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As a result of its very peculiar structural and electronic
properties, the phosphirene ring occupies a special niche in
carbon ± phosphorus heterocyclic chemistry.[1] Whereas the
foundations of its chemistry are now well established, almost
nothing is known about oligomeric or macrocyclic molecules
containing several phosphirene units. Recently, both 2,2'-
biphosphirenes[2] and the related 2,2'-bisphosphiranes[3] have
been described, but their syntheses cannot by easily extrapo-
lated to yield higher oligomers. Herein, we wish to present an
iterative approach which opens a route to a new class of
polyphosphirenes.

Our initial idea was to synthesize a 1-alkynylphosphirene
derivative and to investigate the reactivity of its C�C triple
bond toward terminal phosphinidene complexes. For this
purpose, we needed to prepare an alkynylphosphinidene
precursor. Accordingly, we first synthesized the 1-alkynyl-
phosphole 2 and the corresponding P ± W(CO)5 complex 3
from the 1-cyanophosphole 1.[4] Fearing a [P�C�C] self-
condensation of the alkynylphosphinidene intermediate, we
then decided to combine the synthesis of the 7-phosphanor-
bornadiene precursor[5] with its generation and trapping by a
reactive alkyne such as diphenylacetylene (tolan).[6] On that
basis, 3 was allowed to react with a 10:6 mixture of dimethyl
acetylenedicarboxylate and tolan. Tolan proved to compete
efficiently with the self-condensation of the phosphinidene
intermediate and the desired 1-alkynylphosphirene complex 4
was obtained in satisfactory yield (Scheme 1).
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Scheme 1. Synthesis of a 1-alkynylphosphirene complex.

The C�C triple bond of 4 is highly hindered by the
phosphirenyl substituent, nevertheless, a typical terminal
phosphinidene complex such as [PhPW(CO)5] readily cyclo-
adds to it to give the 1,2'-biphosphirene 6 (Scheme 2).
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Scheme 2. Synthesis of a 1,2'-biphosphirene complex.

2JP,P� 11 Hz. At this point, it is interesting to recall that, in
many cases, terminal phosphinidene complexes insert into the
ring PÿC2 bond of 2-alkynylphosphirenes, thus preventing the
formation of the expected 2,2'-biphosphirenes.[7] Clearly, a
2-alkynyl substituent weakens the ring PÿC bonds, whereas a
1-alkynyl substituent does not. This success led us to attempt
the condensation of 4 with the system [3�MeO2C-C�C-
CO2Me], the synthetic equivalent of the 7-phosphanorborna-
diene precursor of [PhC�CPW(CO)5] employed above. This
new experiment was again successful (Scheme 3).
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Scheme 3. Synthesis of a triphosphirene complex.

The 31P NMR parameters of 7 are very similar to those of 6,
except that the two phosphorus nuclei resonate at almost the
same frequency: d(31P)�ÿ184.0 and ÿ187.1, 2JP,P� 16 Hz.
Noteworthy is that 7 was formed as a minor by-product in the
synthesis of 4. The availability of 7 gave us the possibility to
check the validity of our iterative approach. By using the
method which converts 4 into 6 we could transform 7 into the
triphosphirene 8 (Scheme 3).

The triphosphirene 8 was formed as a 1:1 mixture of two
diastereomers showing characteristic 31P NMR spectra: 8 a :
d(31P)�ÿ188.5 (P1), ÿ169.8 (P2), ÿ139.3 (P3), 2JP1,P2� 4 Hz,
2JP2,P3� 14 Hz; 8 b : d(31P)�ÿ187.0 (P1), ÿ173.8 (P2), ÿ139.0
(P3), 2JP1,P2� 9 Hz, 2JP2,P3� 21 Hz. These two isomers were
difficult to separate by standard chromatographic procedures.
However, a slow recrystallization in hexane/toluene yielded
pure crystals of 8 a. The X-ray data are presented in (Fig-
ure 1).[8] The structural parameters of the first phosphirene
ring (P1) are very close to those of the prototypical 1,2,3-
triphenylphosphirene complex [(PhC)2PhPW(CO)5].[6] Both

Figure 1. Structure of 8 a. Hydrogen atoms are omitted for clarity. Selected
distances [�] and angles [8]: P1-C1 1.793(5), P1-C2 1.781(5), P1-C3
1.804(5), P1-W1 2.473(1), C1-C2 1.324(7), P2-C3 1.809(5), P2-C4 1.803(5),
P2-C5 1.788(5), C3-C4 1.326(6), P2-W2 2.469(1), P3-C5 1.818(4), P3-C6
1.796(5), P3-C31 1.818(5), P3-W3 2.488(1), C5-C6 1.321(7); C1-P1-C2
43.5(2), C1-P1-C3 103.5(2), C1-P1-W1 125.9(2), C2-P1-C3 104.6(2), C2-P1-
W1 124.8(2), C3-P2-C4 43.1(2), C3-P2-C5 106.7(2), C3-P2-W2 129.7(1), C4-
P2-C5 105.4(2), C4-P2-W2 127.5(2), C5-P3-C6 42.9(2), C5-P3-C31 106.5(2),
C5-P3-W3 124.8(1), C6-P3-C31 106.5(2), C6-P3-W3 124.9(2).

the second (P2) and third rings (P3) show elongated PÿC ring
bonds. This might be the result of steric compression, which
tends to increase the distances between the bulky P ± W units.
However, as we have seen, this weakening of the ring PÿC
bonds does not interfere with the [P�C�C] condensation
process. This process is both original and useful, and appears
to have no equivalent in the related silirene field.[9] Finally, the
formation of a small amount of 7 during the synthesis of 4
indicates that the possibility exists to create longer oligophos-
phirene chains using a one-pot procedure. Since various
techniques exist to obtain free phosphirenes from their
complexes,[10] an interesting coordination chemistry can be
built around such chains.

Experimental Section

2, 3 : A solution of the lithium salt of phenylacetylene (1.3 equiv) in diethyl
ether was added at ÿ50 8C to a solution of 1-cyano-3,4-dimethylphosphole
(1)[4] (7 g, 5� 10ÿ2 mol) in THF (150 mL). The mixture was then stirred for
0.5 h at RT. After evaporation of the solvent, the residue was purified by
chromatography on silica gel eluting with hexane/dichloromethane (4/1) to
yield 2 (8 g, 76 %): 31P NMR (81 MHz, THF): d�ÿ40.6. Complex 3 : 31P
NMR (CDCl3): d�ÿ25.3 (1J(P,W)� 219.7 Hz); 13C NMR (50 MHz,
CDCl3): d� 17.7 (d, 3J(C,P)� 13.3 Hz; Me), 77.9 (d, 1J(C,P)� 76.0 Hz;
P-C�C), 108.1 (d, 2J(C,P)� 13.8 Hz, P-C�C), 121.4 (s; PhC�C, Cipso), 127.0
(d, 1J(C,P)� 50.2 Hz; CH-P), 152.1 (d, 2J(C,P)� 12.2 Hz; Me-C�), 196.2
(d, 2J(C,P)� 7.5 Hz; cis-CO), 199.5 (d, 2J(C,P)� 18.5 Hz; trans-CO);
1H NMR (200 MHz, CDCl3): d� 2.19 (s; Me), 6.36 (d, 2J(H,P)� 38.1 Hz;
CH-P); MS (184W): m/z (%): 536 (10) [M�], 396 (100) [M�ÿ 5CO];
elemental analysis (%) calcd for C18H13O5PW: C 42.53, H 2.42; found: C
42.78; H, 2.46.

4 : A solution of 3 (2.15 g, 5 mmol), dimethyl acetylenedicarboxylate
(1.25 mL, 10 mmol) and diphenylacetylene (1.1 g, 6.25 mmol) in toluene
(10 mL) was heated at 70 ± 75 8C for 5 h. After evaporation of the solvent,
the residue was purified by column chromatography eluting with hexane/
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Steam-Stable MSU-S Aluminosilicate
Mesostructures Assembled from Zeolite
ZSM-5 and Zeolite Beta Seeds**
Yu Liu, Wenzhong Zhang, and Thomas J. Pinnavaia*

The structural integrity of Al-MCM-41 and related meso-
porous aluminosilicate molecular sieves has been significantly
improved in recent years through direct assembly and post-
synthesis treatment methods.[1] Nevertheless, the hydrother-
mal instability and mild acidity remain inferior to conven-
tional zeolites and limit potential applications in petroleum
refining and fine chemicals synthesis.[2] One might expect to
improve both the stability and acidity of these materials if
zeolite-like order could be introduced into the pore walls. One
approach, first introduced by van Bekkum and co-workers,[3]

is to transform the preassembled walls of Al-MCM-41 into
zeolitic structures by post-assembly treatment with a micro-
porous zeolite structure director, such as tetrapropylammo-
nium cations. More recent studies have shown that the walls of
the mesostructure can indeed be converted to a zeolitic
product, but the microporous zeolite phase (ZSM-5) is
segregated from the mesostructure, giving rise to ZSM-5/
MCM-41 composites.[4] These composites exhibited an en-
hancement in acidity for hydrocarbon cracking in comparison
to mechanical mixtures of ZSM-5 and MCM-41 and an
improvement in steam stability for purely siliceous composi-
tes.[4c]

We recently reported an alternative approach to more
acidic and hydrothermally stable mesostructures based on the
direct assembly of nanoclustered aluminosilicate precursors
that normally nucleate zeolite type Y crystallization.[5] These
protozeolitic species, known as ªzeolite seedsº, promote
zeolite nucleation by adopting AlO4 and SiO4 connectivities
that resemble the secondary building units of a crystalline
zeolite.[6] The assembly of the Na�-nucleated zeolite type Y
(faujasitic) seeds under hydrothermal conditions in the
presence of cetyltrimethylammonium ions afforded hexago-
nal MSU-S mesostructures with Si/Al ratios in the range 1.6:1
to 10:1. The replacement of Na� by NH4

� ions in the as-made
mesostructure, followed by calcination in the presence of the
surfactant, afforded exceptionally acidic and steam-stable
mesostructures. However, the steam stability was enhanced
by structure-stabilizing occlusions of carbon that formed
during the calcination process. That is, the steam stability at
800 8C was in part a consequence of the exceptional acidity of
a framework that formed structure-stabilizing carbon, and not
entirely a result of an intrinsically stable framework.

Here we also make use of protozeolitic nanoclusters to
form exceptionally acidic and steam-stable aluminosilicate

dichloromethane (10/1). Phosphirene complex 4 was isolated as yellow
crystals (2 g, 66 %). 31P NMR (81 MHz, CDCl3): d�ÿ201.0 (1J(P,W)�
294.9 Hz); 13C NMR (50 MHz, CDCl3): d� 89.3 (d, 1J(C,P)� 18.8 Hz;
P-C�C), 93.9 (d, 2J(C,P)� 5.8 Hz; P-C�C), 120.9 (s; C�C-Ph, Cipso), 195.9
(d, 2J(C,P)� 9.1 Hz; cis-CO), 198.4 (d, 2J(C,P)� 34.8 Hz; trans-CO); MS:
m/z (%): 634 (6) [M�], 494 (100) [M�ÿ 5 CO]; elemental analysis (%) calcd
for C27H15O5PW: C 51.10, H 2.36; found: C 51.48, H, 2.42.

6 : Biphosphirene 6 was isolated as light yellow crystals by chromatography
with hexane/dichloromethane (4/1). 13C NMR (50 MHz, CDCl3): d� 137.4
(d, 1J(C,P)� 5.4 Hz; Cipso, Ph-P), 143.2 (pseudo t, 1J(C,P)� 2J(C,P)�
13.6 Hz; Ph-C(P)�C-P); MS: highest mass 785 [M�ÿ 10 COÿH].

7: Biphosphirene 7 was isolated as a yellow powder by chromatography
with hexane/dichloromethane (10/1). 13C NMR (50 MHz, CDCl3): d� 89.5
(d, 1J(C,P)� 23.6 Hz; P-C�C), 95.2 (d, 2J(C,P)� 6.5 Hz, P-C�C), 120.5 (s;
C�C-Ph, Cipso), 144.6 (pseudo t, 1J(C,P)� 2J(C,P)� 15 Hz; PhC(P)�C-P);
MS: highest mass 632; elemental analysis (%) calcd for C40H20O10P2W2: C
44.07, H 1.85; found: C 44.03, H 1.75.

8 : Triphosphirene 8 was isolated as light yellow crystals by chromatography
with hexane/dichloromethane (4/1); elemental analysis calcd (%) calcd for
C51H25O15P3W3: C 40.24, H 1.66; found: C 39.98, H 1.56.
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