Creating Structural Manifolds from a Common Precursor: Basicity Gradient-Driven Isomerization of Halopyridines

Manfred Schlosser*^[a,b] and Carla Bobbio^[a]

Keywords: Molecular diversity / Carboxylation / Fluoropyridines / Halogen/metal permutation / Hydrogen/metal permutation / Nucleophilic heteroaromatic substitution

5-Chloro-2,3-difluoropyridine, an intermediate in the manufacturing process of an industrial pesticide, can be hydrolyzed to 5-chloro-3-fluoro-2*H*-pyridinone and the latter converted into 2,5-dichloro-3-fluoropyridine (**1a**), 2-bromo-5-chloro-3-fluoropyridine (**1b**), 5-chloro-3-fluoro-2-iodopyridine (**1c**) and 3-chloro-5-fluoropyridine (**1d**). Consecutive treatment of these four substrates with lithium diisopropylamide and iodine affords the corresponding 4-pyridinecarboxylic acids **2** and 4-iodopyridines **3**, respectively. Amide-promoted deprotonation of such 4-iodopyridines **3** triggers an isomerization in which lithium and iodine change places. The re-

The spontaneous isomerization of lithiated bromo- or iodoarenes and bromo- or iodopyridines to less basic species is a powerful, though not widely known, tool for rational structural modification.^[1] To demonstrate the practical utility of this method, we have recently reported the site-controlled conversion of 2,3,5-trichloropyridine, 3,5dichloro-2-fluoropyridine and 5-chloro-2,3-difluoropyridine into each time three carboxylic acids, two of which were isomeric and the third one was an iodinated derivative of one of them.^[2]

 [a] Institut de Chimie moléculaire et biologique, Ecole Polytechnique Fédérale, BCh 1015 Lausanne, Switzerland

[b] Faculté des Sciences, Université, BCh 1015 Lausanne, Switzerland E-mail: manfred.schlosser@epfl.ch sulting species can be trapped with carbon dioxide to give the acids **5a–c** or neutralized to give the halopyridines **4a–c**. The iodopyridines **4a** and **4b** can be converted into the acids **6a** and **6b**, the latter product leading also to the congeners **6c** and **6d**. The diiodopyridine **4c** provides an entry to the halopyridine **4d**, which at the same time may act as the precursor to the acid **5d**, the acid **7** or the bisacid **8**. Finally, the acid **9** is accessible from either one of the 5-chloro-3-fluoro-2-halopyridines **1b** and **1c**.

(© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2002)

to prepare 3,5-dichloro-2-fluoropyridine. The third substrate, 5-chloro-2,3-difluoropyridine, is the key intermediate for the industrial manufacture of a herbicide. The availability of this material incited us to extend the scope of our investigations. To this end, 5-chloro-2,3-difluoropyridine was hydrolyzed in an alkaline medium to the 5-chloro-3fluoro-2H-pyridinone (91%) which was then treated with phosphoryl trichloride or phosphoryl tribromide to afford 2,5-dichloro-3-fluoropyridine (1a) or 2-bromo-5-chloro-3fluoropyridine (1b), respectively, in almost quantitative yield (91 and 97%). In contrast, the reaction between the pyridinone and iodine in the presence of red phosphorus proceeded sluggishly and only small amounts (1-5%) of 5chloro-3-fluoro-2-iodopyridine (1c) could be isolated. Therefore, this compound was prepared in a satisfactory yield (59%) from the bromo analog 1b by halogen/metal interconversion with isopropylmagnesium chloride and subsequent addition of elemental iodine. Reductive removal of the heaviest halogen in the halopyridine 1b with zinc gave 3-chloro-5-fluoropyridine (1d; 92%).

Treatment of the four substrates 1 with lithium diisopropylamide (LIDA) or another strong base (e.g. butyllithium with starting materials 1a and 1d) followed by carboxylation and neutralization gave the 4-pyridinecarboxylic acids 2a (82%), 2b (74%), 2c (84%) and 2d (85%). The iodo compounds 3a (80%), 3b (76%), 3c (86%) and 3d (89%) were obtained when carbon dioxide was replaced by iodine as the electrophile.

When the iodo compounds 3a-3c were incubated with a solution of lithium 2,2,6,6-tetramethylpiperidide (LITMP) in tetrahydrofuran, deprotonation obviously had to occur at the 6-position. However, the species thus generated could not be trapped as it isomerized instantaneously by iodine/ metal permutation presumably involving small amounts of the corresponding diiodopyridine as a turntable.^[3] After the mixture had been quenched with water, the trihaloiodopyridines 4a, 4b and 4c were found by gas chromatography to be present in 51%, 66% and 30% yield. However, due to their contamination by reduction products, they were isolated in only 46%, 57% and 23% yield, respectively. Exposure of compounds 4a-4c to LIDA followed by carboxylation afforded the acids 5a (89%), 5b (88%) and 5c (82%) whereas the acids 6a (80%) and 6b (79%) were formed when the deprotonation step was replaced by a halogen/metal permutation performed with isopropylmagnesium chloride.

The reaction takes a different course when the halogen at the 2-position is missing. The base then attacks the fluorine-adjacent rather than the chlorine-adjacent position. Thus, none of the intermediates is generated that could lead to the compounds **4d** and **5d** and from there ultimately also

to **6d** (X = H). Instead concomitant reductive deiodination^[4] (I \rightarrow Li) and 2-lithiation triggering a basicity gradient driven iodine migration ^[3,5] took place. Depending on the choice of the trapping reagent, 3:2 mixtures of 3-chloro-5-fluoropyridine (**1d**) and 5-chloro-3-fluoro-2-iodopyridine (**1c**) or 3-chloro-5-fluoro-4-pyridinecarboxylic acid (**2d**) and 5-chloro-3-fluoro-2-iodo-4-pyridinecarboxylic acid (**2c**) were produced.

All what remained to be done was to prepare the still missing target compounds 4d, 5d, 6c and 6d. The regiochemical preference for deprotonation at the position next to fluorine is readily explained by the superior ortho-directing effect of this element when compared with chlorine.^[6] For this reason, 3-chloro-5-fluoro-2,6-diiodopyridine (4c) underwent with butyllithium a halogen/metal permutation almost exclusively at the 6- and only marginally at the 2position. Reaction of the 2-pyridyllithium intermediate with dry ice provided the 5-chloro-3-fluoro-6-iodo-2-pyridinecarboxylic acid (7; 35%), whereas hydrolysis gave the halopyridine 4d (60%) which was submitted to consecutive deprotonation and carboxylation to afford the acid 5d (85%). Treatment of 3-chloro-5-fluoro-2,6-diiodopyridine (4c) with 2 equiv. of butyllithium generated a dilithio species as evidenced by the trapping product 3-chloro-5-fluoro-2,6-dicarboxylic acid (8; 39%).

Both acids **6c** (46%) and **6d** (67%) could be selectively prepared from 6-bromo-3-chloro-5-fluoro-2-pyridinecarboxylic acid (**6b**) by esterification and silyl-mediated bro-

mine/iodine displacement ^[7] followed by hydrolysis and by reduction, respectively. The 3-chloro-5-fluoro-2-pyridine-carboxylic acid **6d** was also obtained from 3-chloro-5-fluoro-2-iodopyridine **(4d)** by consecutive treatment with butyllithium and dry ice in a 79% yield.

Finally, the 5-chloro-3-fluoro-2-pyridinecarboxylic acid (9) was prepared in a straight-forward manner by halogen/ metal permutation and carboxylation. Depending on the starting material, 2-bromo-5-chloro-3-fluoropyridine or 5chloro-3-fluoro-2-iodopyridine, the yield attained was 71% and 94%, respectively.

Experimental Section

Generalities: For the working practice and abbreviations, consult previous articles from this laboratory .^[2,8,9] ¹H and ¹³C NMR spectra were recorded at 400 and 101 MHz, respectively, for samples dissolved in deuteriochloroform unless stated otherwise, chemical shifts being given relative to the signal of tetramethylsilane used as an internal standard.

1. Starting Materials

5-Chloro-3-fluoro-2(1*H***)-pyridinone:** 5-Chloro-2,3-difluoropyridine (0.30 kg, 2.0 mol) in an aqueous solution (1.5 L) of sodium hydroxide (0.30 kg) was heated to 75 °C for 20 h. At 25 °C, precipitated salts were removed. The filtrate was diluted with water (3.0 L), acidified with hydrochloric acid to pH = 1 and heated under reflux until the solution had become homogeneous. At 25 °C, the product crystallized as colorless needles; m.p. 149–151 °C (from chloroform); 268 g (91%). ¹H NMR (D₃CCOCD₃): δ = 7.47 (dd, *J* = 3.8, 1.4 Hz, 1 H), 7.42 (dd, *J* = 10.1, 3.7 Hz, 1 H) ppm. ¹³C NMR (D₃CCOCD₃): δ = 155.6 (d, *J* = 25 Hz), 152.5 (d, *J* = 254 Hz), 130.2 (d, *J* = 6 Hz), 123.9 (d, *J* = 20 Hz), 111.1 (d, *J* = 7 Hz) ppm. C₅H₃CIFNO (147.54): calcd. C 40.70, H 2.05; found C 40.90, H 2.20.

2,5-Dichloro-3-fluoropyridine (1a): *N*,*N*-Dimethylformamide (4.0 mL, 3.6 g, 50 mmol), phosphoryl trichloride (47 mL, 77 g, 0.50 mol) and 5-chloro-3-fluoro-2(1*H*)-pyridinone (74 g, 0.50 mol) were heated to 130 °C for 2 h, before being submitted to a steam distillation. Extraction of the condensate with diethyl ether (3 × 50 mL), drying with sodium sulfate, filtration, evaporation of the solvent and crystallization from hexanes afforded colorless platelets; m.p. 34-35 °C; b.p. 55-56 °C/2 Torr; yield: 76 g (91%). ¹H NMR: δ = 8.22 (d, *J* = 2.0 Hz, 1 H), 7.54 (ddd, *J* = 7.5, 2.1, 0.5 Hz, 1 H) ppm. ¹³C NMR: δ = 154.2 (d, *J* = 267 Hz), 143.6 (d, *J* = 5 Hz), 137.4 (d, *J* = 19 Hz), 131.1 (s), 124.9 (d, *J* = 21 Hz) ppm. C₅H₂Cl₂FN (165.98): calcd. C 36.18, H 1.21; found C 36.18; H 1.21.

2-Bromo-5-chloro-3-fluoropyridine (1b): Analogously from 5-chloro-3-fluoro-2(1*H*)-pyridinone (74 g, 0.50 mol) and phosphoryl tribromide (0.14 kg, 0.50 mol); colorless platelets; m.p. 28–30 °C (from hexanes); b.p. 77–78 °C/7 Torr; yield: 102 g (97%). ¹H NMR: $\delta = 8.23$ (d, J = 2.2 Hz, 1 H), 7.48 (dd, J = 7.0, 2.2 Hz, 1 H) ppm. ¹³C NMR: $\delta = 155.6$ (d, J = 265 Hz), 144.3 (d, J = 5 Hz), 131.6 (s), 127.7 (d, J = 23 Hz), 124.3 (d, J = 22 Hz) ppm. C₅H₂BrClFN (210.44): calcd. C 28.54, H 0.96; found C 28.52, H 0.95.

5-Chloro-3-fluoro-2-iodopyridine (1c): 2-Bromo-5-chloro-3-fluoropyridine (1b; 21 g, 0.10 mol) in tetrahydrofuran (50 mL) was added in the course of 15 min to a 2.0 M solution of isopropylmagnesium chloride (0.10 mol) in tetrahydrofuran (50 mL), kept in an ice bath. After 2 h at 0 °C, the mixture was poured into a precooled solution of iodine (25 g, 0.10 mol) in tetrahydrofuran (0.10 L) and kept at -75 °C for 1 h with continuous stirring, before being partitioned between brine (0.10 L) and diethyl ether (70 mL). The organic phase was washed with a saturated aqueous solution of sodium thiosulfate (50 mL), dried with sodium sulfate, filtered and the solvents evaporated. Upon distillation under reduced pressure a yellowish liquid was collected that slowly crystallized; colorless needles; m.p. 39-40 °C (from methanol); b.p. 91-92 °C/6 Torr; yield: 15 g (59%). ¹H NMR: $\delta = 8.26$ (d, J = 2.1 Hz, 1 H), 7.36 (dd, J = 6.8, 2.2 Hz, 1 H) ppm. ¹³C NMR: $\delta = 158.6$ (d, J =263 Hz), 145.5 (d, J = 4 Hz), 132.2 (d, J = 2 Hz), 122.8 (d, J =23 Hz), 103.6 (d, J = 29 Hz) ppm. C₅H₂ClFIN (257.43): calcd. C 23.33, H 0.78; found C 23.30, H 0.83.

3-Chloro-5-fluoropyridine (1d): 2-Bromo-5-chloro-3-fluoropyridine (**1b**; 63 g, 0.30 mol) was stirred in an aqueous solution of sodium hydroxide (0.24 L, 0.60 mol) in the presence of zinc powder (29 g, 0.45 mol) for 6 h at 25 °C. The mixture was diluted with water and steam-distilled. Drying with sodium sulfate and distillation under reduced pressure afforded a colorless liquid that crystallized spontaneously; m.p. 26-27 °C; b.p. 132-134 °C; yield: 36.3 g (92%). ¹H NMR: $\delta = 8.43$ (s, broad, 1 H), 8.40 (d, J = 2.5 Hz, 1 H), 7.47

(dt, J = 8.1, 2.4 Hz, 1 H) ppm. ¹³C NMR: $\delta = 158.6$ (d, J = 262 Hz), 144.6 (d, J = 4 Hz), 136.0 (d, J = 23 Hz), 131.8 (d, J = 4 Hz), 123.1 (d, J = 21 Hz) ppm. C₅H₃ClFN (131.54): calcd. C 45.65, H 2.30; found C 45.69, H 2.22.

2. Di- and Trihalo-4-pyridinecarboxylic Acids

2,5-Dichloro-3-fluoro-4-pyridinecarboxylic Acid (2a): Diisopropylamine (3.5 mL, 2.5 g, 25 mmol) and 2,5-dichloro-3-fluoropyridine (1a; 4.1 g, 25 mmol) were consecutively added to a solution of butyllithium (25 mmol) in tetrahydrofuran (35 mL) and hexanes (15 mL) kept in a dry ice/methanol bath. After 2 h at -75 °C, the mixture was poured on an excess of freshly crushed solid carbon dioxide. After evaporation of the volatiles, the residue was taken up in water (50 mL), washed with diethyl ether (2 × 15 mL), acidified to pH = 1 and extracted with diethyl ether (3 × 25 mL). After evaporation of the solvent, the product was purified by crystallization; m.p. 151–152 °C (from chloroform); yield: 4.3 g (82%). ¹H NMR (D₃CCOCD₃): δ = 8.45 (s) ppm. ¹³C NMR (D₃CCOCD₃): δ = 161.5 (s), 151.5 (d, *J* = 266 Hz), 145.6 (d, *J* = 6 Hz), 138.3 (d, *J* = 19 Hz), 132.1 (d, *J* = 19 Hz), 128.4 (s) ppm. C₆H₂Cl₂FNO₂ (209.99): calcd. C 34.32, H 0.96; found C 34.24, H 0.98.

2-Bromo-5-chloro-3-fluoro-4-pyridinecarboxylic Acid (2b): Analogously from 2-bromo-5-chloro-3-fluoropyridine (**1b**; 5.3 g, 25 mmol); colorless prisms; m.p. 192–194 °C (from ethyl acetate); yield: 4.7 g (74%). ¹H NMR (D₃CCOCD₃): $\delta = 8.48$ (s) ppm. ¹³C NMR (D₃CCOCD₃): $\delta = 161.4$ (s), 152.8 (d, J = 265 Hz), 146.3 (d, J = 6 Hz), 131.4 (d, J = 21 Hz), 128.8 (d, J = 24 Hz), 128.7 (s) ppm. C₆H₂BrClFNO₂ (254.45): calcd. C 28.32, H 0.79; found C 28.38, H 0.86.

5-Chloro-3-fluoro-2-iodo-4-pyridinecarboxylic Acid (2c): Analogously from 5-chloro-3-fluoro-2-iodopyridine (1c; 6.4 g, 25 mmol); colorless prisms; m.p. 217 °C (decomp.; from methanol); yield: 6.3 g (84%). ¹H NMR (D₃CCOCD₃): δ = 8.49 (s) ppm. ¹³C NMR (D₃CCOCD₃): δ = 161.4 (s), 155.6 (d, *J* = 262 Hz), 147.4 (d, *J* = 5 Hz), 129.7 (d, *J* = 21 Hz), 129.0 (s), 105.2 (d, *J* = 29 Hz) ppm. C₆H₂CIFINO₂ (301.44): calcd. C 23.91, H 0.67; found C 23.85, H 0.65.

3-Chloro-5-fluoro-4-pyridinecarboxylic Acid (2d): A solution of 3chloro-5-fluoropyridine (**1d**; 3.3 g, 25 mmol) and butyllithium (25 mmol) in tetrahydrofuran (35 mL) and hexanes (15 mL) was kept in a dry ice/methanol bath. After 2 h at -75 °C, the mixture was poured on an excess of freshly crushed solid carbon dioxide. After evaporation of the volatiles, the residue was taken up in water (50 mL) and washed with diethyl ether (2 × 15 mL). When the aqueous phase was acidified to pH = 1, a precipitate formed which was collected by filtration; colorless needles; m.p. 207–208 °C (dec.; from methanol); yield: 3.7 g (85%). ¹H NMR (D₃CCOCD₃): $\delta = 8.65$ (s, 1 H), 8.62 (s, broad, 1 H) ppm. ¹³C NMR (D₃CCOCD₃): $\delta = 162.2$ (s), 155.9 (d, J = 263 Hz), 146.7 (d, J =5 Hz), 138.0 (d, J = 23 Hz), 130.4 (d, J = 19 Hz), 128.7 (s) ppm. C₆H₃CIFNO₂ (175.55): calcd. C 41.05, H 1.72; found C 41.23, H 1.87.

3. 4-Iodo-Substituted Di- and Trihalopyridines

2,5-Dichloro-3-fluoro-4-iodopyridine (3a): Diisopropylamine (3.5 mL, 2.5 g, 25 mmol) and 2,5-dichloro-3-fluoropyridine (1a; 4.1 g, 25 mmol) were consecutively added to a solution of butyl-lithium (25 mmol) in tetrahydrofuran (35 mL) and hexanes (15 mL) kept in a dry ice/methanol bath. After 2 h at -75 °C, iodine (6.3 g,

25 mmol) in tetrahydrofuran (20 mL) was added. After 1 h at -75 °C, the mixture was warmed up to 25 °C and water (30 mL) and diethyl ether (10 mL) were added. The organic phase was decanted, washed with a saturated aqueous solution (20 mL) of sodium thiosulfate, dried and the solvents evaporated; colorless cubes; m.p. 114–116 °C (from chloroform); yield: 5.8 g (80%). ¹H NMR: δ = 8.18 (s) ppm. ¹³C NMR: δ = 155.4 (d, *J* = 262 Hz), 142.5 (s), 136.8 (s), 136.0 (d, *J* = 23 Hz), 99.5 (d, *J* = 26 Hz) ppm. C₅HCl₂FIN (291.87): calcd. C 20.58, H 0.35; found C 20.61, H 0.29.

2-Bromo-5-chloro-3-fluoro-4-iodopyridine (3b): Analogously from 2bromo-5-chloro-3-fluoropyridine (**1b**; 5.3 g, 25 mmol); colorless prisms; m.p. 111–114 °C (from ethyl acetate); yield: 6.4 g (76%). ¹H NMR: δ = 8.20 (s) ppm. ¹³C NMR: δ = 156.6 (d, *J* = 261 Hz), 143.3 (d, *J* = 6 Hz), 137.4 (s), 126.2 (d, *J* = 27 Hz), 99.0 (d, *J* = 26 Hz) ppm. C₅HBrClFIN (336.33): calcd. C 17.86, H 0.30; found C 17.93, H 0.50.

5-Chloro-3-fluoro-2,4-diiodopyridine (3c): Analogously from 5chloro-3-fluoro-2-iodopyridine (1c; 6.4 g, 25 mmol); colorless needles; m.p. 120–121 °C (from methanol); yield: 8.2 g (86%). ¹H NMR: $\delta = 8.18$ (s) ppm. ¹³C NMR: $\delta = 159.1$ (d, J = 258 Hz), 144.5 (d, J = 5 Hz), 137.8 (s), 101.6 (d, J = 33 Hz), 97.3 (d, J =28 Hz) ppm. C₅HClFI₂N (383.33): calcd. C 15.67, H 0.26; found C 15.78, H 0.38.

3-Chloro-5-fluoro-4-iodopyridine (3d): As described for compound **2d** starting from 3-chloro-5-fluoropyridine (**1d**; 3.3 g, 25 mmol) but adding, after 2 h at -75 °C, a solution of iodine (6.3 g, 25 mmol) in tetrahydrofuran (20 mL). At 25 °C, water (30 mL) and diethyl ether (10 mL) were added. The organic phase was decanted, washed with a saturated aqueous solution (20 mL) of sodium thiosulfate, dried with sodium sulfate, filtered and the solvents evaporated; colorless needles; m.p. 113-115 °C (from methanol); yield: 5.7 g (89%). ¹H NMR: $\delta = 8.37$ (s, 1 H), 8.19 (s, broad, 1 H) ppm. ¹³C NMR: $\delta = 159.9$ (d, J = 259 Hz), 144.3 (d, J = 4 Hz), 137.7 (s), 134.8 (d, J = 27 Hz), 98.6 (d, J = 24 Hz) ppm. C₃H₂ClFIN (257.43): calcd. C 23.33, H 0.78; found C 23.26, H 0.77.

4. 6-Iodo-Substituted Di- and Trihalopyridines

2,5-Dichloro-3-fluoro-6-iodopyridine (4a): At -100 °C, 2,2,6,6tetramethylpiperidine (8.5 mL, 7.1 g, 50 mmol) and 2,5-dichloro-3fluoro-4-iodopyridine (3a; 7.3 g, 25 mmol) were consecutively added to a solution of butyllithium (50 mmol) in neat tetrahydrofuran (50 mL). After 15 min at -75 °C, the mixture was treated with methanol before being poured into water (30 mL) and diethyl ether (10 mL). The organic phases were washed with brine (3 \times 50 mL). According to gas chromatography (30 m, DB-WAX, 120 °C; 30 m, DB-23, 120 °C; "internal standard": nonadecane), it contained 22% of 2,5-dichloro-3-fluoropyridine (1a) and 51% of the iodo compound 4a. The latter was isolated upon distillation as an oily liquid which rapidly solidified; colorless needles; m.p. 52-54 °C (from ethanol); b.p. 91–92 °C/4 Torr; yield: 3.4 g (46%). ¹H NMR: δ = 7.54 (d, J = 7.3 Hz) ppm. ¹³C NMR: δ = 154.2 (d, J = 267 Hz), 137.8 (s), 136.2 (d, J = 20 Hz), 124.9 (d, J = 22 Hz), 111.6 (d, J = 3 Hz) ppm. C₅HCl₂FIN (291.87): calcd.C 20.58, H 0.35; found C 20.59, H 0.70.

2-Bromo-5-chloro-3-fluoro-6-iodopyridine (4b): Analogously from 2bromo-5-chloro-3-fluoro-4-iodopyridine (**3b**; 8.4 g, 25 mmol). According to gas chromatography (30 m, DB-WAX, 100 °C \rightarrow 200 °C; 30 m, DB-23, 100 °C \rightarrow 200 °C; heating rate 25 °C/min; "internal standard": nonadecane), the crude product contained 18% of 2-bromo-5-chloro-3-fluoropyridine (**1b**) and 66% of the iodo derivative **4b**. Upon distillation a viscous liquid was collected that slowly crystallized; colorless needles; m.p. 60-62 °C (from ethanol); b.p. 110–112 °C/2 Torr; yield: 4.8 g (57%). ¹H NMR: $\delta =$ 7.47 (d, J = 6.7 Hz) ppm. ¹³C NMR: $\delta =$ 155.7 (d, J = 266 Hz), 138.3 (s), 126.5 (d, J = 24 Hz), 124.3 (d, J = 23 Hz), 112.2 (d, J = 4 Hz) ppm. C₅HBrClFIN (336.33): calcd. C 17.86, H 0.30; found C 18.04, H 0.33.

3-Chloro-5-fluoro-2,6-diiodopyridine (4c): Analogously from 5chloro-3-fluoro-2,4-diiodopyridine (**3c**; 9.6 g, 25 mmol). According to gas chromatography (30 m, DB-WAX, 140 °C \rightarrow 200 °C; 30 m, DB-23, 140 °C \rightarrow 200 °C; heating rate 25 °C/min; "internal standard": nonadecane), the crude product contained 39% of 5-chloro-3-fluoro-2-iodopyridine (**1c**) and 30% of iodo derivative **4c**. The latter compound was isolated by trituration of the crude product with hexanes; colorless prisms; m.p. 105–106 °C (from hexanes); yield: 2.2 g (23%). ¹H NMR: δ = 7.34 (d, *J* = 6.3 Hz) ppm. ¹³C NMR: δ = 158.8 (d, *J* = 264 Hz), 138.7 (d, *J* = 3 Hz), 122.8 (d, *J* = 24 Hz), 113.4 (d, *J* = 3 Hz), 102.2 (d, *J* = 29 Hz) ppm. C₅HCIFI₂N (383.33): calcd. C 15.67, H 0.26; found C 16.04, H 0.38.

3-Chloro-5-fluoro-2-iodopyridine (4d): Butyllithium (17 mmol) in hexanes (10 mL) was added to a solution of 3-chloro-5-fluoro-2,6-diiodopyridine (**4c**; 5.7 g, 15 mmol) in toluene (20 mL) cooled in a dry ice/methanol bath. After 15 min at -75 °C, the mixture was treated with methanol before being poured into water (20 mL). The organic layer was washed with water (15 mL), dried and the solvents were evaporated. The product was purified by crystallization from hexanes; colorless prisms; m.p. 82–84 °C; yield: 2.3 g (60%). ¹H NMR: δ = 8.24 (dd, *J* = 2.7, 0.5 Hz, 1 H), 7.49 (dd, *J* = 7.9, 2.7 Hz, 1 H) ppm. ¹³C NMR: δ = 158.7 (d, *J* = 264 Hz), 138.5 (d, *J* = 3 Hz), 136.7 (d, *J* = 23 Hz), 124.1 (d, *J* = 21 Hz), 114.3 (s) ppm. C₅H₂CIFIN (257.43): calcd. C 23.33, H 0.78; found C 23.30, H 0.76.

5. Di- and Trihalo-6-iodo-4-pyridinecarboxylic Acids

2,5-Dichloro-3-fluoro-6-iodo-4-pyridinecarboxylic Acid (5a): Diisopropylamine (2.1 mL, 1.5 g, 15 mmol) and 2,5-dichloro-3-fluoro-6iodopyridine (4a; 4.4 g, 15 mmol) were consecutively added to a solution of butyllithium (15 mmol) in tetrahydrofuran (20 mL) and hexanes (10 mL) kept in a dry ice/methanol bath. After 2 h at -75 °C, the mixture was poured on an excess of freshly crushed solid carbon dioxide. After evaporation of the volatiles, the residue was taken up in water (75 mL), washed with diethyl ether (3×15 mL), acidified with hydrochloric acid to pH = 1 and extracted with ethyl acetate (3 \times 25 mL). The combined organic layers were dried and the solvents evaporated. The product was purified by crystallization from ethyl acetate and hexanes; colorless prisms; m.p. 224-226 °C (decomp.); yield: 4.5 g (89%). ¹³C NMR (D₃CCOCD₃): $\delta = 160.2$ (s), 150.6 (d, J = 266 Hz), 136.1 (d, J = 20 Hz), 133.6 (s), 131.3 $(d, J = 20 \text{ Hz}), 113.1 (d, J = 4 \text{ Hz}) \text{ ppm. } C_6 \text{HCl}_2 \text{FINO}_2 (335.89):$ calcd. C 21.45, H 0.30; found C 21.31, H 0.36.

2-Bromo-5-chloro-3-fluoro-6-iodo-4-pyridinecarboxylic Acid (5b): Analogously from 2-bromo-5-chloro-3-fluoro-6-iodopyridine (4b; 5.0 g, 15 mmol); colorless needles; m.p. 233-236 °C (decomp.; from ethyl acetate and hexanes.); yield: 5.0 g (88%). ¹³C NMR (D₃CCOCD₃): $\delta = 161.0$ (s), 152.9 (d, J = 265 Hz), 134.9 (s), 131.6 (d, J = 21 Hz), 127.5 (d, J = 24 Hz), 114.7 (d, J = 3 Hz) ppm. C₆HBrClFINO₂ (380.34): calcd. C 18.95, H 0.26; found C 19.10, H 0.18. **3-Chloro-5-fluoro-2,6-diiodo-4-pyridinecarboxylic Acid (5c):** Analogously from 3-chloro-5-fluoro-2,6-diiodopyridine (**4c**; 5.7 g, 15 mmol); colorless prisms; m.p. 238 °C (dec.; from ethyl acetate and hexanes); yield: 3.1 g (49%), which improved to 5.3 g (82%) when the reaction time was extended from 2 h to 6 h. ¹³C NMR (D₃CCOCD₃): $\delta = 161.0$ (s), 155.9 (d, J = 262 Hz), 134.9 (s), 130.0 (d, J = 23 Hz), 115.7 (s), 104.3 (d, J = 30 Hz) ppm. C₆HCIFI₂NO₂ (427.34): calcd. C 16.86, H 0.24; found C 16.93, H 0.32.

3-Chloro-5-fluoro-2-iodo-4-pyridinecarboxylic Acid (5d): Diisopropylamine (1.4 mL, 1.0 g, 10 mmol) and 3-chloro-5-fluoro-2-iodopyridine (4d; 2.6 g, 10 mmol) were consecutively added to a solution of butyllithium (10 mmol) in tetrahydrofuran (13 mL) and hexanes (7 mL) kept in a dry ice/methanol bath. After 2 h at -75 °C, the mixture was poured on an excess of freshly crushed solid carbon dioxide. After evaporation of the volatiles, the residue was taken up in water (50 mL), washed with diethyl ether (3×10 mL), acidified to pH = 1 and extracted with ethyl acetate (3 \times 15 mL). The combined organic layers were dried and the solvents evaporated. The product was purified by crystallization from ethyl acetate; colorless needles; m.p. 225-228 °C (dec.); yield: 2.6 g (85%). ¹H NMR (D₃CCOCD₃): δ = 8.54 (s) ppm. ¹³C NMR (D₃CCOCD₃): δ = 161.8 (s), 155.8 (d, J = 264 Hz), 138.5 (d, J = 24 Hz), 134.5 (s), 131.4 (d, J = 19 Hz), 116.3 (d, J = 3 Hz) ppm. C₆H₂ClFINO₂ (301.44): calcd. C 23.91, H 0.67; found C 24.04, H 0.62.

6. Di- and Trihalo-Substituted 2-Pyridinecarboxylic Acids

3,6-Dichloro-5-fluoro-2-pyridinecarboxylic Acid (6a): Isopropylmagnesium chloride (15 mmol) in tetrahydrofuran (7.5 mL) was added to 2,5-dichloro-3-fluoro-6-iodopyridine (**4a**; 4.4 g, 15 mmol) in tetrahydrofuran (10 mL) cooled in a dry ice/methanol bath. After 1 h at -75 °C, the mixture was poured on an excess of freshly crushed solid carbon dioxide and worked up as described above (see acid **5a**) to give colorless prisms; m.p. 146–149 °C (from ethyl acetate and hexanes); yield 2.5 g (80%). ¹H NMR (D₃CCOCD₃): $\delta = 8.18$ (d, J = 7.8 Hz) ppm. ¹³C NMR (D₃CCOCD₃): $\delta = 163.6$ (s), 156.0 (d, J = 268 Hz), 144.1 (d, J = 6 Hz), 136.9 (d, J = 20 Hz), 131.3 (d, J = 3 Hz), 122.8 (d, J = 22 Hz) ppm. C₆H₂Cl₂FNO₂ (209.99): calcd. C 34.32, H 0.96; found C 34.24, H 0.98.

6-Bromo-3-chloro-5-fluoro-2-pyridinecarboxylic Acid (6b): Analogously from 2-bromo-5-chloro-3-fluoro-6-iodopyridine (**4b**; 5.0 g, 15 mmol); colorless prisms; m.p. 156–158 °C (from ethyl acetate and hexanes); yield 3.0 g (79%). ¹H NMR (D₃CCOCD₃): $\delta = 8.11$ (d, J = 7.4 Hz) ppm. ¹³C NMR (D₃CCOCD₃): $\delta = 163.5$ (s), 157.5 (d, J = 267 Hz), 144.8 (d, J = 5 Hz), 131.8 (d, J = 4 Hz), 128.1 (d, J = 23 Hz), 127.4 (d, J = 24 Hz) ppm. C₆H₂BrClFNO₂ (254.45): calcd. C 28.32, H 0.79; found C 28.43, H 0.80.

3-Chloro-5-fluoro-6-iodo-2-pyridinecarboxylic Acid (6c): 6-Bromo-3-chloro-5-fluoro-2-pyridinecarboxylic acid (6b; 13 g, 50 mmol) was dissolved in methanol (50 mL) in the presence of sulfuric acid 96% (0.14 mL, 2.5 mmol) and heated under reflux for 15 h. After addition of a saturated aqueous solution of sodium bicarbonate (70 mL) and diethyl ether (0.10 L), the organic layer was separated and the solvents were evaporated. Crystallization from a 1:1 (v/v) mixture of diethyl ether and hexanes afforded *methyl 6-bromo-3-chloro-5-fluoro-2-pyridinecarboxylate* as colorless needles; m.p. 87–88 °C; yield: 9.9 g (74%). ¹H NMR: δ = 7.59 (d, *J* = 6.8 Hz, 1 H), 4.00 (s, 3 H) ppm. ¹³C NMR: δ = 162.8 (s), 156.6 (d, *J* = 270 Hz), 143.1 (d, *J* = 5 Hz), 131.7 (d, *J* = 3 Hz), 127.4 (d, *J* = 24 Hz), 126.5 (d, *J* = 22 Hz), 53.3 (s) ppm. C₇H₄BrClFNO₂ (268.47): calcd. C 31.32, H 1.50; found C 31.52, H 1.62. Under nitrogen, sodium iodide (7.5 g, 50 mmol) and chlorotrimethylsilane (5.4 g, 6.5 mL, 50 mmol) were consecutively added to a solution of this 6-bromo ester (6.7 g, 25 mmol) in acetonitrile (25 mL). After 6 h at reflux, water (30 mL) and diethyl ether (25 mL) were added and the organic phase was decanted, washed with a saturated aqueous solution of sodium thiosulfate (20 mL), dried with sodium sulfate and filtered. Concentration to dryness and crystallization from 1:1 (v/v) mixture of diethyl ether and hexanes gave methyl 3-chloro-5-fluoro-6-iodo-2-pyridinecarboxylate as colorless needles; m.p. 70-71 °C; yield: 5.4 g (69%). ¹H NMR: $\delta = 7.45$ (d, J = 7.2 Hz, 1 H), 3.99 (s, 3 H) ppm. ¹³C NMR: $\delta = 162.9$ (s), 159.0 (d, J =268 Hz), 144.5 (d, J = 5 Hz), 132.0 (d, J = 4 Hz), 124.7 (d, J =24 Hz), 103.3 (d, J = 30 Hz), 53.3 (s) ppm. C₇H₄ClFINO₂ (315.47): calcd. C 26.65, H 1.28; found C 26.81, H 1.34. This 6-iodo ester (3.1 g, 10 mmol) and lithium hydroxide monohydrate (0.84 g, 20 mmol) were dissolved in 10 mL of a 3:1 (v/v) mixture of tetrahydrofuran and water. After 1 h at 25 °C, the mixture was diluted with water (10 mL) and acidified to pH = 1. Extraction with diethyl ether (3 \times 15 mL), drying with sodium sulfate, filtration, evaporation of the solvents and crystallization from chloroform afforded compound 6c as colorless needles; m.p. 127-129 °C; yield: 2.7 g (91%). ¹H NMR (D₃CCOCD₃): δ = 7.97 (d, J = 7.0 Hz, 1 H) ppm. ¹³C NMR (D₃CCOCD₃): $\delta = 163.6$ (s), 160.5 (d, J =265 Hz), 145.8 (d, J = 4 Hz), 132.1 (d, J = 4 Hz), 126.1 (d, J = 425 Hz), 103.8 (d, J = 30 Hz) ppm. C₆H₂ClFINO₂ (301.44): calcd. C 23.91, H 0.67; found C 24.16, H 0.76.

3-Chloro-5-fluoro-2-pyridinecarboxylic Acid (6d): 3-Chloro-5fluoro-2-iodopyridine (4d; 1.3 g, 5.0 mmol) was added to a solution of butyllithium (5 mmol) in toluene (7 mL) and hexanes (3 mL) kept in a dry ice/methanol bath. After 1 h at -75 °C, the reaction mixture was poured on an excess of freshly crushed solid carbon dioxide. After evaporation of the volatiles, the residue was taken up in water (50 mL), washed with diethyl ether (2×10 mL), acidified to pH = 1 and extracted with diethyl ether (3 \times 15 mL). Drying with sodium sulfate, filtration, evaporation of the solvent and crystallization from chloroform gave colorless needles; m.p. 142-144 °C (dec.); yield: 0.69 g (79%). ¹H NMR (D₃CCOCD₃): $\delta = 8.59$ (d, J = 2.5 Hz, 1 H), 8.02 (dd, J = 8.4, 2.5 Hz, 1 H) ppm. ¹³C NMR (D₃CCOCD₃): $\delta = 164.4$ (s), 160.5 (d, J = 264 Hz), 144.8 (s), 136.7 (d, J = 24 Hz), 132.0 (d, J = 5 Hz), 127.0 (d, J =22 Hz) ppm. C₆H₃ClFNO₂ (175.55): calcd. C 41.05, H 1.72; found C 41.11, H 1.83. Compound 6d has also been obtained from 6bromo-3-chloro-5-fluoro-2-pyridinecarboxylic acid (6b; 6.4 g, 25 mmol) with zinc powder (2.4 g, 37 mmol) in an aqueous solution of sodium hydroxide (2.0 g, 20 mL, 50 mmol) stirring at 25 °C for 6 h. After filtration and washing with water (75 mL), the filtrate was acidified to pH = 1 with hydrochloric acid. Extraction with diethyl ether (6 \times 20 mL), evaporation of the solvent and crystallization from chloroform afforded 2.9 g (67%) of colorless needles.

5-Chloro-3-fluoro-6-iodo-2-pyridinecarboxylic Acid (7): Butyllithium (15 mmol) in hexanes (10 mL) was added to a solution of 3chloro-5-fluoro-2,6-diiodopyridine (4c; 5.7 g, 15 mmol) in toluene (20 mL) cooled in a dry ice/methanol bath. After 15 min at -75 °C, the mixture was poured on an excess of freshly crushed solid carbon dioxide. After evaporation of the volatiles, the residue was taken up in water (50 mL) washed with diethyl ether (3 × 15 mL), acidified with hydrochloric acid to pH = 1 and extracted with ethyl acetate (3 × 20 mL). One twentieth of the solution was withdrawn and, after addition of a known amount (approx. 10 mg) of 2-biphenylcarboxylic acid as an internal reference compound, treated with ethereal diazomethane until the yellow color persisted, and analyzed by gas chromatography (30 m, DB-23, 170 °C; 30 m, DB-WAX, 180 °C). By comparison of the peak retention times with those of authentic samples and the peak areas relative to that of the reference compound after response correction by means of calibration factors derived from authentic mixtures, the crude product contained 65% of compound 7, 7% of 3-chloro-5-fluoro-2,6-dicarboxylic acid (8; see below) and 5% of compound 6c. The remainder of the dried organic solution was concentrated. By trituration of the solid obtained with chloroform $(2 \times 10 \text{ mL})$ and recrystallization from ethyl acetate, acid 7 was obtained as colorless prisms; m.p. 171-172 °C (decomp.); yield: 1.6 g (35%). ¹H NMR (D_3CCOCD_3) : $\delta = 8.09$ (d, J = 9.5 Hz) ppm. ¹³C NMR (D_3CCOCD_3) : $\delta = 162.0$ (d, J = 6 Hz), 159.7 (d, J = 275 Hz), 142.9 (d, J = 5 Hz), 136.7 (d, J = 10 Hz), 127.6 (d, J = 24 Hz), 114.0 (d, J = 3 Hz) ppm. C₆H₂ClFINO₂ (301.44): calcd. C 23.91, H 0.67; found C 23.80, H 0.69.

3-Chloro-5-fluoro-2,6-pyridinedicarboxylic Acid (8): Butyllithium (20 mmol) in hexanes (13 mL) was added to a solution of 3-chloro-5-fluoro-2,6-diiodopyridine (**4c**; 3.8 g, 10 mmol) in toluene (13 mL) kept in a dry ice/methanol bath. After 15 min at -75 °C, the mixture was poured on an excess of freshly crushed solid carbon dioxide. After addition of water (50 mL), acidification to pH = 1, extraction with ethyl acetate (3 × 10 mL), drying with sodium sulfate and evaporation of the solvent, the product was crystallized from a 5:1 (v/v) mixture of chloroform and ethyl acetate; colorless prisms; m.p. 128–129 °C (dec.); yield: 0.85 g (39%). ¹H NMR (D₃CCOCD₃): δ = 8.11 (d, *J* = 9.5 Hz) ppm. ¹³C NMR (D₃CCOCD₃): δ = 163.6 (s), 162.1 (d, *J* = 6 Hz), 160.2 (d, *J* = 278 Hz), 143.7 (d, *J* = 5 Hz), 137.7 (d, *J* = 6 Hz), 135.2 (d, *J* = 10 Hz), 129.9 (d, *J* = 23 Hz) ppm. C₆H₂CIFINO₂ (219.55): calcd. C 38.29, H 1.38; found C 38.01, H 1.32.

5-Chloro-3-fluoro-2-pyridinecarboxylic Acid (9): 5-Chloro-3-fluoro-2-iodopyridine (1c; 3.9 g, 15 mmol) was added to a solution of butyllithium (15 mmol) in toluene (20 mL) and hexanes (10 mL) kept in a dry ice/methanol bath. After 1 h at -75 °C, the reaction mixture was poured on an excess of freshly crushed solid carbon dioxide. After evaporation of the volatiles, the residue was taken up in water (50 mL), washed with diethyl ether (2 \times 15 mL) and acidified to pH = 1. The precipitate formed was collected, dried and recrystallized from ethanol; colorless prisms; m.p. 172-174 °C; yield 2.5 g (94%). ¹H NMR (D₃CCOCD₃): $\delta = 8.57$ (dd, J = 1.9, 0.9 Hz, 1 H), 8.05 (dd, J = 9.9, 1.9 Hz, 1 H) ppm. ¹³C NMR (D_3CCOCD_3) : $\delta = 162.8$ (d, J = 6 Hz), 159.7 (d, J = 275 Hz), 144.8 (d, J = 5 Hz), 136.5 (d, J = 4 Hz), 136.0 (d, J = 9 Hz), 127.0 (d, J = 23 Hz) ppm. C₆H₃ClFNO₂ (175.55): calcd. C 41.05, H 1.72; found C 40.91, H 2.08. As described above but starting from 2bromo-5-chloro-3-fluoropyridine (1b; 3.1 g, 15 mmol) compound 9 has been obtained in 71% yield.

Acknowledgments

This work was financially supported by the Schweizerische Nationalfonds zur Förderung der wissenschaftlichen Forschung, Bern (grant 20-55'303-98) and the Bundesamt für Bildung und Wissenschaft, Bern (grant 97.0083 linked to the TMR project FMRXCT-970129).

M. Schlosser, in *Organometallics in Synthesis: A Manual* (Ed.: M. Schlosser), 2nd ed., Wiley, Chichester, **2002**, p. 1–352, specially p. 262–265.

FULL PAPER

- ^[2] C. Bobbio, M. Schlosser, Eur. J. Org. Chem. 2001, 4533-4536.
- ^[3] F. Mongin, A. Tognini, F. Cottet, M. Schlosser, *Tetrahedron Lett.* **1998**, *39*, 1749–1752.
- [4] F. Mongin, E. Marzi, M. Schlosser, Eur. J. Org. Chem. 2001, 2771–2777.
- ^[5] M. Schlosser, Eur. J. Org. Chem. 2001, 3975-3984.
- [6] F. Mongin, M. Schlosser, Tetrahedron Lett. 1996, 37, 6551-6554.
- ^[7] M. Schlosser, F. Cottet, *Eur. J. Org. Chem.* **2002**, 4181–4184, following paper.
- [8] M. Schlosser, J. Porwisiak, F. Mongin, *Tetrahedron* 1998, 54, 895–900.
- [9] Q. Wang, H. Wei, M. Schlosser, Eur. J. Org. Chem. 1999, 3263-3268.

Received July 16, 2002 [O02393]