

Full Paper

Process Development of an Efficient Kilogram-scale Preparation of a Preferential Dopamine D3 versus D2 Receptor Antagonist SIPI 6398 as a New Antipsychotic Candidate

Ainan Zhou, Xiaowen Chen, Yangli Qi, Gengli Duan, and Jianqi Li

Org. Process Res. Dev., Just Accepted Manuscript • DOI: 10.1021/acs.oprd.9b00182 • Publication Date (Web): 11 Jun 2019 Downloaded from http://pubs.acs.org on June 11, 2019

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Process Development of an Efficient Kilogram-scale Preparation of a Preferential Dopamine D₃ versus D₂ Receptor Antagonist SIPI 6398 as a New Antipsychotic Candidate

Ai-Nan Zhou,^{†,‡,1} Xiao-Wen Chen,^{‡,1} Yang-Li Qi,^{†‡} Geng-Li Duan,^{*,†} Jian-Qi Li^{*,‡}

[†]School of Pharmacy, Fudan University, 220 Handan Rd, Shanghai 200433, PR China
[‡]Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, 285
Gebaini Rd, Shanghai 201203, PR China

Ó

HN

о ∕≻он

HŅ∼

 $\overline{\langle}$

6 steps

OH

Ó

HN∼

ОН

 Page 3 of 21

ABSTRACT: Herein we describe the development of a kilogram-scale preparation of a preferential dopamine D_3 versus D_2 receptor antagonist SIPI 6398 (1) as a new alternative treatment for schizophrenia. Modification and optimization of the route includes one-pot synthesis of a *trans/cis* mixture of cyclohexyl ethyl acetate **19**, direct crystallization of cyclohexyl acetic acid **21** in *trans* configuration, avoidance of hazardous reagents to obtain mesylate **24**, and a salinization and recrystallization protocol to efficiently remove the olefinic impurity **31** from **12** (free base of **1**). Ultimately these improvements led to the successful and facile preparation of 2.7 kilogram of SIPI 6398 in nine steps with HPLC purity of > 99.9%.

Keywords: schizophrenia, D_3/D_2 receptor preferential antagonist, practical preparation, crystallization

INTRODUCTION

Schizophrenia is among the most severe and debilitating of the brain disorders and affects nearly 1% of the world's population.^{1,2} The symptoms of schizophrenia fall into three main categories: a) positive b) negative and c) cognitive. Most clinically available antipsychotic agents effectively alleviate positive and negative symptoms, but are ineffective at managing cognitive impairment. Therefore, antipsychotic agents with cognitive improvement efficacy represent an urgent clinical need for schizophrenic patients.

Preferential D₃ versus D₂ receptor antagonists enhance frontocortical cholinergic transmission and improve social cognition, which may be beneficial in alleviating cognitive impairment in schizophrenia.³ Our research team has been devoted to the discovery of potential atypical antipsychotics with D₃ versus D₂ receptor subtype selectivity. Recently discovered а series of novel and we potent N-(*trans*-4-(2-(4-(benzo[*d*]isothiazol-3-yl)piperazin-1-yl)ethyl)cyclohexyl)amides exhibiting this binding profile.^{4,5} Among these compounds, SIPI 6398 (1; Figure 1) was identified as our preferential D₃ versus D₂ receptor (22-fold) antagonist candidate showing cognitive improvement in animal models.⁴ To support its preclinical development and investigational new drug (IND) application, it is necessary to develop an efficient, practical and kilogram-scale process for the preparation of SIPI 6398.

Figure 1. Structure of SIPI 6398 (1).

The initial synthetic route for SIPI 6398 (Scheme 1) possesses some major drawbacks upon scale-up, specifically (i) low yield in the preparation of 4-((2-hydroxyethyl)cyclohexyl)acetamide **8**; (ii) use of hazardous reagents such as methylsulfonyl chloride; and (iii) the difficult hydrolysis of N-acetyl for the synthesis of cyclohexan-1-amine **11**. Therefore, a second generation synthesis of SIPI 6398 should be envisaged.

Scheme 1. Initial synthetic route of SIPI 6398^a

^{*a*}Reagents and conditions: (i) Triethyl phosphonoacetate, *t*BuOK, THF, 0~5 °C, 82-88%; (ii) H₂, 10%Pd/C, EA, rt, 89-92%; (iii) LiOH.H₂O, THF, H₂O, 40 °C, 80-85%; (iv) DMF, recrystallization, 50-55%; (v) EtOH, conc. H₂SO₄, reflux,

 83-87%; (vi) NaBH₄, MeOH, THF, reflux, 50-60%; (vii) Et₃N, MsCl, CH₂Cl₂, 0~5 °C, 81-86%; (viii) 3-(piperazin-1-yl)benzo[*d*]isothiazole, Na₂CO₃, KI, CH₃CN, reflux, 54-61%; (ix) 5%HCl, reflux, 80-85%; (x) 2-furoyl chloride, Et₃N, CH₂Cl₂, 0~5 °C, 89-92%; (xi) EtOH, 10%HCl, reflux, 80-84%.

Second-Generation Synthesis. Using N-(4-oxocyclohexyl)acetamide (2, Scheme 1) as the starting material resulted in water soluble product 8 bearing both acetamido and hydroxy substituents. Intermediate 8 was achieved through a tedious operation (three to four extractions) in acetone with low yield (50-60%) after concentration of the reaction mixture. Another shortcoming of using 2 as the starting material was that the N-acetyl was difficult to remove in the hydrolysis step to prepare 11.⁶ Therefore, our first focus was to identify a starting material containing a more hydrophilic and readily removable protective group that was commercially available on a large scale. Boc-4-aminocyclohexan-1-one 13 was selected as shown in Scheme 2.

First, two synthetic protocols were envisioned to prepare **1** (Scheme 2). In protocol 1, **1** was synthesized via steps similar to the initial synthetic route. Although the primary alcohol **15** could be obtained via facile extraction as well as easy deprotection of the Boc group to afford **11**, the key intermediate **14** was inefficiently obtained,⁶ which aborted this protocol. Our tentative experiments showed that the early introduction of the furoyl group produced positive results, and protocol 2 (Scheme 2) was worthy of further scale-up study.

One-pot Synthesis of a Trans/cis Mixture of Cyclohexyl Ethyl Acetate 19. The same reaction solvent (THF) used in the Wittig-Horner reaction (step 1) and hydrogenation (step 2) enabled one-pot synthesis of 2-(4-((tert-butoxycarbonyl)amino)cyclohexyl)acetate **17** as a trans/cis mixture (trans/cis isomer ratio, 1.51:1.0, GC method A) accompanied by higher isolated yield (enhanced from 81% to 90%) compared to the stepwise process. N-Boc deprotection with TFA in CH_2Cl_2 (step 3) to obtain **18** (trans/cis isomer ratio, 1.6:1.0, GC method B) followed by acylation with 2-furoyl chloride in CH_2Cl_2 afforded **19** (step 4, trans/cis isomer ratio, 1.67:1.0, HPLC method A). Similarly, one-pot operation of

steps 3 and 4 was implemented using CH_2Cl_2 as the reaction solvent with improved isolated yield (enhanced from 70% to 85%). By virtue of CH_2Cl_2 used during the posttreatment of hydrogenation for the preparation of **17**, the two one-pot steps were incorporated into a one-step operation to synthesize **19** in the same solvent. Thus, the synthetic route was shortened to three steps. The improved and facile operation facilitated high overall yield (70%, four steps) and work up of **19** at a scale of over 11 kg.

^{*a*}Reagents and conditions: (i) Triethyl phosphonoacetate, *t*BuOK, THF, 0~5 °C; (ii) H₂, 5%Pd/C-53%water, THF, rt; (iii) TFA, CH₂Cl₂, rt; (iv) 2-furoyl chloride, Et₃N, CH₂Cl₂, 0~5 °C; (v) LiOH.H₂O, THF, H₂O, 40 °C; (vi) CH₃CN, recrystallization; (vii) EtOH, EDC.HCl, DMAP, rt; (viii) NaBH₄, MeOH, THF, reflux; (ix) Et₃N, MsCl, CH₂Cl₂, 0~5 °C; (x) 3-(piperazin-1-yl)benzo[*d*]isothiazole, Na₂CO₃, KI, CH₃CN,

reflux; (xi)

reflux; (xi) EtOH, 10%HCl, reflux.

Direct Recrystallization Method to Prepare 2-(trans-4-(Furan-2-carboxamido)cyclohexyl)acetic Acid 21. In the initial synthetic route, the key intermediate 6 was obtained in *trans* configuration using direct recrystallization. We envisioned a similar protocol to achieve acid 21 in *trans* configuration. The *trans/cis* mixture of acid 20 was synthesized after hydrolysis of 19 using lithium hydroxide monohydrate in THF/H₂O. Then, a direct recrystallization was used to efficiently obtain 21 by solvent screening (Table 1). The purity was monitored by HPLC.

The results from Table 1 showed that the initial *trans/cis* isomer ratio (entry 1) was 3.6:1.0. Several solvents were screened, and ethanol (74.2:1.0) and dichloromethane (43.7:1.0) were ineffective. 2-Butanone (184.1:1.0), tetrahydrofuran (242.9:1.0) and isopropanol (237.1:1.0) exhibited moderate effects. Acetone (665.7:1.0), ethyl acetate (499.0:1.0), isopropyl acetate (402.8:1.0) and acetonitrile (525.3:1.0) gave the best results. Finally, acetonitrile was chosen as the optimal solvent considering both high yield (58%) and relatively low solvent usage (21 volumes). The direct recrystallization method using acetonitrile as the solvent was applied to produce **21** at multiple kilogram-scale.

Table 1. Screening of recrystallization solvents to prepare 21

HN~	20	OH <u>Recrystallization</u>		-OH
entry	20 (g)	solvent /20	trans/cis ratio ^b	yield ^c (%)
1		<i> a</i>	3.6:1.0	
2	5	EtOH (5)	74.2:1.0	34
3	4	Acetone (22)	665.7:1.0	52
4	5	2-Butanone (36)	184.1:1.0	48
5	3	THF (8)	242.9:1.0	33

6	6	Isopropanol (8)	237.1:1.0	40
7	5	Ethyl acetate (42)	499.0:1.0	64
8	10	Isopropyl acetate (56)	402.8:1.0	62
9	6	CH ₃ CN (21)	525.3:1.0	58
10	8	CH_2Cl_2 (60)	43.7:1.0	82 ^d

^{*a*} Before recrystallization. ^{*b*} The trans/cis isomer ratio was determined by HPLC. ^{*c*} Isolated yield. ^{*d*} Insoluble in CH₂Cl₂.

Condition Optimization for the Synthesis of Mesylate 24. With 21 in hand, mesylate 24 was achieved by three further steps: esterification under EDC.HCl/DMAP conditions (22, 95% isolated yield), reduction by NaBH₄-MeOH (23, 90% isolated yield), and methylation by methanesulfonyl chloride (90% isolated yield). The hazardous and expensive transportation of methanesulfonyl chloride limits its use at large scale. We further investigated 4-methylbenzensulfonate and halogenated (Cl, Br and I) derivatives (compounds 25-28) as substitute for methanesulfonyl chloride. Our tentative explorations showed that all four derivatives were obtained in low isolated yield (Scheme 3) by chromatography attributed to massive unconverted 23 (TLC analysis). Methanesulfonic anhydride was chosen as the alternative acylating agent due to the characteristics of good reactivity, low volatilization, and convenient transportation and storage. After investigation of bases (Na₂CO₃, NaOH, ammonium hydroxide, diisopropylethylamine and triethylamine), equivalent DMAP and anhydride, solvent (acetonitrile, ethyl acetate, CH₂Cl₂ and triethylamine/DMAP/methanesulfonic DMF). and anhydride (equivalent, 2.5:0.2:1.5)/DMF conditions displayed the highest isolated yield (88%) (Table 2, entry 8). The optimizations facilitated the work-up of 24 through simple operation without chromatography under mild conditions.

Scheme 3. Synthesis of derivatives of 24

Table 2. Sulfonylation conditions for preparing 24

		∕──OH Methane anhydrid	sulfonic e		OMs	\$
	1 .	DMAP	base	anhydride	temp	yield
entry	solvent	(equivalent)	(equivalent)	(equivalent)	(°C)	(%) ^b
1	CH ₃ CN ^a	0.5	$Na_2CO_3(2.0)$	1.7	0-5	28
2	$CH_2Cl_2^a$	0.5	NaOH (2.0)	1.5	0-5	51
3	Ethyl acetate ^a	0.3	NaOH (2.0)	1.5	0-10	39
4	$CH_2Cl_2^a$	0.5	Et ₃ N (3.0)	1.6	0-5	62
5	DMF	0.5	Et ₃ N (2.0)	1.5	0-5	87
6	DMF	0.3	DIPEA (2.5)	1.5	0-10	83
7	DMF	0.5	NH ₄ OH (3.0)	2.0	0-15	81
8	DMF	0.2	Et ₃ N (2.5)	1.5	0-5	88
9	DMF	0.2	Et ₃ N (2.5)	1.4	0-5	83
10	DMF	0.1	Et ₃ N (2.5)	1.5	0-5	79

^{*a*} Insoluble in 30 volumes of solvent. ^{*b*} Isolated yield.

Removal of the Olefinic Impurity 31. The synthesis of the free base of SIPI then completed by the $S_N 2$ coupling of 24 (12) was and 3-(piperazin-1-yl)benzo[d] isothiazole under mild basic conditions. The HPLC purity of crude product 12 was 98.5%, and the content of the main impurity was 1.5% (HPLC) (Table 3, entry 1). The results from LC/MS analysis showed that the molecular weight of the main impurity was 436, two units less than that of 1, indicating the existence of an olefinic moiety (29 or 31, Scheme 4). We proposed the possible process of forming the impurity: unconverted 16 during the hydrogenation step took part in the following steps to form the exocyclic olefin compound 29; or the Wittig-Horner reaction byproduct 30 (Scheme 5) joined in similar steps to form the endo olefin compound 31 (Scheme 4). 16 was not detected in 17 by HPLC analysis, discrediting the existence of 29.31^7 was obtained by a preparative separation method from crude product 12. We then focused on the removal of 31.

Table	3.	Purification	of 1
1 ant	υ.	1 ul mcauon	UI I

O HN N N N N N N N N N N N N N N N N N N	<u>Purification</u> 1
1 99.08% HPLC	> 99.9% HPLC

entry	substrate	recrystallization	12 or 1	31	yield ^e (%)
		solvent	$(\text{area \%})^d$	(area %) ^{d}	
1	12	/	98.50	1.50	/
2	1	EtOH/H ₂ O	99.08	0.92	85
3	1	MeOH/H ₂ O ^a	99.31	0.69	81
4	1	MeOH/H ₂ O ^b	99.39	0.61	62
5	1	MeOH/H ₂ O ^c	99.45	0.55	46
6	1	CH ₃ CN/H ₂ O	99.17	0.83	86
7	1	AcOH	98.89	1.01	58

^a Once. ^b Twice. ^c Three times. ^d Determined by HPLC analysis. ^e Isolated yield.

Scheme 4. Formation of the impurity

Scheme 5. Proposed mechanism for the formation of byproduct 30

Serious regulations and quality control are necessary to be considered an API (Active Pharmaceutical Ingredient). To obtain the API in high quality, the aim was to decrease the content of **31** to less than 0.1%. Our tentative experiments showed that the following salt formation step to prepare **1** under EtOH/10% HCl aqueous solution condition and further recrystallization from EtOH and water was inefficient at improving the purity (entry 2, HPLC 99.08%). Investigation of alternative recrystallization solvents (acetonitrile, methanol, DMF, etc.) and the number of recrystallizations failed to remove **31** (entries 3-8). Thus, we envisioned two possible methods to conduct scrupulous impurity control of **12**.

Method 1–Recrystallization of 12. The direct recrystallization method was applied to remove 31 from 12. Unexpectedly the purity was barely improved after

screening of several solvents (Table 4, entries 1-4). The inefficient recrystallization method was attributed to the similar polarities of **12** and **31** observed from HPLC result.

Method 2–Salt Formation Screening of 12 and recrystallization. Considering the potential solubility difference between 12 and 31 after acidifying with acids, several acids (oxalic acid, methanesulfonic acid, fumaric acid, etc.) were screened. The results from Table 4 (entries 7-11) showed that methanesulfonic acid (31, 0.55% HPLC), fumaric acid (31, 0.53% HPLC), succinic acid (31, 0.73% HPLC), acetic acid (31, 0.81% HPLC) and lactic acid (31, 0.66% HPLC) were ineffective. Both oxalic acid (entry 5, 31, 0.08% HPLC) and maleic acid (entry 6, 31, 0.29% HPLC) were efficient. Oxalic acid was chosen as the optimal acid because of its purity (99.92% HPLC) and yield (80% isolated yield).

Table 4.	Salt	formation	screening	of 12
			·····	

		Me (direct rec	thod 1 rystallizatio	n)	
		N-N-S		l 2 > 99.9%	6 HPLC
	98.50% HPLC	Me (salinization a	thod 2 nd neutraliz	zation)	
entry	acid	recrystallization	12	31	Yield ^b
		solvent	(area %	(area %	(%)
) <i>a</i>) <i>a</i>	
1	/	CH ₃ CN/MeOH	98.59	1.41	72
2	/	Acetone/MeOH	98.72	1.28	75
3	/	Ethyl acetate /MeOH	98.68	1.32	80
4	/	Ethyl acetate /CH ₂ Cl ₂	98.69	1.31	88
5	Oxalic acid	MeOH/H ₂ O	99.92	0.08	80
6	Maleic acid	MeOH/H ₂ O	99.71	0.29	72
7	Methanesulfonic acid	MeOH/H ₂ O	99.45	0.55	81
8	Fumaric acid	MeOH/H ₂ O	99.47	0.53	75

11	Lactic acid	MeOH/H ₂ O	99.34	0.66	80
10	Acetic acid	MeOH/H ₂ O	99.19	0.81	83
9	Succinic acid	MeOH/H ₂ O	99.27	0.73	77

^{*a*} Determined by HPLC analysis. ^{*b*} Isolated yield (three steps: salinization, recrystallization and neutralization).

The successful optimization was applied for the scale up of **12** with high HPLC purity (> 99.9%) at > 4-kg scale.

Ultimately, treatment of **12** with 10%HCl aqueous solution in EtOH furnished the crude product of **1** which was further slurried in EtOH to successfully prepare **1** as a white solid at 2.7-kilogram scale in 15% overall yield with high purity (> 99.9%, HPLC). The trans configuration of SIPI 6398 (**1**) was assigned via an X-ray crystallographic study (Figure 2).⁸

Figure 2. ORTEP diagram of 1 with 30% thermal ellipsoid plot for non hydrogen atoms with atom labeling

CONCLUSION

In summary, a practical and kilogram-scale preparation of preferential D3 versus D2 receptor antagonist SIPI 6398 (1) has been developed (Scheme 6). The new process addressed the main issues encountered in the original synthesis by changing the starting material and optimizing the conditions. In particular, **21**, the key intermediate in constructing the trans configuration of **1**, was facilely prepared using a direct crystallization method. Furthermore, a salinization and recrystallization

protocol to efficiently remove the olefinic impurity **31** guaranteed the quality of the API. Finally, these improvements led to the successful and easy preparation of 2.7 kilograms of SIPI 6398 in nine steps with high HPLC purity (99.94%).

EXPERIMENTAL SECTION

All solvents and reagents were used without further purification, unless otherwise stated. Melting points were determined on an electrothermal melting point apparatus and are uncorrected. NMR spectra were recorded on a Bruker AVANCE II 400 (400 MHz) with TMS as an internal standard in CDCl₃ or DMSO solution. Chemical shifts are given in δ values (ppm) and coupling constants (*J* values) are given in Hz. ESI mass spectra was acquired on a Waters ZQ2000 spectrometer. HRMS was performed on a Q-Tof micro spectrometer. Gas chromatography (GC) and high-performance liquid chromatography (HPLC) data were obtained using the following methods: GC method A: GC-FID DB-5 (30 m, 0.25 µm × 320 µm); split ratio: 20:1; temperature

programming: temp 70 °C for 3 min, temp 250 °C for 10 min; carrier gas: N₂; flow rate = 1.0 mL/min; temp 250 °C. GC method B: GC-FID DB624 (30 m, 1.4 μ m × 250 μ m); split ratio: 20:1; temperature programming: temp 50 °C for 3 min, temp 250 °C for 10 min; carrier gas: N₂; flow rate = 1.0 mL/min; temp 250 °C. HPLC method A: Phenomenex Luna PFP (2) (5 μ m, 4.6 mm × 250 mm); mobile phase A (CH₃CN) and B (10 mM K₂HPO₄ (pH = 3.0)), from 20:80 A/B to 80:20 A/B over 45 min; detection at 254 nm; flow rate = 1.0 mL/min; temp 30 °C. HPLC method B: Waters Sunfire C18 column, C18 (5 μ m, 250 mm ×4.6 mm); mobile phase A (MeOH) and B (20 mM K₂HPO₄ (pH = 5.5)), from 70:30 A/B to 10:90 A/B over 80 min; detection at 230 nm; flow rate = 1.0 mL/min; temp 30 °C.

Ethyl 2-(trans/cis-4-(furan-2-carboxamido)cyclohexyl)acetate (19). To a stirred solution of potassium tert-butanolate (8.8 kg, 78.8 mol) in THF (53 L) was added dropwise triethyl phosphonoacetate (13.9 kg, 61.9 mol) in THF (35 L) at 0-5 °C, and the solution was then stirred at room temperature for 1 h. A suspension of tert-butyl (4-oxocyclohexyl) carbamate (13) (12.0 kg, 56.3 mol) in THF (60 L) was added dropwise to the solution at 0-5 °C. The resulting solution was stirred for another 5 h at room temperature and subsequently quenched with water (30 L). The resultant mixture was extracted with THF (2 \times 10 L) after separation. 5%Pd/C-53%water (702 g) was added to the organic layer and hydrogenation was conducted with ambient temperature and pressure conditions. The resulting solution was stirred for 20 h and filtered. The filtrate was evaporated in vacuo to give a colorless semisolid. The residue was dissolved in dichloromethane (60 L) followed by washing with water (10 L) and brine (10 L). To the organic layer at room temperature was added TFA (19.3 kg, 168.9 mol) followed by stirring for 12 h. The resulting mixture was evaporated in vacuo to remove most of the TFA. CH₂Cl₂ (50 L) and 20% aqueous sodium hydroxide (14 kg) were added to the residual at 0-10 °C, stirred for 0.5 h and separated. After separation, another portion of 20% aqueous sodium hydroxide (12 kg) was added to the organic layer at room temperature, followed by a dropwise addition of 2-furoyl chloride (7.3 kg, 56.3 mol) in CH₂Cl₂ (8 L) at 0-5 °C

and stirring at room temperature for 4 h. The resulting mixture was separated, and the organic layer was washed with water (20 L), brine (20 L), dried over anhydrous sodium sulfate and evaporated in vacuo to give **19** (11.0 kg, 70%) as a white semisolid. MS m/z 280.2 [M + H]⁺.

2-(*trans***-4-(Furan-2-carboxamido)cyclohexyl)acetic acid (21).** A mixture of **19** (10.0 kg, 35.8 mol), lithium hydroxide monohydrate (3.5 kg, 82.3 mol), water (25 L) and THF (100 L) was stirred at 40 °C for 19 h. The resulting solution was evaporated in vacuo to remove most of the THF and acidified by hydrochloric acid (6.0 mol/L, 41 L) at 0-5 °C followed by stirring at room temperature for 5 h. The resulting mixture was filtered and washed with water (5 L) to yield a white solid, which was further recrystallized from CH₃CN (110 L) to yield **21** (4.6 kg, 51%) as a white solid with the trans/cis isomer ratio of 517.4:1.0 (HPLC method A, t_R = 13.8 min). Mp 185-187 °C; ¹H NMR (400 Hz, DMSO-*d*₆) δ 12.09 (br, 1H), 8.11-8.10 (m, 1H), 7.80 (d, *J* = 0.8 Hz, 1H), 7.08 (d, *J* = 2.0 Hz, 1H), 6.60 (dd, *J* = 2.0, 0.8 Hz, 1H), 3.69-3.66 (m, 1H), 2.11 (d, *J* = 4.4 Hz, 2H), 1.79-1.73 (m, 4H), 1.61-1.59 (m, 1H), 1.38-1.32 (m, 2H), 1.08-1.01 (m, 2H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 174.21, 157.35, 148.58, 145.14, 113.53, 112.18, 47.99, 41.54, 34.05, 32.35, 31.58; MS *m*/z 252.1 [M + H]⁺.

Ethyl 2-(*trans*-4-(furan-2-carboxamido)cyclohexyl)acetate (22). To a mixture of 21 (4.5 kg, 17.9 mol) and ethanol (5.2 kg) in CH₂Cl₂ (14 L), 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (4.1 kg, 21.5 mol) and 4-dimethylaminopyridine (1.7 kg, 14.3 mol) in CH₂Cl₂ (18 L) were added at room temperature. The resulting mixture was stirred at room temperature for 3 h and water (5 L) was added. The resulting solution was separated and washed with water (5 L), hydrochloric acid (2.0 mol/L, 11 L), brine (5 L); dried over anhydrous sodium sulfate; and evaporated in vacuo to yield 22 (4.7 kg, 95%) as a white solid in 97.2% purity (HPLC method A, t_R = 31.7 min). Mp 104-106 °C; ¹H NMR (400 Hz, DMSO- d_6) δ 8.10 (d, J = 1.6 Hz, 1H), 7.80 (s, 1H), 7.08 (d, J = 2.0 Hz, 1H), 6.60 (dd, J = 2.0, 1.6 Hz, 1H), 4.06 (q, J = 4.8 Hz, 2H), 3.68-3.67 (m, 1H), 2.19 (d, J = 4.8 Hz, 2H), 1.79-1.77 (m, 2H), 1.70-1.72 (m, 2H), 1.68-1.61 (m, 1H), 1.37-1.34 (m, 2H), 1.18 (t, J

 = 4.8 Hz, 3H), 1.09-1.05 (m, 2H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 172.56, 157.35, 148.57, 145.14, 113.54, 112.18, 60.12, 47.92, 41.23, 34.20, 32.29, 31.56, 14.63; MS *m/z* 280.2 [M + H]⁺.

N-(*trans***-4-(2-Hydroxyethyl)cyclohexyl)furan-2-carboxamide (23).** A mixture of **22** (4.5 kg, 16.1 mol), sodium borohydride (3.0 kg, 80.5 mol) and THF (36 L) was stirred under reflux for 0.5 h, and then methanol (9 L) was added dropwise to this mixture for 2 h at room temperature under the condition of a nitrogenous atmosphere. The resulting solution was stirred under reflux for 12 h and quenched with hydrochloric acid (6.0 mol/L, 27 L) at 0-35 °C. The resulting mixture was stirred for 1 h and alkalized with 50% sodium hydroxide solution (11 L). The resultant mixture was extracted with dichloromethane (2 × 24 L). The combined organic extracts were dried over anhydrous sodium sulfate and evaporated in vacuo to yield **23** (3.4 kg, 90%) as a white solid in 97.7% purity (HPLC method A, $t_{\rm R}$ = 16.2 min). Mp 135-137 °C; ¹H NMR (400 Hz, DMSO- d_6) δ 8.09 (d, *J* = 1.2 Hz, 1H), 7.79 (s, 1H), 7.08 (d, *J* = 2.0 Hz, 1H), 6.60 (dd, *J* = 2.0, 1.2 Hz, 1H), 4.33 (t, *J* = 3.2, 1H), 3.68-3.66 (m, 1H), 3.43 (dd, *J* = 7.2, 4.0 Hz, 2H), 1.79-1.74 (m, 4H), 1.34-1.30 (m, 5H), 0.98-0.96 (m, 2H); ¹³C NMR (100 MHz, DMSO- d_6) δ 157.33, 148.61, 145.11, 113.49, 112.17, 58.99, 48.36, 33.51, 32.61, 32.16; MS *m/z* 238.1 [M + H]⁺.

2-(*trans*-4-(Furan-2-carboxamido)cyclohexyl)ethyl methanesulfonate (24). To a solution of 23 (3.3 kg, 13.9 mol) and triethylamine (3.5 kg, 34.7 mol) in DMF (13.2 L), methanesulfonic anhydride (3.6 kg, 20.8 mol) in DMF (7 L) was added dropwise at 0~5 °C, and the resulting mixture was stirred for 3 h at ambient temperature. The resultant mixture was supplemented with water (80 L) and extracted with dichloromethane (2 × 8 L). The combined organic extracts were washed with water (2 × 5 L) and brine (10 L) and then dried over anhydrous sodium sulfate. The solvent was removed under reduced pressure to give crude 24, which was further slurried in petroleum ether/ethyl acetate (1:1, 32 L) under reflux to afford 24 (3.9 kg, 12.2 mol) as a colorless solid in 98.2% purity (HPLC method A, t_R = 40.9 min). Mp 140-142 °C; ¹H NMR (400 Hz, DMSO- d_6) δ 8.10 (d, J= 5.6 Hz, 1H), 7.80 (d, J= 1.2

Hz, 1H), 7.08 (d, J = 2.4 Hz, 1H), 6.60 (dd, J = 2.4, 1.2 Hz, 1H), 4.24 (t, J = 4.4, 2H), 3.70-3.66 (m, 1H), 3.17 (s, 3H), 1.80-1.76 (m, 4H), 1.60-1.57 (m, 2H), 1.37-1.32 (m, 3H), 1.06-1.00 (m, 2H); ¹³C NMR (100 MHz, DMSO- d_6) δ 157.35, 148.58, 145.14, 113.54, 112.19, 69.15, 48.15, 37.00, 35.82, 33.32, 32.38, 31.62; MS m/z 316.1 [M + H]⁺.

N-(trans-4-(2-(4-(Benzo[d]isothiazol-3-yl)piperazin-1-l)ethyl)cyclohexyl)fura (12). mixture of n-2-carboxamide А (3.6 kg, 11.4 mol), 3-(piperazin-1-yl)benzo[d]isothiazole (2.4 kg, 10.9 mol), sodium carbonate (2.9 kg, 27.3 mol), potassium iodide (9.0 g, 54.5 mmol), and CH₃CN (72 L) was stirred under reflux for 24 h. The resulting solution was cooled to ambient temperature and filtered and then washed with CH₃CN (2×3 L). The filter cake was slurried in CH₂Cl₂ (15 L) and water (20 L) and then separated. The organic layer was washed with water (5 L) and brine (5 L) and concentrated under reduced pressure to yield crude product 12 (3.8 kg, 80%) as a colorless solid. To a stirred solution of oxalate dihydrate (1.2 kg, 9.5 mol) in MeOH (77 L) and water (11 L) was added crude 12 (3.8 kg, 8.7 mol). The mixture was stirred under reflux for 1 h after clarification, cooled to room temperature and filtered. The obtained solid was recrystallized from MeOH/water (8:1) and alkalized with 10% sodium hydroxide solution in CH₂Cl₂. The organic layer was washed with water (5 L) and brine (5 L) and then concentrated under reduced pressure to afford 12 (3.1 kg, 80%) as a white solid with 99.92% purity (HPLC method B, $t_{\rm R}$ = 61.7 min). Mp 188-190 °C; ¹H NMR (400 Hz, DMSO-d₆) δ 8.15-8.11 (m, 3H), 7.81 (s, 1H), 7.60 (t, J = 4.8 Hz, 1H), 7.48 (t, J = 4.8 Hz, 1H), 7.10 (d, J = 2.0 Hz, 1H), 6.60 (t, J = 0.8 Hz, 1H), 4.08-4.06 (m, 2H), 3.60-3.58 (m, 1H), 3.50-3.48 (m, 2H), 3.27-3.25 (m, 2H), 3.21-3.18 (m, 4H), 1.82-1.77 (m, 4H), 1.68-1.65 (m, 2H), 1.38-1.36 (m, 3H), 1.07-1.05 (m, 2H); ¹³C NMR (100 MHz, DMSO-d₆) δ 162.70, 157.39, 152.62, 148.58, 145.17, 128.62, 127.45, 125.12, 124.50, 121.69, 113.55, 112.19, 54.38, 50.97, 48.14, 46.89, 34.81, 32.30, 31.72, 30.32; MS m/z 439.2 [M + H^+ ; HRMS (ESI) m/z calcd for $C_{24}H_{31}N_4O_2S [M + H]^+ 439.2168$, found 439.2271.

N-(*trans*-4-(2-(4-(Benzo[*d*]isothiazol-3-yl)piperazin-1-l)ethyl)cyclohexyl)fura n-2-carboxamide hydrochloride (SIPI 6398). A mixture of 12 (3.0 kg, 6.8 mol),

 EtOH (30 L) and 10% aqueous hydrochloric acid solution (7.5 mol) was stirred under reflux for 1 h. The resulting mixture was cooled to room temperature and filtered to yield a white solid, which was slurried in ethanol (24 L) at 60 °C and filtered to afford 2.7 kg of SIPI 6398 with 99.94% purity (HPLC method B, $t_{\rm R}$ = 61.7 min) as a white solid (85% yield). Mp > 270 °C; Anal.Calcd for C₂₄H₃₀N₄O₂S.HCl: C, 60.68; H, 6.58; N, 11.79. Found: C, 60.60; H, 6.61; N, 11.74.

AUTHOR INFORMATION

Corresponding Author

Jianqi Li.

*Telephone: +86 21 20572000. E-mail: lijianqb@126.com.

Gengli Duan.

*Telephone: +86-21-54237208. E-mail: glduan@shmu.edu.cn.

¹Authors Ai-Nan Zhou and Xiao-Wen Chen contributed equally.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work is supported by National Natural Science Foundation of China (Grant No. 81803371), Key Technologies R&D Program of Shanghai Municipal Science and Technology Commission (Grant No. 17431903800), Shanghai Rising-Star Program (Grant No. 19QB1406200), and the National Science and Technology Major Project (Grant No. 2018ZX09301028-002).

REFERENCES

(1) Saha, S.; Chant, D.; Welham, J.; McGrath. A Systematic Review of the Prevalence of Schizophrenia. *PLoS Med.* **2005**, *2* (5), 413-433.

(2) Chong, HY.; Teoh, SL.; Wu, DBC.; Kotirum, S.; Chiou, CF.; Chaiyakunapruk, N.
Global Economic Burden of Schizophrenia: A Systematic Review. *Neuropsychiatr. Dis. Treat.* 2016, *12*, 357-373.

(3) Millan, M.J.; D.C.ra, B.; Dekeyne, A.; Panayi, F.; D.G.oote, L.; Sicard, Dée.;

Cistarelli, L.; Billiras, R.; Gobert, A. Selective Blockade of Dopamine D₃ versus D₂ Receptors Enhances Frontocortical Cholinergic Transmission and Social Memory in Rats: A Parallel Neurochemical and Behavioural Analysis. *J. Neurochem.* **2007**, *100* (4), 1047-1061.

(4) Chen, X. W.; Sun, Y. Y.; Fu, L.; Li, J. Q. Synthesis and Pharmacological Characterization of Novel N-(trans-4-(2-(4-(benzo[d]isothiazol-3-yl)piperazin-1-yl)ethyl)cyclohexyl)amides as Potential Multireceptor Atypical Antipsychotics. *Eur. J. Med. Chem.* 2016, *123*, 332-353.

(5) Li, J. Q.; Chen, X. W.; Ma, Z. L.; Zhang, L.; Cui, N. Preparation of benzoisothiazole compounds as antipsychotic drugs. US9550741B2, 2017.

(6) Chen, X. W.; Ni, F.; Liu, Y.; Fu, L.; Li, J. Q. A New and Practical Synthesis of Cariprazine via the Facile Construction of 2-(trans-4-(3,3-Dimethylureido)cyclohexyl)acetic acid. *Synthesis.* 2016, 48 (18), 3120-3126.

(7) The impurity **31** was isolated by preparative separation method (Instrument: Shimadzu LC-20AP*3 Prep HPLC (PrepL-GB); Column: Ximate C18, 5 µm, 150 × 25 mm I.D.; Mobile phase: A for H₂O (0.05% ammonia hydroxide) and B for MeOH; Gradient: B 65% in 13 min linearly; Flow rate: 35 mL/min; Column temperature: R.T.; Wavelength: 220 nm; Sample preparation: Compound dissolved in MeOH with 10 mg/mL concentration; Injection: 500 µL per injection.) and confirmed by ¹H NMR, MS and HRMS. Mp 152-154 °C; ¹H NMR (400 Hz, CDCl₃) δ 7.89-7.82 (m, 2H), 7.49 (t, *J* = 5.2 Hz, 1H), 7.43-7.39 (m, 1H), 7.36 (d, *J* = 5.2 Hz, 1H), 7.11 (d, *J* = 2.0 Hz, 1H), 6.49 (dd, *J* = 2.0 Hz, 0.8 Hz, 1H), 6.37 (d, *J* = 5.2 Hz, 1H), 5.47-5.46 (m, 1H), 4.28-4.26 (m, 1H), 3.77 (brs, 4H), 3.77 (brs, 4H), 2.78-2.74 (m, 2H), 2.48-2.38 (m, 3H), 2.18-2.15 (m, 2H), 1.97-1.94 (m, 2H), 1.76-1.74 (m, 1H); MS *m/z* 437.2 [M + H]⁺; HRMS (ESI) m/z calcd for C₂₄H₂₉N₄O₂S [M + H]⁺ 437.2011, found 437.2018. (8) Crystallographic data for SIPI 6398 have been deposited with the Cambridge Crystallographic Data Centre (CCDC 1907982). Copies of the data can be obtained, free of charge, on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK,

1	
2	
3	(fax: +14 (0) 1222 226022 or a mail: donosit@ooda.com oo Ulk)
4	(1ax. +44-(0)) 1225-550055 of e-mail. deposit@ccuc.cam.ac.Ok).
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
10	
17	
10	
19	
20	
21	
22	
23	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
4/	
48 40	
49 50	
50	
5 I 5 2	
52 53	
55	
5 4 55	
56	
57	
58	
59	
60	