View Article Online View Journal

ChemComm

Accepted Manuscript

This article can be cited before page numbers have been issued, to do this please use: M. Jeganmohan and N. Y. More, *Chem. Commun.*, 2017, DOI: 10.1039/C7CC04829G.

This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the **author guidelines**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the ethical guidelines, outlined in our <u>author and reviewer resource centre</u>, still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.

rsc.li/chemcomm

www.rsc.org/xxxxx

COMMUNICATION

ChemComm Accepted Manuscript

Solvent-controlled selective synthesis of biphenols and quinones via oxidative coupling of phenols

Nagnath Yadav More^a and Masilamani Jeganmohan^{*a,b}

Received (in XXX, XXX) Xth XXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX 5 DOI: 10.1039/b000000x

A regioselective synthesis of unsymmetrical and symmetrical biphenols and binaphthols via oxidative coupling of phenols or naphthols in the presence of K₂S₂O₈ in CF₃COOH at ambient conditions is described. Interestingly, 1:1 ratio of ¹⁰ H₂O and CH₃CN solvent mixtures at 80 °C instead of CF₃COOH provided substituted unsymmetrical quinones. A gram scale synthesis of biphenols and binaphthols was demonstrated.

Biphenols and binaphthols are highly valuable organic ¹⁵ molecules and these structural units are present in various biologically active molecules, natural products and functional materials.¹ In addition, these molecules are used as ligands in various organic transformations and enantioselective reactions.¹ The oxidative coupling of phenols or naphthols mediated by ²⁰ metal salts or oxidizing agents is a powerful and easily affordable

- method to synthesize biphenol and binaphthol molecules in a highly regioselective manner. It is important to note that the nature prefers to synthesize natural products and biomaterials via the oxidative phenol coupling by using oxidative enzymes such ²⁵ as laccase, peroxidase and cytochrome P450 (CYP) as catalysts.²
- Traditionally, biphenols and binaphthols are prepared by the coupling of phenols or naphthols by using a stoichiometric amount of metal salts.³ Later, the oxidative coupling reaction was carried out with metal catalysts and stoichiometric amount of ³⁰ oxidants.⁴ In the meantime, a similar type of coupling reaction has been done by employing organic reagents such as hypervalent
- iodine(III) reagents, peroxides, DDQ, NaOCl and NaNO₂.⁵ Subsequently, the oxidative coupling reaction can be achieved via an electrochemical oxidation pathway using boron-doped ³⁵ diamond electrode (eq 1).⁶

The direct oxidative coupling of substituted Guaiacols and phenols to symmetrical biphenols (*ortho-ortho* coupling reaction) by the metal catalysts or organic reagents has been well documented in the literature. For the first time, by applying BDD ⁴⁰ anode, Waldvogel's group synthesized the unsymmetrical biaryl in the homocoupling reaction of Guaiacol derivative via the radical mechanism.^{6a} Very recently, Pappo's group has prepared unsymmetrical biaryl molecule by the homocoupling of Guaiacol derivative in the presence of iron catalyst via radical-anion ⁴⁵ pathway (eq 1).^{4k}

Inspiration by this work and our continuous interest on persulfate chemistry prompted us to explore the possibility of using persulfate reagent for the oxidative coupling of phenols and ⁵⁰ naphthols.⁷ Herein, we report the oxidative dehydrogenative homocoupling of phenols providing unsymmetrical and symmetrical biphenols in the presence of K₂S₂O₈ in CF₃COOH at ambient conditions. When 1:1 ratio of H₂O and CH₃CN solvent mixtures was used instead of CF₃COOH, *para-para* coupling ⁵⁵ biphenols and quinone derivatives were obtained. It is believed that the coupling reaction proceeds via the radical intermediate and the corresponding radical intermediate allows the incoming nucleophiles to attack at the various sites of phenols selectively. Thus, in the reaction, *ortho-ortho, ortho-meta, meta-para* and ⁶⁰ *para-para* coupling products were observed from the homocoupling of phenols.

Scheme 1 Cross-coupling of phenols 1a-b

Initialy, the oxidative homocoupling of 2,6-dimethoxylphenol (1a) was carried out with $K_2S_2O_8$ in CF₃COOH at room temperature for 4 h. Interestingly, in this reaction, only unsymmetrical biphenol 2a was observed in 71% yield via the 5 meta, para C-H coupling corresponding with the hydroxy group of phenol 1a (Scheme 1). No other competitive symmetrical ortho-ortho coupled biphenol was observed in the reaction. The coupling reaction did not proceed without K₂S₂O₈. Apart from $K_2S_2O_8$, the reaction was also examined with $Na_2S_2O_8$, 10 (NH₄)₂S₂O₈, PhI(OAc)₂ and oxone. Among them, (NH₄)₂S₂O₈ was as effective as $K_2S_2O_8$, giving **2a** in 65% yield. $Na_2S_2O_8$ and oxone were partially effective, affording 2a in 40% and 49% yields, respectively. PhI(OAc)₂ inefficient for the reaction. CF₃COOH is also crucial for the reaction. AcOH and iso-PrOH 15 solvents were less effective, providing product 2a in 31% and 23% yields, respectively. Other solvents MeOH, DCE, H₂O and CF₃SO₃H were not effective. The coupling reaction was examined with various amount of K₂S₂O₈. Using 1.0 equiv and 1.5 equiv of K₂S₂O₈ product 2a was observed only in 55% and $_{20}$ 66% yields, respectively. With 2.0 equiv of $K_2S_2O_8$, product 2a was observed in 71% yield (Scheme 1). In this transformation, the naturally occurring Syringol undergoes SET mechanism giving phenol cationic radical intermediate A with K₂S₂O₈. Further, intermediate A was converted into para-phenoxyl radical 25 B under the reaction conditions (see ESI, page S4-S7). The stability of phenoxyl and phenol cationic radical intermediates was well studied in the literature.⁸ Later, intermediate **B** undergoes radical-anion coupling with another molecule 2a to produce exclusively unsymmetrical biphenol 2a. Next, the 30 oxidative coupling reaction was examined with 4-methyl-2methoxy phenol (1b) (Scheme 1). In the reaction, interestingly 49% yield of ortho-meta coupling unsymmetrical biphenol 2b along with ortho-ortho coupling biphenol 2b' in 13% yield were observed. Due to the substitution at the *para* position of **1b** could 35 cause of the dropping the yield of ortho-meta coupling product **2b.** It is important to note that the 2,4-dimethylphenol (1c) provided symmetrical ortho, ortho coupling product 3a in 73% yield with K₂S₂O₈ in CF₃COOH under ambient conditions (Scheme 2). No other competitive side product was observed in 40 the reaction.

 $M_{e} \xrightarrow{OH}_{Me} H \xrightarrow{K_{2}S_{2}O_{6}(2.0 \text{ equiv})}_{CF_{3}COOH, r.t., 16 \text{ h}} \xrightarrow{M_{e}}_{Me} \xrightarrow{OH}_{Zc, 73\%} M_{e} \xrightarrow{OH}_{Me} + \underbrace{K_{2}S_{2}O_{6}}_{Me} \xrightarrow{M_{e}}_{2} \xrightarrow{OH}_{Me} \xrightarrow{C}_{2} H^{*} \xrightarrow{C}_$

Scheme 2 Homocoupling of 2,4-dimethylphenol (1c)

The scope of oxidative coupling reaction was examined with ⁴⁵ various substituted phenols **1d-i** (Scheme 2). The homocoupling of 2-bromo-4-methylphenol (**1d**) and naturally occurring sesamol (**1e**) proceeded well with K₂S₂O₈ giving symmetrical biphenols **2d** and **2e** in 58% and 80% yields, respectively. 4-Methoxy phenol (**1f**) and 4-iodophenol (**1g**) also efficiently participated in 50 the reaction, providing biphenols 2f and 2g in 55% and 49% yields, respectively. It is noteworthy that the sensitive iodo and bromo groups were compatible for the reaction. Interestingly, 4phenylphenol (1h) and hydroxyl substituted 4-phenylphenol 1i afforded the corresponding biphenols 2h and 2i in 69% and 79% 55 yields, respectively. Next, the scope of the reaction was examined with naphthols 1j-m. 2-Naphthol (1j) underwent homocoupling efficiently at room temperature giving binaphthol derivative 2i in 80% yield. A highly useful naphthalene-2,3-diol (1k), naphthalene-2,7-diol (11) and naphthalene-2,6-diol (1m) provided 60 the corresponding binaphthols 2k-m in 70%, 72% and 78% yields, respectively. It is important to note that in 1i and 11-m, two hydroxy groups are present on the aromatic ring. Chemoselectively, only one of the hydroxy groups was involved in the coupling reaction. The coupling reaction was not 65 compatible with phenols having electron-withdrawing substituents such as CO₂Me, COMe, F, Cl, NO₂ and Br at the para position.

Scheme 3 Scope of phenols and naphthols

Scheme 4 para-para Coupling of phenols

A similar type of oxidative coupling reaction was examined with 2,6-dimethyl phenol (**1n**) under the optimized reaction conditions. However, no coupling product was observed. Later, 75 the solvent and temperature optimization was done. When biphasic solvent system that is 1:1 ratio of H₂O and CH₃CN Published on 08 August 2017. Downloaded by University of Florida Libraries on 08/08/2017 14:56:12.

solvent mixtures was used instead of CF₃COOH at 80 °C, the oxidative coupling reaction yielded symmetrical *para-para* coupling biphenol **4a** in 62% yield. Similarly, in the 1:1 ratio of H₂O and CH₃CN solvent mixtures, 2,6-dimethoxyphenol (**1a**) ⁵ provided *para-para* coupling biphenol **4b** in 81% yield. It is intereting to note that the 2,6-dimethoxyphenol (**1a**) provides unsymmetrical *meta*, *para* C-H coupling product **2a** in CF₃COOH solvent. Whereas, in 1:1 ratio of H₂O and CH₃CN solvent mixtures, the same substrate provided the symmetrical ¹⁰ *para*, *para* coupling product **4b**.

It is surprising to note the different type of reactivity and coupling product was observed in the oxidative coupling of *ortho* substituted phenols with K₂S₂O₈ at 80 °C in 1:1 mixture of water and CH₃CN solvents. When 2-methylphenol (**10**) was treated ¹⁵ with K₂S₂O₈ in a 1:1 mixture of water and CH₃CN solvents, quinoid type coupling product **6a** was observed in 78% yield (Scheme 5).^{9a} In a similar fashion, 2-*iso*propylphenol (**1p**), 2-phenylphenol (**1q**) and 2-benzylphenol (**1r**) provided quinoid coupling products **6b-d** in 75%, 60% and 51% yields, ²⁰ respectively. The reaction was further examined with *meta* substituted phenols such as *meta* Me and OMe substituted phenols. These substrates were not compatible for the reaction and no expected coupling product was observed. However, 2,5-dimethylphenol (**1s**) and 2-methyl-4-hydroxy phenol (**1t**) ²⁵ provided quinone derivatives **6e** and **6f** in good yields.

Scheme 5 Synthesis of substituted benzoquinones

Scheme 6 Synthesis of substituted naphthoquinones

³⁰ The coupling reaction was also examined with substituted 2naphthols **1j-1** (Scheme 6). 2-Naphthol (**1j**) and 2,7-dihydroxy naphthalene (**1l**) underwent oxidative coupling reaction under similar reaction conditions providing quinoid coupling products **6g** and **6h** in 80% and 73% yields, respectively (Scheme 6). ³⁵ Product **6g** undergoes condensation with benzene-1,2-diamine (**7**) providing biologically active phenazine derivative **8** in 69% yield.^{9b} It is noteworthy to mention that the 1,4-naphthquinone (**6h**) was observed in 1-naphthol (**1u**) substrate under similar recation conditions.

⁴⁰ A gram scale synthesis of biphenols and binaphthols was demonstrated in Scheme 7. The homocoupling of 500 mg of sesamol (1e), 1.0 gm of 4-methoxy phenol (1f) and 1.0 gm of 2-naphthol (1j) with K₂S₂O₈ under ambient conditions provided the expected products 2e, 2f and 2j in 70%, 55% and 60% yields,
⁴⁵ respectively. Similarly, 1.0 gm of 2-methylphenol (1o) reacted with K₂S₂O₈ in a 1:1 mixture of water and CH₃CN solvents providing product 6a in 55% yield.

Scheme 7 A gram scale synthesis of biphenols

⁵⁰ In conclusion, we have demonstrated an efficient synthesis of symmetrical and unsymmetrical biphenols and binaphthols by using green and easily available K₂S₂O₈ as an oxidant. In the reaction, *ortho-ortho*, *ortho-meta*, *meta-para* and *para-para* coupling products were observed in the homocoupling of phenols ⁵⁵ with different solvents. Meanwhile, the preparation of unsymmetrical quinoid from 2-substituted phenols and 2naphthols was described. A gram scale synthesis of biphenols and binaphthols was also demonstrated.

We thank the DST-SERB (EMR/2014/000978), India for the ⁶⁰ support of this research. R. M. and G. S. thank the CSIR for a fellowship.

Notes and references

 ^a Department of Chemistry, Indian Institute of Science Education and Research, Pune 411021, India;
 ^b Department of Chemistry, Indian
 ^{c5} Institute of Technology Madras, Chennai 600036, Tamil Nadu, India.

- *E-mail:* <u>mjeganmohan@iiserpune.ac.in</u> and mjeganmohan@iitm.ac.in † Electronic Supplementary Information (ESI) available: Detailed experimental procedures and spectroscopic data. See DOI: 10.1039/b000000x/
- Selected reviews: (a) J. Hassan, M. Sévignon, C. Gozzi, E. Schulz, M. Lemaire, *Chem. Rev.*, 2002, **102**, 1359; (b) Y. Chen, S. Yekta, A. K. Yudin, *Chem. Rev.*, 2003, **103**, 3155; (c) K. C. Nicolaou, P. G. Bulger, D. Sarlah, *Angew. Chem., Int. Ed.*, 2005, **44**, 4442; (d) G. Bringmann, A. J. Mortimer, P. A. Keller, M. J. Gresser, J. Garner, M.
 Breuning, *Angew. Chem., Int. Ed.*, 2005, **44**, 5384; (e) G. P.

80

85

McGlacken, L. M. Bateman, *Chem. Soc. Rev.*, 2009, **38**, 2447; (f) S.
E. Allen, R. R. Walvoord, R. Padilla-Salians, M. C. Kozlowski, *Chem. Rev.* 2013, **113**, 6234; (g) D. Parmar, E. Sugiono, S. Raja, M. Rueping, *Chem. Rev.*, 2014, **114**, 9047.

- Aldemir, R. Richarz, T. A. M Gulder, Angew. Chem. Int. Ed., 2014, 53, 8286; (b) E. Dagne, W. Steglich, Phytochemistry, 1984, 23, 1729; (c) M. H. Zenk, R. Geeardy, R. Stadler, J. Chem. Soc. Chem. Commun., 1989, 1725; (d) R. Gerardy, M. H. Zenk, Phytochemistry, 1992, 32, 79; (e) S. Pal, J. M. Bollag, P. M. Huang, Soil Biol,
- Biochem., 1994, 26, 813; (f) N. Ikezawa, K. Iwasa, F. Sato, J. Biol. Chem., 2008, 283, 8810; (g) P. F. X. Kraus, T. M. Kutchan, Proc. Natl. Acad. Sci. USA 1995, 92, 2017; (h) L.B. Davin, H. B. Wang, A. L. Crowell, D. L. Bedgar, D. M. Martin, S. Sarkanen, N. G. Lewis, Science, 1997, 275, 362; (i) K. Freudenberg, Nature. 1959, 183, 1152.
- Selected papers: (a) M. J. S. Dewar, T. Nakaya, J. Am. Chem. Soc., 1968, 90, 7134; (b) K. Yamamoto, H. Fukushima, Y. Okomoto, K. Hatada, M. Nakazaki, J. Chem. Soc. Chem. Commun., 1981, 46, 2547; (c) K. Ding, Y. Wang, L. Zhang, Y. Wu, Tetrahedron, 1996,
 52, 1005; (d) J. Doussot, A. Guy, C. Ferroud, Tetrahedron Lett., 2002, 41, 2545; (e) G. Bringmann, T. Gulder, T. M. Gulder, M. Breuning, Chem. Rev., 2011, 111, 563; (f) M. Grzybowski, K.
- Skonieczny, H. Butenschon, D. T. Gryko, Angew. Chem. Int. Ed., 2013, 52, 9900.
 25 4 Selected papers: (a) J. A. Ashenhurst, Chem. Soc. Rev., 2010, 39,
- 540; (b) A. E. Wendllandt, A. M. Suess, S. S. Stahl, Angew. Chem. Int. Ed., 2011, 50, 11062; (c) M. Matsushita, K. Kamata, K. Yamaguchi, N. J. Mizuno, Am. Chem. Soc., 2005, 127, 6632; (d) A. S. Hay, H. S. blanchard, G. F. Endres, Eustance, J. Am. Chem. Soc.
 1959, 81, 6335; (e) Q. Jiang, W. Sheng, M. Tian, J. Tang, C. Guo,
- ³⁰ 1939, **31**, 6535, (e) Q. Jiang, W. Sheng, M. Han, J. Iang, C. Guo, *Eur. J. Org. Chem.* 2013, 1861; (f) P. J. Wallis, K. J. Booth, A. F. Patti, J. L. Scott, *Green Chem.* 2006, **8**, 333; (g) K. V. N. Esguerra, Y. Fall, L. Petitjean, J.-P. Lumb, *J. Am. Chem. Soc.*, 2014, **136**, 7662; (h) D.-R. Hwang, C.-P. Chen, B.-J. Uang, *Chem. Commun.*, 1999, 1207; (i) E. Gaster, Y. Vainer, A. Regev, S. Narute, K. Sudheendran,
 - 1207; (i) E. Gaster, Y. Vainer, A. Regev, S. Narute, K. Sudneendran,
 A. Werbeloff, H. Shalit, D. Pappo, *Angew. Chem. Int. Ed.*, 2015, 54, 4198; (j) Y. E. Lee, T. Cao, C. Torruellas, M. C. Kozlowski, *J. Am. Chem. Soc.*, 2014, 136, 6782; (k) A. Libman, H. Shalit, Y. Vainer, S. Narute, S. Kozuch, D. Pappo, *J. Am. Chem. Soc.* 2015, 137, 11453.
- (f) S. Narute, R. Parnes, F. D. Toste, D. Pappo, J. Am. Chem. Soc., 2016, DOI: 10.1021/jacs.6b11198; (g). Q. Jiang, W. Sheng, M. Tian, J. Tang, C. Guo, Eur. J. Org. Chem., 2013, 1861; (m) Z. Maeno, M. Okao, T. Mitsudome, T. Mizugaki, K. Jitsukawaa, K. Kaneda, RSC Adv., 2013, 3, 9662.
- ⁴⁵ 5 Selected papers: (a) B. Su, L. Li, Y. Hu, Y. Liu, Q. Wang, Adv. Synth. Catal., 2012, **354**, 383; (b) T. Dohi, A. Maruyama, M. Yoshimura, K. MorimotoH., Tohma, Y. Kita, Angew. Chem. Int. Ed., 2005, **44**, 6193, (c) L. Zhai, R. Shukla, S. H. Wadumethrige, R. Rathore, J. Org. Chem., 2010, **75**, 4748; (d) K. Morimoto, K.
- Sakamoto, Y. Ohnishi, T. Miyamoto, M. Ito, T. Dohi Y., Kita, *Chem. Eur. J.*, 2013, **19**, 8726; (e) R. Neelamegam, M. T. Palatnik, J. Fraser-Rini, M. Slifstein, A. Abi-Dargham, B. Easwaramoorthy, *Tetrahedron Lett.*, 2010, **51**, 2497; (f) K. Morimoto, K. Sakamoto, T. Ohshika, T. Dohi, Y. Kita, *Angew. Chem. Int. Ed.*, 2016, **55**, 3652.
- (g) G. Jacquemot, M.-A. Ménard; C. L. Homme and S. Canesi, *Chem. Sci.* **2013**, *4*, 1287; (h) K. C. Guerard, C. Chapelle, M.-A. Giroux, C. Sabot, M.-A. Beaulieu, N. Achache and S. Canesi, *Org. Lett.* **2009**, *11*, 4756; (i) G. Jacquemot and S. Canesi, S. J. Org. *Chem.* 2012, **77**, 7588; (j) A. P. Antonchick, R. Samanta, K. Kulikov
- and J. Lategahn, Angew. Chem. Int. Ed. 2011, 50, 8605; (k) S. Manna, P. O. Serebrennikova, I. A. Utepova, A. P. Antonchick and O. N. Chupakhin, Org. Lett. 2015, 17, 4588; (l) Kazi, I.; Guha, S.; Sekar, S. Org. Lett. 2017, 19, 1244. (m) Kotha, S. S.; Sekar, G. Tetrahedron. Lett. 2015, 56, 6323. (n) Guha, S.; Rajeshkumar, S.; Surya, S. K; Sekar, S. Org. Lett. 2015, 17, 406.
- 6 Selected papers: (a) A. Kirste, G. Schnakenburg, S. R. Waldvogel,. Org. Lett., 2011, 13, 3126; (b) D. Mirk, A. Willner, R. Frohlich, S. R. Waldvogel, Adv. Synth. Catal., 2004, 346, 675; (c) A. Kirste, M. Nieger, M. I. Malkowsky, F. Stecker, A. Fischer, S. R. Waldvogel,
 70 Chem. Eur. J., 2009, 15, 2273; (d) I. M. Malkowsky, U. Griesbach,
- Chem. Eur. J., 2009, 15, 2275, (d) I. M. Malkowsky, U. Offesbach,
 H. Putter, S. R. Waldvogel, Eur. J. Org. Chem., 2006, 4569; (e) B.

Elsler, A. Wiebe, D. Schollmeyer, K. M. Dyballa, R. Franke, S. R. Waldvogel, Chem. Eur. J., 2015, 21, 12321; (f) H. J Schafer,. ChemCatChem., 2014, 6, 2792; (a) A. Kirste, G. Schnakenburg, F. Stecker, A. Fischer, S. R. Waldvogel, Angew. Chem. Int. Ed., 2010, 49, 971; (b) A. Kirste, B. Elsler, G. Schnakenburg, S R. Waldvogel, J. Am. Chem. Soc., 2012, 134, 3571; (c) B. Elsler, D. Schollmeyer, K. M. Dyballa, R. Franke, S. R. Waldvogel, Chem. Eur. J., 2015, 21, 12321; (d) B. Elsler, B. Schollmeyer, K. M. Dyballa, R. Franke, S. R. Waldvogel, Angew. Chem. Int. Ed., 2014, 53, 5210; (e) A. Wiebe, . D. Schollmeyer, K. M. Dyballa, R. Franke, S. R. Waldvogel, Angew. Chem. Int. Ed., 2016, 55, 11801; (f) A. Kirste, G. Schnakenburg, S. R. Waldvogel, Org. Lett., 2011, 13, 3126; (g) I. M. Malkowsky, U. Griesbach, H. Putter, S. R. Waldvogel, Eur. J. Org. Chem., 2006, 4569. (h) Mirk, A. Willner, R. Frohlich, S. R. Waldvogel, Adv. Synth. Catal., 2004, 346, 675; (i) S. Lips, A. Wiebe, B. Elsler, D. Schollmeyer, K. M. Dyballa, R. Franke, S. R. Waldvogel, Angew. Chem. Int. Ed., 2016, 55, 10872.

- 7 (a) N. Y. More, M. Jeganmohan, Org. Lett., 2015, 17, 3042. (b) N. Y.
 More, M. Jeganmohan, Org. Lett., 2014, 16, 804; (c) N. Y. More, M
 Jeganmohan, Chem. Eur. J., 2015, 21, 1337.
- 8 (a) W. C. Vasudeva, J. Chem. Soc., Perkin II, 1975, 697; (b) T. A. Gadosy, D. Shukla, L. J. Johnston, J. Phys. Chem. A., 1999, 103, 8834; (c) R. Joshi, S. Naumov, S. Kapoor, T. Mukherjee, R. Hermann, O. Brede, J. Phys. Org. Chem., 2004, 17, 665; (e) S. Sankararaman, W. A. Haney, J. K. Kochi, J. Am. Chem. Soc., 1987, 109, 7824; (f) Y. Kita, H. Tohma, K. Hatanaka, T. Takada, S. Fujata, S. Mitoh, H. Sakurai, S. Oka, J. Am. Chem. Soc., 1994, 116, 3684. (g) D. Collado, E. Perez-Inestrosa, R. Suaua, J. T. L. Navarrete, Tetrahedron. 2006, 62, 2927.
 - 9 (a) Y. Takizawa, T. Munakata, Y. Iwasa, T. Suzuki, and T. Mitsuhashi, J. Org. Chem. 1985, 50, 4383; (b) H. Hussain, S. Specht, S. R. Sarite, M. Saeftel, A. Hoerauf, B. Schulz, K. Krohn, J. Med. Chem., 2011, 54, 4913.