (3 e) displayed slug-

gish reactivities (entries 6–7), and formation of the correspond-
ing inert [ClCu(PMe3)x] and [ClCu(PBu3)x] species indicated by
31P NMR was observed. In contrast, preformed [ClCu(PPh3)2]
(3)[14] reacted smoothly with CF3SO2Na in acetonitrile, furnish-

ing CuSCF3 in 72 % yield [Eq. (1)] . The reason why the [ClCu-
(PMe3)x] and [ClCu(PBu3)x] species show poor reactivity towards

CF3SO2Na is still not very clear. A possible explanation could be
the stronger bonding of the electron-rich trialkylphosphines

(3 d or 3 e) to the copper(I) center that prevents the dissocia-

tion of trialkylphosphines for deoxygenative reduction.

With the optimized reaction conditions for generating

CuSCF3 from CF3SO2Na established, we sought to use this
chemistry to prepare a series of air-stable, ligated, and synthet-
ically useful trifluoromethylthiolating agents [LCu(SCF3)]
(Scheme 3). Initially, 2,2’-bipyridine was selected as the sup-

porting ligand for the preparation of [(bpy)CuI(SCF3)] (5 a),
which is a versatile trifluoromethylthiolation agent for various

R–X substrates.[7c–e] Gratifyingly, 5 a was afforded as red crystals
in 60 % yield. Its structure was confirmed by NMR spectrosco-
py, elemental analysis, and single-crystal X-ray crystallography

(see the Supporting Information). Next, several related deriva-
tives [(dtbpy)CuI(SCF3)] (5 b),[7c] [{(phen)CuI(SCF3)}2] (5 d),[7c] and

[(Ph3P)2CuI(SCF3)] (5 e)[7d] were also efficiently obtained by simi-
lar procedures. When 6,6-dimethylbipyridine was employed as

the chelating ligand, the dimer 5 c was obtained in 58 % yield.

The dimeric structure of 5 c (Figure 2, left)[15] differs remarkably
from the other reported bipyridine-based complexes 5 a and

5 b. Similarly, treatment of CuSCF3 with 1,1’-bis(diphenylphos-
phino)ferrocene (dppf) provided [(dppf)CuI(SCF3)] (5 f) as

a yellow solid in 69 % yield, and its structure was also verified
by single-crystal X-ray crystallography (Figure 2, right).[15] It is

Table 1. Comparison of deoxygenation reagents for CF3SO2Na.[a]

Entry PR3 Yield of CF3SSCF3
[b]

1 Ph3P (3 a) 27 %
2 Ph2PMe (3 b) 22 %
3 PhPMe2 (3 c) 20 %
4 PMe3 (3 d) 13 %
5 PBu3 (3 e) 18 %
6 P(NEt2)3 (3 f) None[c]

7 Zinc powder None[c]

[a] Yield was determined by 19F NMR spectroscopy of the crude product
mixture using PhCF3 as internal standard; PR3 (1.5 equiv). [b] The moder-
ate yield could be caused by the volatile properties of CF3SSCF3. [c] No
conversion of CF3SO2Na and no formation of CF3SSCF3.

Table 2. Optimization of synthesis of CuSCF3 from CF3SO2Na.[a]

Entry Reductant Copper Source Solvent Yield[b]

1 Ph3P (3 a) Cu powder[c] CH3CN trace
2 Ph3P (3 a) CuCl CH3CN 70 %
3 Ph3P[d] (3 a) CuCl CH3CN 83 %
4 MePPh2

[d] (3 b) CuCl CH3CN 79 %
5 Me2PPh[d] (3 c) CuCl CH3CN 75 %
6 Me3P[d] (3 d) CuCl CH3CN None[e]

7 Bu3P[d] (3 e) CuCl CH3CN None[e]

8 Ph3P[d] (3 a) CuCl DMF None[e]

9 Ph3P[d] (3 a) CuCl DMI None[e]

[a] General conditions: CF3SO2Na (0.2 mmol, 1.0 equiv) and copper source
(0.2 mmol, 1.0 equiv) were dissolved in solvent (1.0 mL), then reductant
(0.4 mmol, 2.0 equiv) was added and stirred under N2/RT. [b] Yield was de-
termined by 19F NMR spectroscopy of the crude product mixture using
PhCF3 as internal standard. [c] Unactivated Cu powder was utilized. [d] Re-
ductant was added in a pre-cooled CuCl/CF3SO2Na/CH3CN mixture (ap-
proximately ¢25 8C), and then returned to RT for stirring. This addition
procedure works well on a multiple-gram scale synthesis of CuSCF3.
[e] No conversion of CF3SO2Na was detected, and the coordination com-
plexes between phosphines and CuCl was observed.
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worth noting that complexes 5 c and 5 f were air-stable for
several days in solid state.[7c]

In addition to the application for convenient preparation of
the aforementioned [LCu(SCF3)] complexes, further exploration

of the ligand-free generated CuSCF3 for a direct coupling with
aryl halides was conducted. First, the direct coupling between

aryl iodides and CuSCF3 was explored (Table 3). Direct addition
of iodobenzene into the solution of CuSCF3 in CH3CN and

heating at 110 8C for 24 h afforded PhSCF3 in 13 % yield, with
a majority of CuSCF3 (74 %) remaining unconverted. Further
solvent screening indicated that 1,3-dimethyl-2-imidazolid-

inone (DMI) was the superior solvent for this direct coupling
reaction (even compared with the known suitable solvent

NMP[10a–d]), providing PhSCF3 in 85 % yield (see the Supporting
Information for details). A wide array of aryl iodides, including

heteroaryl iodides, was then chosen for testing the efficiency

of this methodology. As shown in Table 3, aryl and heteroaryl
iodides bearing either electron-withdrawing or -donating sub-

stituents could be transformed into the corresponding prod-
ucts in high yields (74–93 %). The fluoro (6 g), choloro (6 h, 6 s),

nitro (6 j), cyano (6 k), ester (6 l), ketone (6 n), and aldehyde
(6 m, 6 t) groups were well-tolerated under standard conditions

that could provide opportunities for further elaboration. More-
over, the coupling conditions were compatible with heteroaryl

iodides bearing pyridine (6 q, 6 r), quinoline (6 s), furan (6 t),
and thiophene (6 u, 6 v) rings, and delivered the products with

high efficiency. Notably, two CF3S groups were introduced into
the C1 and C8 sites of the naphthalene in a single step (6 w),

demonstrating the potential for multiple trifluoromethylthiol-
ations of polyiodoarenes.

In summary, we have demonstrated a mild, convenient, and

cost-effective method for the synthesis of CuSCF3 and related
air-stable [LCuI(SCF3)] by a deoxygenative reduction of Lan-

glois’ reagent. In this deoxygenative reduction process, the
choice of both phosphine reductants and solvents was found

to be critical for the conversion of CF3SO2Na. Direct coupling
between the CuSCF3 generated in situ with aryl iodides in DMI

Scheme 3. Synthesis of [LCuI(SCF3)] complexes 5 a–f.

Figure 2. ORTEP diagrams of 5 c (left) and 5 f (right).

Table 3. Direct trifluoromethylthiolation of ArI with CuSCF3 generated
from CF3SO2Na.[a]

[a] General conditions: In situ generated CuSCF3 (ca. 0.25 mmol, remove
insoluble NaCl and solvent CH3CN), aryl iodide (0.2 mmol), DMI (1 mL), N2,
110 8C, 24–48 h; yield of isolated products are shown unless the product
is very volatile. [b] Yield was determined by 19F NMR spectroscopy of the
crude product mixture using PhCF3 as internal standard for volatile prod-
ucts. [c] 1,8-Diiodonaphthalene (0.1 mmol) was added.
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solvent provided an efficient and operationally-simple method
for the construction of a diverse array of aryl trifluoromethyl

sulfides. Further applications of this chemistry using other
RfSO2Na derivatives and the systematic mechanistic studies are

under way on our laboratory.
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