COMMUNICATION

View Article Online

Enantioselective formal synthesis of ent-rhynchophylline and ent-isorhynchophylline†

Cite this: Chem. Commun., 2013, 49 1954

Received 27th November 2012. Accepted 18th December 2012

DOI: 10.1039/c2cc38540f

www.rsc.org/chemcomm

Mercedes Amat,*a Carlos Ramos,a Maria Pérez,a Elies Molins,b Pedro Florindo,ac Maria M. M. Santos^c and Joan Bosch^a

Starting from (S)-tryptophanol, a formal synthesis of ent-rhynchophylline and ent-isorhynchophylline, involving stereoselective cyclocondensation, spirocyclization, and alkylation reactions, and the final adjustment of the oxidation level at the oxindole and piperidine moieties, is reported.

Oxindole alkaloids are a diverse group of natural products¹ characterized by the presence of a spiro[pyrrolidine-3,3'oxindole] ring system,2 a privileged heterocyclic motif associated with a variety of bioactivity profiles.³ Most of the oxindole alkaloids incorporate an unrearranged secologanin skeleton and are biogenetically formed by oxidative rearrangement of secoyohimbane- or heteroyohimbane-type indole alkaloids. Representative members of this group are rhynchophylline and isorhynchophylline (Fig. 1),4 a pair of C-7 epimers that can be equilibrated through a ring-opened form via retro-Mannich/ Mannich reactions. These alkaloids exhibit a number of pharmacological effects⁵ and are the major tetracyclic oxindole components of Uncaria species, which have long been used in traditional Oriental medicine.6

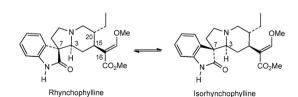
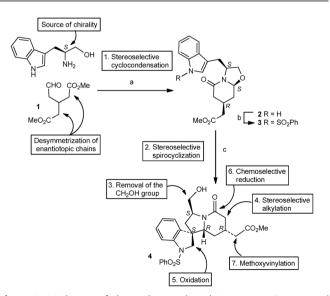



Fig. 1 Oxindole alkaloids

Although the stereogenic quaternary spirocenter and the three stereogenic centers on the piperidine ring make rhynchophyllines attractively challenging synthetic targets, they have received limited attention from the synthetic standpoint.⁷ In fact, only two different strategies have been used to assemble the spiro[pyrrolidine-3,3'-oxindole] moiety of these alkaloids: either a biomimetic oxidative rearrangement from an indolo[2,3-a]quinolizidine derivative 4g,7c,d or condensation of 2-hydroxytryptamine with an appropriate aldehyde. 7a,b

We present here an enantioselective synthesis of ent-rhynchophylline and ent-isorhynchophylline using (S)-tryptophanol as the starting material, which not only incorporates the tryptamine moiety of the natural products but also acts as the source of chirality. Our approach takes advantage of the methodology we have reported for the enantioselective spirocyclization of tryptophanol-derived oxazolopiperidone lactams, involving a Lewis acid-promoted cyclization of the corresponding N_{ind} -tosyl

Scheme 1 Initial steps of the synthesis and synthetic strategy. Reagents and conditions: (a) toluene, Dean-Stark, reflux, 24 h, 65% (7,8a-epi-2, 10%); (b) 30% NaOH, Bu₄NCl, PhSO₂Cl, CH₂Cl₂, rt, 20 h, 90%; (c) Et₃SiH, TiCl₄, CH₂Cl₂, reflux, 20 h, 93%.

^a Laboratory of Organic Chemistry, Faculty of Pharmacy, and Institute of Biomedicine (IBUB), University of Barcelona, 08028-Barcelona, Spain. E-mail: amat@ub.edu; Fax: +34 93 402 45 39; Tel: +34 93 402 45 40

^b Institut de Ciència de Materials (CSIC), Campus UAB, 08193-Cerdanyola, Spain

^c Faculty of Pharmacy, Research Institute for Medicines and Pharmaceutical Sciences, University of Lisbon, 1649-003 Lisbon, Portugal

[†] Electronic supplementary information (ESI) available: Detailed experimental procedures, copies of ¹H and ¹³C NMR spectra for all compounds. CCDC 912142 (2) and 912143 (5). For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c2cc38540f

Communication ChemComm

derivatives in the presence of Et₃SiH.⁸ Scheme 1 outlines the initial steps of the synthesis and the overall synthetic strategy.

The required bicyclic lactam 2, which already incorporates an acetate chain at the 4-position of the piperidone ring, was prepared by cyclocondensation of (S)-tryptophanol with the prochiral aldehyde-diester 1, in a process that involves the enantioselective desymmetrization¹⁰ of two enantiotopic chains.¹¹ The N-indole deactivating group, needed to direct the key cyclization at the indole 3-position, was benzenesulfonyl, 12 which was introduced in excellent yield under conventional solid-liquid phase transfer conditions. Treatment of sulfonyl derivative 3 with TiCl₄ in the presence of Et₃SiH resulted in a regio- and stereocontrolled cyclization, with concomitant reduction of the initially formed spiroindoleninium intermediate, leading to the tetracyclic spiroindoline 4 as a single stereoisomer in 93% yield. Interestingly, 4 already embodies three of the four stereogenic centers of the target natural products, with the appropriate relative configuration.

As outlined in Scheme 1, the synthesis of rhynchophyllines from the spiroindoline 4 would involve the following transformations: (i) removal of the hydroxymethyl group, (ii) stereoselective introduction of the C-20 ethyl substituent to obtain the required trans C₁₅-C₂₀ stereochemistry, (iii) oxidation of the indoline moiety to the oxindole functionality, (iv) chemoselective reduction of the lactam carbonyl, and finally, (v) introduction of the C-16 methoxyvinyl appendage.

The removal of the hydroxymethyl substituent, which has acted as an element of stereocontrol during the spirocyclization step, was accomplished by oxidation to a carboxylic acid, followed by a radical reductive decarbonylation via a selenoester¹³ to give the tetracyclic lactam 5 (Scheme 2).

At this point, to complete the carbon skeleton of 11, a known^{7b} synthetic precursor of rhynchophyllines, only the introduction of the C-20 ethyl substituent remained to be done. However, to avoid the competitive alkylation at the α -position of the ester group, the alkylation was performed from the protected alcohol derivative 6, which was obtained in good yield by LiBH4 reduction of 5 followed by protection with p-methoxybenzyl chloride. The alkylation of 6 was performed with ethyl iodide, using KHMDS as the base and HMPA as the cosolvent, to stereoselectively give the expected trans-3,4disubstituted 2-piperidone derivative 7.14 Then, the C-15 acetate chain was reinstalled (compound 8) by oxidative removal of the p-methoxybenzyl protecting group of 7 with DDQ, followed by oxidation of the resulting alcohol to a carboxylic acid and a subsequent esterification. After a smooth and efficient deprotection of the indoline nitrogen with 5% Na/Hg, spiroindoline 9 was oxidized with PhIO, leading to oxindole 10 in 70% yield. Finally, chemoselective reduction of the six-membered lactam carbonyl, without affecting the oxindole moiety, was satisfactorily accomplished by sequential treatment of **10** with AlH₃ and NaBH₃CN. ¹⁵ The resulting oxindole 11 showed ¹H- and ¹³C-NMR spectral data coincident with those reported^{7c} for rac-11. Taking into account that rac-11 has previously been converted^{7b} to (\pm) -rhynchophylline and (±)-isorhynchophylline, the synthesis of oxindole 11 constitutes a formal enantioselective synthesis of the nonnatural enantiomers of these alkaloids.

PhO₂S 4 PhO₂S 5
$$\frac{1}{4}$$
 $\frac{10}{4}$ $\frac{10}$ $\frac{10}{4}$ $\frac{10}{4}$ $\frac{10}{4}$ $\frac{10}{4}$ $\frac{10}{4}$ $\frac{10$

Scheme 2 Formal enantioselective synthesis of ent-rhynchophylline and entisorhynchophylline. Reagents and conditions: (a) IBX, DMSO, rt, 20 h, 79%; (b) NaClO₂, NaH₂PO₄, CH₃CN, t-BuOH, H₂O, 1-methylcyclohexene, rt, 1 h, then (PhSe)₂, n-PBu₃, CH₂Cl₂, reflux, 16 h, 64%; (c) AIBN, n-Bu₃SnH, benzene, reflux, 1 h, 65%; (d) LiBH₄, Et₂O, reflux, 48 h, 83%; (e) NaH, THF, rt, 2 h, then MPMCl, Bu₄NI, reflux, 16 h, 87%; (f) KHMDS, THF, rt, 2 h, then EtI, HMPA, rt, 16 h, 72% (20-epi-7, 19%); (g) DDQ, CH₂Cl₂/H₂O, rt, 1 h, 93%; (h) IBX, DMSO, rt, 20 h; (i) NaClO₂, NaH₂PO₄, CH₃CN, t-BuOH, H₂O, 1-Me-1-Chx, rt, 1.5 h, then Me₃SiCl, MeOH, rt, 24 h, 66% (three steps); (j) Na/Hg 5%, NaH₂PO₄, MeOH, 0 °C, 15 min, 88%; (k) PhIO, CH₂Cl₂, rt, 48 h, 70%; (l) AlH₃, THF, -78 °C (addition) to -50 °C, 30 min, then MeOH, rt, 20 min, then NaBH3CN, AcOH, rt, 20 min, 47%.

The results reported herein further illustrate the potential of tryptophanol-derived oxazolopiperidone lactams for the enantioselective synthesis of indole alkaloids. 16 Two notable aspects of the synthesis are the efficient, highly convergent, and totally stereoselective assembling of the tetracyclic spiro[indoline-3,1'-indolizidine] ring system of rhynchophyllines and the generation of the required oxindole functionality by oxidation of an N-unsubstituted indoline.17

Financial support from the Spanish Ministries of Science and Innovation (Project CTQ2009-07021/BQU) and Economy and Competitiveness (Project CTQ2012-35250), and from the AGAUR, Generalitat de Catalunya (Grant 2009-SGR-1111) is gratefully acknowledged. Thanks are also due to the MICINN (Spain) for a fellowship to C. R. and for a Spanish-Portuguese Integrated Action (AIB2010PT-00324), also funded by the Portuguese Fundação para a Ciência e a Tecnologia (E-07/11).

Notes and references

1 For reviews, see: (a) J. E. Saxton, in The Alkaloids, ed. R. H. F. Manske, Academic Press, New York, 1965, vol. 8, pp. 59-91; (b) J. S. Bindra, in The Alkaloids, ed. R. H. F. Manske, Academic Press, New York, 1973, vol. 14, pp. 84-121; (c) R. T. Brown, Indoles, The Monoterpenoid Indole Alkaloids, in The Chemistry of Heterocyclic Compounds, ed. J. E. Saxton, A. Weissberger and E. C. Taylor, Wiley, New York, 1983, vol. 25, part 4, pp. 85-97.

ChemComm Communication

- 2 For reviews on the synthesis of oxindole alkaloids, see: (a) C. Marti and E. M. Carreira, Eur. J. Org. Chem., 2003, 2209; (b) B. M. Trost and M. K. Brennan, Synthesis, 2009, 3003; (c) F. Zhou, Y.-L. Liu and J. Zhou, Adv. Synth. Catal., 2010, 325, 1381.
- 3 C. V. Galliford and K. A. Scheidt, Angew. Chem., Int. Ed., 2007,
- 4 Isolation: (a) H. Kondo, T. Fukuda and M. Tomita, J. Pharm. Soc. Jpn., 1928, 48, 321; (b) H. Kondo and T. Ikeda, J. Pharm. Soc. Jpn., 1937, 57, 881; structural elucidation: (c) J. C. Seaton and L. Marion, Can. J. Chem., 1957, 35, 1102; (d) J. C. Seaton, R. Tondeur and L. Marion, Can. J. Chem., 1958, 36, 1031; (e) J. C. Seaton, M. D. Nair, O. E. Edwards and L. Marion, Can. J. Chem., 1960, 38, 1035; stereochemistry: (f) Y. Ban and T. Oishi, Tetrahedron Lett., 1961, 791; (g) N. Finch and W. I. Taylor, J. Am. Chem. Soc., 1962, 84, 3871; (h) Y. Ban and T. Oishi, Chem. Pharm. Bull., 1963, 11, 451; (i) W. F. Trager, C. M. Lee, J. D. Phillipson, R. E. Haddock, D. Dwuma-Badu and A. H. Beckett, Tetrahedron, 1968, 24, 523; X-Ray crystal structure: (j) G. Laus and K. Wurst, Helv. Chim. Acta, 2003, 86, 181.
- (a) T.-H. Kang, Y. Murakami, K. Matsumoto, H. Takayama, M. Kitajima, N. Aimi and H. Watanabe, Eur. J. Pharmacol., 2002, 455, 27; (b) T.-H. Kang, Y. Murakami, H. Takayama, M. Kitajima, N. Aimi, H. Watanabe and K. Matsumoto, Life Sci., 2004, 76, 331; (c) C.-H. Chou, C.-L. Gong, C.-C. Chao, C.-H. Lin, C.-Y. Kwan, C.-L. Hsieh and Y.-M. Leung, J. Nat. Prod., 2009, 72, 830; for reviews, see: (d) J.-S. Shi, J.-X. Yu, X.-P. Chen and R.-X. Xu, Acta Pharmacol. Sin., 2003, 24, 97; (e) J. Zhou and S. Zhou, J. Ethnopharmacol., 2010, 132, 15.
- 6 W. Tang and G. Eisenbrand, Handbook of Chinese Medicinal Plants, Wiley, 2011, vol. 2, pp. 1213-1221.
- 7 Partial synthesis: from dihydrocorynantheine, see ref. 4g; from secologanin, see (a) R. R. Brown, C. L. Chapple and R. Platt, Tetrahedron Lett., 1976, 1401; Total racemic synthesis: (b) Y. Ban, M. Seto and T. Oishi, Chem. Pharm. Bull., 1975, 23, 2605; Formal racemic synthesis: (c) A. Deiters, M. Pettersson and S. F. Martin, J. Org. Chem., 2006, 71, 6547; Enantioselective formal synthesis: (d) K. Nagata, H. Ishikawa, A. Tanaka, M. Miyazaki, T. Kanemitsu and T. Itoh, *Heterocycles*, 2010, **81**, 1791.
- 8 M. Amat, M. M. Santos, A. M. Gómez, D. Jokic, E. Molins and J. Bosch, Org. Lett., 2007, 9, 2907.
- 9 Minor amounts (\sim 10%) of the 7,8a-epi derivative were also formed (2:7,8a-epi-2 ratio, 87:13).

- 10 For related desymmetrizations, see: (a) M. Amat, O. Bassas, N. Llor, M. Cantó, M. Pérez, E. Molins and J. Bosch, Chem.-Eur. J., 2006, 12, 7872; (b) M. Amat, M. M. M. Santos, O. Bassas, N. Llor, C. Escolano, A. Gómez-Esqué, E. Molins, S. M. Allin, V. McKee and J. Bosch, J. Org. Chem., 2007, 72, 5193. For reviews on the desymmetrization of prochiral or *meso* substrates, see: (c) R. S. Ward, *Chem. Soc. Rev.*, 1990, **19**, 1; (d) B. Danieli, G. Lesma, D. Passarella and S. Riva, in Advances in the Use of Synthons in Organic Chemistry, ed. A. Dondoni, JAI Press, London, 1993, vol. 1, pp. 143-219; (e) E. Schoffers, A. Golebiowski and C. R. Johnson, Tetrahedron, 1996, 52, 3769; (f) M. C. Willis, J. Chem. Soc., Perkin Trans. 1, 1999, 1765; (g) B. Danieli, G. Lesma, D. Passarella and A. Silvani, Curr. Org. Chem., 2000, 4, 231.
- 11 The absolute configuration of 2 and 5 was unambiguously established by X-ray crystallographic analysis. For full crystal details, see the ESI†.
- 12 Our initial studies were carried out starting from a lactam bearing a tosyl substituent on the indole nitrogen. However, all attempts to introduce the ethyl substituent at the α -position of the lactam carbonyl from the $N_{\rm ind}$ -tosyl analog of ${\bf 6}$ were unsuccessful. In some cases the alkylation occurred on the methyl group of the tosyl substituent.
- 13 S. M. Allin, C. I. Thomas, J. E. Allard, K. Doyle and M. R. J. Elsegood, Tetrahedron Lett., 2004, 45, 7103.
- 14 Minor amounts of 20-epi-7 were also formed (7: 20-epi-7 ratio, 4:1). Performing the alkylation at a lower temperature resulted in a lower yield.
- 15 S. F. Martin and M. Mortimore, Tetrahedron Lett., 1990, 31, 4557.
- 16 For reviews, see: (a) M. Amat, M. Pérez and J. Bosch, Synlett, 2011, 143; (b) M. M. M. Santos, in Heterocyclic Targets in Advanced Organic Synthesis, ed. M. do C. Carreiras and J. Marco-Contelles, Research Signpost, Kerala, India, 2011, pp. 69–82. See also: (c) S. M. Allin, C. I. Thomas, K. Doyle and M. R. J. Elsegood, J. Org. Chem., 2005, **70**, 357; (d) S. M. Allin, J. S. Khera, J. Witherington and M. R. J. Elsegood, Tetrahedron Lett., 2006, 47, 5737; (e) M. Amat, A. Gómez-Esqué, C. Escolano, M. M. M. Santos, E. Molins and J. Bosch, J. Org. Chem., 2009, 74, 1205.
- 17 An enantioselective formal synthesis of rhynchophyllines involving an organocatalyzed asymmetric Michael addition reaction to generate the first stereocenter has recently been reported: H. Zhang, X. Ma, H. Kang, L. Hong and R. Wang, Chem.-Asian. J., DOI: 10.1002/ asia.201201046.