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ABSTRACT: A copper(I)-catalyzed enantioselective addition of 
enynes to ketones was developed. The method allows facile con-
struction of enantiomerically-enriched tertiary alcohols using 
skipped enynes as stable hydrocarbon pronucleophiles. The com-
bination of a soft copper(I)-conjugated Brønsted base catalyst 
with a chiral diphosphine ligand, (S,S)-Ph-BPE, enabled chemose-
lective deprotonation of the skipped enynes in the presence of 
ketones bearing intrinsically more acidic -protons. The catalyti-
cally-generated chiral allylcopper species enantio-, diastereo-, 
regio-, and chemo-selectively reacted with ketones, thereby 
demonstrating excellent substrate generality with functional group 
tolerance. The skipped enyne moieties of the pronucleophiles 
were exclusively converted to cis-conjugated enynes, which will 
eventually allow for further versatile transformations. 

Catalytic asymmetric nucleophilic addition of hydrocarbons to 
ketones is a fundamentally important transformation, producing 
enantiomerically-enriched tertiary alcohols, which are a frequent-
ly encountered structural motif in biologically active natural 
products and pharmaceuticals.1 The general requirement of pre-
formed reactive organometallic reagents along with the generation 
of stoichiometric amounts of metal salts waste, however, often 
limit the overall synthetic efficiency and functional group toler-
ance. Transition metal-catalyzed asymmetric reductive coupling 
of stable hydrocarbons with ketones has led to considerable effort 
to override the limitations of preformed organometallic reagents. 
The pioneering work of Jamison disclosed nickel-catalyzed 
asymmetric alkenylation of ketones using BEt3 as a terminal re-
ductant, which circumvents the prior preparation of reactive or-
ganometallic reagents (Scheme 1a).2 Lam realized a copper-
catalyzed asymmetric addition of C(sp3)-nucleophiles derived 
from alkenylazaarenes using PhSiH3 as a reductant (Scheme 1b).3 
Related copper catalysis was further applied to conjugated enyne 
pronucleophiles by Buchwald for asymmetric propargylation of 
ketones.4 A more atom-economical hydrogenative approach using 
a rhodium or iridium catalyst was reported by Krische (Scheme 
1c),5 although the approach is limited to activated ketones (such 
as -keto esters) or heteroaromatic ketones.  

A redox-neutral asymmetric coupling reaction between hydro-
carbon pronucleophiles and ketones under proton transfer condi-
tions is an ideal approach that does not require stoichiometric 
amounts of bases and additives. Difficulties in deprotonating hy-
drocarbons to generate organometallic reagents, however, have 
hampered the development of such reactions.6 Only a combination 
of relatively acidic terminal alkynes (C(sp)-pronucleophiles) and 

activated ketones has been developed,7 and asymmetric addition 
of C(sp3)-nucleophiles has remained unexplored. Herein we report 
a copper-catalyzed asymmetric addition of enynes to ketones 
under proton transfer conditions (Scheme 1d). The reaction does 
not require stoichiometric amounts of bases and additives, and 
proceeds with good functional group tolerance.  

Scheme 1. Catalytic Asymmetric Coupling of Hydrocarbons 
with Ketones.  

 

To catalytically generate reactive organocopper species via 
deprotonation of hydrocarbons, we first evaluated whether a soft-
soft interaction between copper(I) catalyst and C-C multiple 
bonds could acidify adjacent C(sp3)-H protons.8,9 Thus, skipped 
enynes were selected as pronucleophiles to maximize the interac-
tion with the copper(I) catalyst, where a C-C double bond as well 
as a triple bond can coordinate to the copper(I) catalyst (Scheme 
1d: A). Allylcopper species B generated through deprotonation 
would attack ketones via six-membered transition state C.10 The 
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products, conjugated enynes, are an important structural motif due 
to their synthetic versatility and prevalence in biologically rele-
vant molecules.11 Previously reported methods using skipped 
enynes as pronucleophiles in organic synthesis, however, required 
harsh conditions. Medlik utilized a stoichiometric amount of 
MeLi for selective monometalation of skipped enynes followed 
by alkylation at the methylene position.12 Later, Yamaguchi de-
veloped a GaCl3-promoted ethynylation reaction of skipped 
enynes using silylchloroacetylenes as electrophiles.13 Although 
ethynylation can proceed with a catalytic amount of GaCl3, the 
high temperature (150 oC) required in the presence of a strong 
Lewis acid sharply limits the functional group tolerance.  

Table 1. Optimization of Copper(I)-Catalyzed Asymmetric 
Addition of Enyne to Ketone.a 

 
aGeneral reaction conditions: 1a (0.15 mmol), 2a (0.1 mmol), 
MesCu (0.01 mmol), and ligand (0.01 mmol) were reacted in THF 
(200 µL) at -20 oC for 4 h. Yields were determined by 1H NMR 
analysis of the crude mixture using 1,3,5-trimethylbenzene as an 
internal standard. bWithout KOtBu. c-30 oC. d5 mol% catalyst 
loading. eReaction time was 6 h.  

Based on the above-mentioned working hypothesis, we initiat-
ed our investigation using acetophenone (2a) and 1-phenyl-4-
penten-1-yne (1a; 1.5 equiv) as substrates (Table 1). The use of 10 
mol% KOtBu in the absence of a copper(I) catalyst was complete-
ly ineffective (entry 1). Examination of a variety of chiral ligands 
using CuClO4(MeCN)4 as a copper source in combination with 
KOtBu (10 mol%), generating chiral CuOtBu complexes in the 

reaction mixture,14 revealed that only (S,S)-Ph-BPE (L4) exhibit-
ed moderate reactivity and excellent enantioselectivity and 
trans/cis-selectivity (entry 5). Neither a possible regio-isomer via 
internal addition nor the trans-isomer was observed. Use of 
AgClO4, instead of CuClO4(MeCN)4, led to lower reactivity and 
enantioselectivity (entry 6). While other copper(I) sources, such 
as CuCl (entry 7) and CuOAc (entry 8), produced only a trace 
amount of the product, mesitylcopper (MesCu) without additional 
base was identified to be the optimal choice (entry 9). Decreasing 
the temperature to -30 oC further improved the enantioselectivity 
to 97% ee (entry 10) without a significant loss of catalyst activity. 
The catalyst loading could be reduced to 5 mol% and the product 
was obtained still in high yield with comparable enantioselectivity 
(entry 11). 

Having established the optimal conditions, we next examined 
the substrate scope (Table 2). With 1a as a pronucleophile, ketone 
electrophiles were evaluated first (2a-2r). Products were obtained 
in high yield and with excellent enantioselectivity for aryl ketones 
containing electron-donating groups or halogen substituents at the 
para position (3ab, 3ac, and 3ad). Substrates with a substitution 
at the ortho or meta position were less reactive than other aryl 
ketones. Using Mg(OiPr)2 as a cocatalyst,15 however, 3ae and 3af 
were produced in good yield with excellent enantioselectivity. A 
ketone with a bulky naphthyl group was also applicable (3ag: 
74% yield, 88% ee). Additionally, heteroaryl ketones, which po-
tentially inhibit the reaction by coordinating to the copper catalyst, 
were competent (3ah and 3ai). On the other hand, a ketone with a 
strong electron-withdrawing group, p-nitroacetophenone, was 
totally unreactive probably due to great acidity of the α-protons of 
the ketone, hampering deprotonation of 1a.16  

Enones (2j and 2k) also served as appropriate electrophiles: 
potential byproducts derived from 1,4-addition of the allylcopper 
nucleophile to enones were not detected in either case. Moreover, 
an aliphatic ketone (2l) was applicable, resulting in satisfactory 
yield, albeit with moderate enantioselectivity (3al). The reaction 
was effective not only for methyl ketones but also for longer chain 
ketones, in which it is more difficult to differentiate the steric 
factors between the two substituents of the carbonyl group. Pro-
piophenone (2m), cyclic α-tetralone (2n) and 1-benzosuberone 
(2o) underwent the asymmetric carbonyl addition with high yield 
and satisfactory enantioselectivity. Moreover, ketones bearing 
functional groups were also competent. A siloxy group (2p) and 
an ester group (2q) were unaffected under the reaction conditions. 
It is also noteworthy that a substrate bearing a protic NH func-
tional group (2r) produced chiral tertiary alcohols with high enan-
tioselectivity.17 

We then examined the scope of skipped enyne pronucleo-
philes. In addition to the phenyl-substituted enyne (1a), the termi-
nal substituents of enynes can cover a p-nitrophenyl group (1b), 
an indole moiety (1c), an aliphatic substituent (1d), a silicon sub-
stituent (1e), and a conjugated diyne (1f), which showed broad 
adaptability for facile construction of an array of compounds con-
taining a variety of conjugated enyne moieties. The protic func-
tional groups on the pronucleophile side were also amenable to 
the reaction, affording the products with satisfactory enantioselec-
tivity (3ga and 3ha). 

The conjugated enyne-containing tertiary alcohol products of-
fer multiple possibilities for further transformations.18,19 Repre-
sentative examples are shown in Scheme 2. Hydrogenation of the 
enyne moiety of 3ar produced 4, which is difficult to access in an 
enantiomerically enriched form by other methods, in 91% yield. 
The conjugated enyne moiety could be regio- and stereo-
selectively transformed to the cis-diene moiety under palladium-
catalyzed hydrosilylation conditions to give 5 in high yield.20 
These transformations proceeded without any epimerization. 
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Table 2. Substrate Scope of Copper(I)-Catalyzed Asymmetric Addition of Conjugated Enynes to Ketones.a 

 
aGeneral reaction conditions: 1a (0.15 mmol), 2a (0.1 mmol), MesCu (0.01 mmol), and (S,S)-Ph-BPE (0.01 mmol) were reacted in THF 
(200 µL) at -30 oC. b-45 oC. c0.2 equiv of Mg(OiPr)2 was added. dReaction time was 12 h. e0.5 equiv of Cs2CO3 was added. f-40 oC. g-10 oC. 
h0.4 equiv of Mg(OiPr)2 was added. i500 µL of THF was used as solvent.  j20 mol% of MesCu/(S,S)-Ph-BPE was used.  

In summary, we developed the first catalytic enantioselective 
C-C bond-forming reaction via in situ generation of nucleophilic 
organometallic species through deprotonation of the non-acidic 
C(sp3)-H bond of hydrocarbons without adjacent electron-
withdrawing groups.21 The catalytically generated chiral al-
lylcopper(I) species exhibited high nucleophilicity, enantioselec-
tivity, and functional group-tolerance even in the presence of 
protic functional groups. The products containing unique conju-
gated cis-enyne moieties22 serve as versatile building blocks in 
organic synthesis. Studies toward switching the cis/trans stereo-
selectivity and regio-selectivity of this method to further diversify 
the product structures are on-going in our laboratory. 

 

 

 

 

 

 

 

 

 

Scheme 2. Transformation of the Products.  
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