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Synthesis of Indolines via Palladium/Norbornene-Catalyzed 

Reaction of Aziridines with Aryl Iodides 

Ce Liu,
a
 Yujie Liang,

b
 Nian Zheng,

a
 Bo-Sheng Zhang,

 a
 Yuan Feng,

a 
Siwei Bi*

b
 and Yong-Min Liang*

a

A Pd- and norbornene-catalyzed domino procedure has been 

developed to synthesize indoline compounds. This reaction 

provides efficient access to indolines by employing aryl iodides 

with aziridines as new electrophiles. The transformation is 

scalable and tolerates a range of functional groups. 

Heterocyclic compounds are ubiquitous and are present in 

pharmaceuticals, agrochemicals, and biologically active 

molecules.
1
 Transition-metal catalysts for the preparation of 

heterocyclic compounds, especially palladium-catalyzed 

reactions have been reported by many research groups in 

recent years.
2
 Palladium/norbornene (NBE) chemistry plays an 

important role here. Compared with many other strategies, 

this protocol does not need directing groups (DGs) and 

performs both iso and ortho-functionalization of the aryl 

halides in one step under mild conditions. Significantly, as a 

key step, the Catellani reaction has been applied to 

heterocyclic natural products synthesis, such as (±)-

goniomitine, aspidospermidine,
3
 (+)-linoxepin

4
 and rhazinal.

5
 

Pd/NBE chemistry was pioneered by Catellani in 1997
6
 and 

has become a powerful tool for performing bi-/tri-

functionalization to construct polysubstituted arenes. Over the 

past two decades, varied termination reagents (Nu–Y) have 

been well studied by the Catellani, Lautens, and other groups.
7
 

However, electrophiles (E–LG) that react with the key five-

membered aryl-norbornene-palladacycle (ANP) intermediate 

to install functional groups at the ortho-position were mainly 

confined to alkyl and aryl halides (Scheme 1a).
8
 Until 2013, 

amino,
9
 acyl,

10
 and carboxyl

11
 electrophiles have been 

developed to achieve ortho-functionalization successively.  
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Scheme 1. Palladium/norbornene catalysis. 

Very recently, epoxides as electrophilic reagents were 

reported by Dong’s and Zhou’s group.
12

 

In pursuit of our interest in exploring the Catellani 

reaction,
9d, 10a, 13

 aziridines, a new and special type of 

electrophilic partner, are studied in this paper. The three-

membered strained N-containing heterocycles are capable of 

reacting with diversified nucleophiles to produce nitrogen-

containing organic frameworks.
14

 Given the chemical 

properties of aziridines, we reasoned that amino groups could 

act as nucleophiles to terminate the reaction for the synthesis 

of the desired indolines after C-N bond cleavage by the ANP 

intermediate. One main obstacle is the selective oxidation 

between the ANP intermediate and the initial Pd(0) catalyst by 

aziridines.
15

 Fortunately, the experimental results achieved the 

desired targets. No leaving group (LG) or other small molecules 
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Table 1. Scope of indoline formation
a
 

 

a 
Condition A: 1 (0.15 mol, 1.0 equiv), 2 (2.5 equiv), Pd(OAc)2 (10 mol%), P(m-

ClC6H4)3 (20 mol%), NBE (50 mol%), and K2CO3 (2.0 equiv) in toluene (1 mL) at 

100°C for 24 h. Isolated yields. 
b 

Determined by gas chromatography-mass 

spectrometry (GC-MS). 

(Y) were produced during the catalytic cycle process (Scheme 

1b). 1) In view of Yu’s
16

 and Dong’s
17

 studies; 2) because 

almost all aziridine ring openings proceed via an SN2 

mechanism;
14e

 3) and the desired indoline product with a 

configuration inversion was obtained when chiral 2-aryl-

aziridine was used, we speculate that the transformation of 

aryl iodides and aziridines occurs via either a Pd(IV) 

intermediate (Scheme 1b, pathway a) or an SN2 nucleophilic 

ring-opening reaction pathway (Scheme 1b, pathway b). 

Inspired by Lautens’ reports,
18

 2-iodotoluene 1a and 1-

tosylaziridine 2a were used as model coupling partners. With 

the optimized conditions determined (see the ESI, Tables S1-

5), the scope was to further study the assay (Table 1). In 

particular, it was found that P(m-ClC6H4)3 had the best 

combination of electronic and steric properties to give the best 

yield. 
18b

 First, different aryl iodides were examined using 1-

tosylaziridine 2a as the aziridine partner. Compared with 3a 

(81% yield),
19

 which was characterized by single crystal X-ray 

analysis,
20

 moderate yields of 3b (63% yield) and 3c (48% yield) 

were obtained with the more sterically hindered Et and i-Pr 

moieties at the 2-position (R
1
) of the benzene ring. Therefore, 

with the 2-position being methyl, a list of substrates with both 

electron-deficient and electron-rich groups at the 3-, 4- or 5-

positions of the phenyl ring were isolated in good to high 

yields (3d-j), among which the aromatic iodine-bearing 4-nitro 

group gave the desired indoline product 3g at a high yield of 

87%. For a gram-scale reaction, the indoline 3g was obtained 

in comparable yield (see the ESI). Next, when coupled with 1- 

iodo-2-methyl-4-nitrobenzene 1g, the aziridines with different 

arylsulfonyl groups on the nitrogen atom all worked well and 

Table 2. New optimization of the reaction conditions 

 

Entry Change from the Condition A Yield (%)
a
 

1 none 29
b
 

2 DME instead of toluene 24
c
 

3 toluene/DME (v/v 1:1) instead of toluene 36
c
 

4 H2O (2 equiv) + toluene/DME (v/v 1:1) 64 

5 H2O (2 equiv) + toluene/DME (v/v 1:1) 71
d
 

6 EtOH (2 equiv) + toluene/DME (v/v 1:1) 61
d
 

7 NH4Cl (2 equiv) + toluene/DME (v/v 1:1) 63
d
 

8 MXn
e
 (2 equiv) + toluene/DME (v/v 1:1) trace

d
 

9 BF3·Et2O (2 equiv) + toluene/DME (v/v 1:1) trace
d
 

a 
Isolated yields. 

b 
Recovery of 4a = 74%. 

c 
Recovery of 4a < 5%. 

d 
4a (2.0 equiv), 

105°C, and 30 h. 
e 

MXn = FeCl3, FeCl2, CuCl2, CuCl. DME denotes ethylene glycol 

dimethyl ether. 

afforded their respective indoline products (3k-r) in excellent 

yields (up to 93%). Attempting to further expand the scope, 

aryl iodides without a substituent group at the 2-position 

(R
1
=H) were carried out. The 3-nitroiodobenzene and methyl 

3-iodobenzoate showed good compatibility in this 

transformation and produced a single isomer in moderate 

yields (3s, 58% yield and 3t, 61% yield). The configuration of 

product 3s was unambiguously determined by X-ray analysis. 

Methyl 4-iodobenzoate resulted in a lower yield (3u, 16% 

yield). Nevertheless, iodobenzene without any substituent 

groups was unable to give the corresponding product 3v. It is 

likely attributable to “the ortho effect” that ortho-substituted 

aryl iodides lead to better yields than those of unsubstituted 

ones.
21

 

When 2-substituted aziridine 4a was combined with aryl 

iodide 1g under previously optimized conditions (Condition A), 

the desired indoline product 5a was obtained in 29% yield with 

74% recovery of starting aziridine 4a (Table2, entry 1). 

Meanwhile, the use of DME as solvent gave 24% yield with low 

recovery of 4a (entry 2). In a mixed solvent of toluene and 

DME (v/v 1:1), the yield of isolated 5a slightly increased (36%, 

entry 3). The addition of 2 equiv of H2O could remarkably 

enhance the yield (entries 4-5). Adding EtOH or NH4Cl, which 

can provide proton hydrogen, gave moderate yields (entries 6-

7). Nevertheless, the use of Lewis acid as an additive 

dramatically decreased the yields (entries 8-9). 

After the new optimized conditions were established (Table 

2, entry 5), the scope of the reaction was studied using various 

substituted aziridines. They tolerated aryl iodide 1g and 

afforded the desired products in good yields (Table 3). When 

R
6
 comprised monoalkyl substituents 4a-c, almost only single 

isomers 5a-c derived from ring opening at the unsubstituted 

carbon atom were observed (>20:1, 5:6). While 2-aryl-

aziridines 4d-j produced two isomers (5d-j and 6d-j, 

respectively), products 6d-j obtained via the regio-selective 

cleavage of a benzylic C-N bond accounted for the highest 
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Table 3. New scope of indoline formation
a
 

 

a 
Condition B: 1g (0.15 mmol, 1.0 equiv), 4 (2.0 equiv), Pd(OAc)2 (10 mol%), P(m-

ClC6H4)3 (20 mol%), NBE (50 mol%), H2O (2.0 equiv), and K2CO3 (2.0 equiv) in 

toluene/DME (1 mL, v/v 1:1) at 105°C for 30 h. Isolated yields. Ratios were 

determined by 
1
H NMR. ND denotes not determined. 

proportion. The differences between alkyl- and aryl- 

substituted aziridines probably occurred because the ring 

opening of aziridines is controlled by a balance between 

electronic effects and steric hindrance.
14

 The results showed 

good agreement with the SN2 reaction mechanism under 

alkaline conditions. The 1-tosyl-1,1a,6,6a-tetrahydroindeno 

[1,2-b] azirine 4k was also suitable for this transformation. A 

single regio-isomer 6k was isolated in 66% yield. Its 

configuration was determined by X-ray crystallography. Other 

poly-substituted aziridines, like gem-disubstituted 4l and 1,2-

disubstituted 4m aziridines were incompatible with aryl iodide 

1g. Nevertheless, no desired products were tested when 

unsaturated aziridine and heterocyclic substrates were used 

(see the ESI). 

Previous work by Lautens suggested that inversion of the 

configuration likely proceeds during the oxidative addition of 

the enantioenriched secondary alkyl iodides to Pd(II) species to 

generate the Pd(IV) species.
22

 Inspired by this study, an 

additional experiment was carried out using chiral aziridine (S)-

4n and 1-iodonaphthalene 1o (Scheme 2). Cleaving of the N-C2 

bond generated (R)-5n with retention of configuration, while 

cleaving of the N-C1 bond gave (S)-6n with inversion of 

 

Scheme 2. Synthesis of enantioenriched products (R)-5n and (S)-6n. 

 

Fig. 1 X-ray structures of products (R)-5n and (S)-6n. 

 

Fig. 2 X-ray structures of products E and F. 

configuration. The two absolute configurations were 

determined by X-ray crystallography (Fig. 1). Based on the 

occurrence of Walden inversion and almost all aziridine ring 

openings proceed via an SN2 mechanism,
14e

 it is likely that a 

nucleophilic ring-opening process occurs in this reaction. 

Mechanistic experiments have been carried out to get a 

deeper understanding of the reaction pathway. At first, we 

spent a lot of time isolating possible intermediates with 

phosphorous ligand, but it didn’t work. Several outstanding 

studies, in the Pd/NBE chemistry field, have been reported by 

Catellani et al. via adding phenanthroline as a ligand to 

stabilize the reactive palladium intermediates.
23

 Inspired by 

these studies, palladacycle complex B (Scheme 1b) bearing 

phenanthroline was chosen as the substrate. Much to our 

delight, after nearly a year of effort, two key X-ray crystal 

structures of intermediates E and F were obtained (Fig. 2). The 

two crystal structures are the important evidence that β-

carbon elimination of norbornene (norbornene deinsertion) 

happens to the eight-membered palladacycle E to give the six-

membered palladacycle F in this Catellani reaction. Further 

mechanistic studies are under investigation. 

In summary, we have developed a novel strategy to 

synthesize indoline compounds from commercial and readily 

accessible aryl iodides and N-sulfonated aziridines. This 

process involves aziridine ring-opening followed by palladium-

catalyzed coupling-cyclization containing Calkyl-Caryl and N-Caryl 

bond formation in one step. In addition, aziridines were shown 

to be new electrophilic reagents that further extend the scope 

of palladium/norbornene chemistry. The occurrence of the 

Walden inversion suggests that an SN2 nucleophilic ring-

opening process is likely to proceed in this transformation. 

Further applications of this method to synthesize other 

heterocycles are underway. 
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Chen for helpful discussions. We would like to thank LetPub 
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