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Metal-free C(3)-H arylation of coumarins promoted by 

catalytic amounts of 5,10,15,20-tetrakis(4-

diethylaminophenyl)porphyrin 

Masahiro Kojima,a Kounosuke Oisaki*a and Motomu Kanai*a,b 

 

The metal-free C-H arylation of coumarins was achieved in the 

presence of catalytic amounts of 5,10,15,20-tetrakis(4-

diethylaminophenyl)porphyrin. This mild and 

environmentally friendly Meerwein arylation provided facile 

access to a broad variety of 3-arylcoumarins in synthetically 

useful yields.  

Coumarins represent a highly desirable structural motif in 

medicinal chemistry, chemical biology, and materials chemistry.1-

3 For example, 3-arylcoumarins have recently been reported to act 

as monoamine oxidase B (MAO-B) inhibitors,1 which has 

important implications for the design of new drugs against 

Parkinson’s and Alzheimer’s disease. Coumarin derivatives also 

play a crucial role in chemical biology, as their fluorescent 

properties under physiological conditions can be controlled.2 

Coumarin-based dyes on the other hand are employed in artificial 

light-harvesting materials and act as dopants in organic light-

emitting diodes.3 Therefore, a new synthetic method allowing for 

effective diversification of the coumarin motif would potentially 

contribute to various fields of chemical science. The direct 

catalytic C-H bond functionalization of coumarins presents a facile, 

mild, atom efficient, and environmentally friendly option to extend 

existing coumarin libraries. And indeed, palladium-catalyzed 

C(3)-H and C(4)-H arylations have been reported to afford a 

variety of 3- and 4-arylcoumarins, respectively.4 However, this 

synthetic approach is severely constrained by high temperatures, 

the need of stoichiometric amounts of metal oxidants, and its 

limited functional group tolerance. Another classical method for 

the direct C(3)-H arylation of coumarins is the Meerwein 

arylation,5 but especially the copper-mediated Meerwein arylation 

of coumarins suffers from low to moderate yields.6 Herein, we 

would like to report a porphyrin-mediated Meerwein C(3)-H 

arylation of coumarins in the absence of any metals. 

In 2012, König disclosed an Eosin Y-mediated Meerwein 

arylation under exposure to photoirradiation (visible light),7a and 

the observed mild reaction conditions, as well as the absence of 

potentially environmentally harmful metal catalysts, renders this  
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metal-free reaction protocols particularly attractive. König’s 

seminal work was soon followed by several reports on metal-free 

Meerwein arylations of (hetero)arenes,7a alkenes,7f alkynes,7b,7c 

and isonitriles.7h On the other hand, several catalytic and/or 

stoichiometric transition metal-free promoters, such as organic 

dyes,7 TEMPONa,8 iodide,9 ascorbic acid,10 benzoyl peroxide,11 

bases,12 or methanol13 were identified to mediate Meerwein-type 

arylations. However, to the best of our knowledge, none of these 

metal-free arylation methods has so far been applied to the C-H 

arylation of coumarins.14  

Our initial hypothesis was based on the idea that organic 

electron mediators that are chemically more stable than Eosin Y 

should enable the metal-free C-H arylation of coumarins. A good 

example for such stable mediators is porphyrins, which have an 

established track record as robust electron mediators in artificial 

photosynthetic systems.15 The beneficial electron-donating ability 

of metal-free porphyrins in combination with the advantageous 

electron-accepting ability of their radical cations, formed by one-

electron oxidation, should render these compounds ideal catalyst 

candidates for synthetic transformations involving redox 

processes.16   

Initially, we investigated catalytic amounts of 5,10,15,20-

tetrakisphenylporphyrins 4a-f, in order to assess their potential to 

promote the C(3)-H arylation of coumarins with 4-

methoxybenzenediazonium tetrafluoroborate (2a; entries 1-6; Table 

1). Using 5,10,15,20-tetrakis(4-aminophenyl)porphyrin (4c) afforded 

the targeted coumarin 3a in 17% yield (entry 3; Table 1). Although 

4d did not promote the reaction presumably due to its very low 

solubility,17 the highest yield for 3a was obtained from 4e (24%, entry 

5; Table 1), whereby the presence or absence of light did not affect 

the yield significantly, suggesting a thermal reaction pathway (entry 

7; Table 1). Optimal reaction conditions were established for 10 mol% 

of 4e (entries 5, 8, 9; Table 1) and 40 °C, which furnished 3a in 63% 

yield (entry 10; Table 1). The reaction did not proceed in the absence 

of 4e (entry 11; Table 1), and previously-reported promoters provided 

3a in lower yield (0-15%, entries 12-15; Table 1). These observations 

suggest that 4e is the most effective organic promoter for the 

Meerwein-type C-H arylation of coumarins,18,19 whereby the N,N-

diethylaniline moiety alone is unable to afford 3a (entry 16; Table 1), 

implying that the presence of the porphyrin skeleton is indispensable.  

Subsequently, the optimized reaction conditions were used to 

evaluate the scope with respect to the coumarin derivatives (Table 2).  

Coumarins with electron-donating groups (e.g. Me, OMe, OEt, OH, 

or NEt2) afforded 3b-f in good yield (61-78%, entries 2-6; Table 2). 

Electron-deficient 6-nitrocoumarin (1g), as well as amide substituted 

coumarin 1h furnished the corresponding target compounds in 36 and 

60% yield, respectively (entries 7, 8; Table 2), and it should be noted 

that the functional groups of 1g and 1h were not compatible with 

oxidative Heck-type C(3)-H arylation conditions.4 C(4)-substituted 

coumarins 1i and 1j are also good substrates (63-71%, entries 9, 10; 

Table 2), despite their intrinsically high steric demand.   

The scope of this reaction with respect to the aryldiazonium 

tetrafluoroborates is summarized in Table 3. Unsubstituted 

phenyldiazonium tetrafluoroborate 2b, as well as diazonium 

tetrafluoroborate 2c with an electron-donating methyl substituent, 

afforded the corresponding coupling products in good yield (70-72%, 

entry 1, 2; Table 3). Diazonium tetrafluoroborates with electron-

withdrawing halogen, ester, trifluoromethyl, or nitro substituents 

afforded comparable yields (45-71%, entries 4-9; Table 3). Especially 

the high tolerance towards bromo- and iodo-substituents should be 

highlighted here, as they were not tolerant in Heck-type reactions and 

they may be beneficial for further derivatizations. Marginally lower 

yields were obtained from aryl diazonium tetrafluoroborates with 

substituents at ortho- or meta-position (53-59%, entries 10, 11; Table 

3). These results corroborate the high versatility of the present C-C 

bond formation reactions, especially compared to the previously 

reported Heck-4 or Meerwein-type C-H arylations of coumarins.5 

Preliminary mechanistic investigations for this porphyrin-

mediated transformation supported the presence of the aryl 

diazonium-derived aryl radical intermediates and the coumarin-

derived benzyl radical intermediates.20 Based on these 

observations, a working hypothesis for the reaction mechanism 

is postulated in Scheme 1. One electron reduction of aryl 

diazonium tetrafluoroborate with 4e affords aryl radical 5 (Ar●) 

and nitrogen gas. Addition of the aryl radical to coumarin (1a) 

furnishes a benzyl radical intermediate 6, which is oxidized 

either by 4e radical cation or by another aryl diazonium 

tetrafluoroborate. The moderate yield produced for nitro-

substituted substrates (36%, entry 7; Table 2 and 45%, entry 9; 

Table 3) could be rationalized by considering that the electron-

withdrawing functionality retards oxidation of 6 by 4e●+. 

Regeneration of 4e or the alternative radical chain process 

promotes the reactions until aryl diazonium tetrafluoroborates 

are consumed.   

 

In conclusion, we established a metal-free Meerwein-type 

C(3)-H arylation of coumarins by using catalytic amounts of 

5,10,15,20-tetrakis(4-diethylaminophenyl)porphyrin (4e). This 

method is characterized by a high functional group tolerance and 

mild reaction conditions, while providing versatile access to a 

wide variety of 3-arylcoumarins in synthetically useful yields, 

thus rendering this method superior to previously reported 

Meerwein-type arylations. Further studies on the exact reaction 

mechanism as well as on applications involving other types of 

Meerwein arylations are currently in progress in our laboratory 

and will be reported in due course.  
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