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A B S T R A C T   

Four new triphenylphosphonium (TPP) conjugates of 1,2,3-triazolyl nucleoside analogues were synthesized by 
coupling with 8-bromoctyl- or 10- bromdecyltriphenylphosphonium bromide and evaluated for the in vitro 
antibacterial activity against S. aureus, B. cereus, E. faecalis, two MRSA strains isolated from patients and resistant 
to fluoroquinolone antibiotic ciprofloxacin and β-lactam antibiotic amoxicillin, E. coli, antifungal activity against 
T. mentagrophytes C. albicans and cytotoxicity against human cancer cell lines M− HeLa, MCF-7, A549, HuTu-80, 
PC3, PANC-1 and normal cell line Wi-38. In these compounds a TPP cation was attached via an octyl or a decyl 
linker to the N 3 atom of the heterocycle moiety (thymine, 6-methyluracil, quinazoline-2,4-dione) which was 
bonded with 2′,3′,5′-tri- O - acetyl-greek beta-D-ribofuranose residue by the (1,2,3-triazol-4-il)methyl bridge. All 
synthesized compounds showed high antibacterial activity against S. aureus within the range of MIC values 
1.2–4.3 greek muM, and three of them appeared to be bactericidal with respect to tis bacterium at MBC values 
4.1–4.3 greek muM. Two lead compounds showed both high antibacterial activity against the MRSA strains 
resistant to Ciprofloxacin and Amoxicillin within the range of MIC values 1.0–4.3 greek muM and high cyto-
toxicity against human cancer cell lines HuTu-80 and MCF-7 within the range of IC50 values 6.4–10.2 greek 
muM. This is one of the few examples when phosphonium salts exhibited both antibacterial activity and cyto-
toxicity against human cancer cell lines. According to the results obtained the bactericidal effect of the lead 
compounds, unlike classical surfactants, was not caused by a violation of the integrity of the cytoplasmic 
membrane of bacteria and their cytotoxic activity is most likely associated both with the induction of apoptosis 
along the mitochondrial pathway and the arrest of the cell cycle in the G0/G1 phase.   

1. Introduction 

Based on the facts that bulky lipophilic cations penetrate the mito-
chondrial membrane [1,2] and the mitochondria of cancer cells have a 
more negative transmembrane potential compared to normal cells, a 
triphenylphosphonium (TPP) cation is widely used for the targeted de-
livery of antioxidants and cytostatics to the mitochondria of cancer cells 
[2–7]. The conjugation of such known drugs as doxorubicin, cisplatin, 
chlorambucil, camptothecin and others with a TPP cation has provided 
an increase in their cytotoxicity [5,8–10]. Besides, as a rule, phospho-
nium salts (especially TPP salts) with one, two or three alkyl chains 
exhibit high antimicrobial activity, including against bacteria of the 
ESKAPE group [11–15]. The activity increases both with an increase in 

the length of the alkyl chain and with an increase in the number of 
phosphonium groups [12,13,15,16]. As in the case of cytostatics, 
conjugation of known antibacterial agents with a TPP cation via an alkyl 
linker leads to an increase in antibacterial activity [14]. Previously, the 
mechanism of the antibacterial action of TPP salts was explained by 
their destructive integration into the membranes of pathogens [17–19]. 
However, evidence has recently been received that TPP-conjugates do 
not alter membrane permeability in some bacteria [20]. 

Since a TPP cation is capable of targeted penetration both into the 
mitochondria of cancer cells and into the membranes of bacteria, it can 
be assumed that TPP-conjugates should have dual activity - cytotoxic 
against cancer cells and antibacterial. The literature has provided just a 
few examples of such phenomenon. For example, the most active 
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representatives of the series of 2-hydroxybenzylphosphonium salts 
exhibited both antimicrobial activity at the micromolar level against 
gram-positive bacteria S. aureus, B. cereus and fungi T.mentagrophytes 
and C. ablicans and selective cytotoxicity against human cancer cell line 
M− HeLa at the doxorubicin level, inducing mitochondrial apoptosis 
[20]. 

Recently, our group reported on the synthesis and cytotoxicity 
evaluation of the first TPP-conjugates of uracil, thymine and 1,2,3-tria-
zolyl analogues of pyrimidine nucleosides in which the TPP cation was 
attached to the N3 atom of the pyrimidine moiety by a butyl linker [21]. 
In this short communication, we report on the first TPP-conjugates of 
1,2,3-triazolyl nucleoside analogues 1c, d; 2c; 4c possessing the TPP 
cation attached to the N3 atom of the pyrimidine moiety by an octyl or 
decyl linker which showed both high cytotoxicity against human cancer 
cell lines HuTu-80, MCF-7 and high antibacterial activity against MRSA 
strains resistant to ciprafloxacin and amoxicillin. The length of the 
linkers was chosen in accordance with the data that conjugation with a 
TPP cation by polymethylene linkers with n = 8, 10 or more provides 
higher antibacterial activity [15,19]. A full-scale study of the 

cytotoxicity and antibacterial activity of TPP-conjugates of 1,2,3-tria-
zolyl nucleoside analogues with a wide range of alkyl chain lengths 
and both with acylated and unprotected hydroxyl groups of the sugar 
residue will soon follow this preliminary short communication. 

2. Results and discussions 

2.1. Chemistry 

The target compounds 1c, d; 2c; 4c were synthesized in 2 stages. At 
the first stage N1-propargyl derivatives of thymine 1a, 6-methyluracil 
2a, quinazoline-2,4-dione 4a and azide 3 prepared by the methods 
previously described [22] were involved in the Cu alkyne-azide cyclo-
addition (CuAAC) reaction which afforded 1,2,3-triazolyl analogues of 
pyrimidine nucleosides 1b, 2b, 4b in very good yields (92%, 94%, and 
94%, respectively). The spectral characteristics of 1b, 2b, 4b corre-
sponded to the literature ones [22] (Scheme 1). At the second stage 
1,2,3-triazolyl nucleoside analogues 1b, 2b, 4b were reacted with 8-bro-
mooctyl- and 10-bromodecyltriphenylphosphonium bromides 5a and 

Scheme 1. Synthesis of the target TPP-conjugates of 1,2,3-triazolyl nucleoside analogues 1c, 2c, 1d, 4c.  
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5b obtained by heating 1,8-dibromoctane and 1,10-dibromodecane with 
triphenylphosphine without solvent at an oil bath temperature of 90 ◦C 
for 6 h similarly to the known procedure [23,24]. Target TPP-conjugates 
of 1,2,3-triazolyl nucleoside analogues 1c, 2c, 1d, 4c were obtained in 
36%, 15%, 26%, 31% yields, respectively (Scheme 1). In the last 10 
years, so-called prodrug forms of nucleoside analogues with protected 
polar groups were being synthesized to ensure better penetration into 
cells through lipid-rich cell membranes [25]. That is why, in this study 
we did not remove the acetyl protection of the hydroxyl groups of 1,2,3- 
triazolyl nucleoside analogues 1c, 2c, 1d, 4c. 

Procedures for the synthesis of 1c, 2c, 1d, 4c, their characterizations 
including NMR spectra are presented in Supplementary data. 

2.2. Biology 

2.2.1. Antimicrobial activity 
Synthesized TPP-conjugates 1c, 2c, 1d, 4c were evaluated for their in 

vitro antibacterial activity against Gram-positive bacteria Staphylococcus 
aureus (Sa), Bacillus cereus (Bc), Enterococcus faecalis (Ef), MRSA-1 and 
MRSA-2 strains isolated from patients of the Republic Clinical Hospital 
(Kazan, Russian Federation), Gram-negative bacteria Escherichia coli 
(Ec) and in vitro antifungal activity against Candida albicans (Ca) and 
Trichophyton mentagrophytes var. gypseum (Tm). Both methicillin- 
resistant S. aureus strains possessed high drug resistance. The MRSA-1 

strain was resistant to fluoroquinolone antibiotic ciprofloxacin and 
β-lactam antibiotic amoxicillin. The MRSA-2 strain was resistant only to 
amoxicillin. The resulting data expressed as minimal inhibitory con-
centration (MIC), minimal bactericidal concentration (MBC), and min-
imal fungicidal concentration (MFC) are presented in Table 1. 

It can be seen that the TPP conjugates showed high selectivity for the 
Gram-positive bacteria used, including the MRSA strains, showing very 
low MIC values (1.0–4.3 μM). The lead compounds 1d and 4c demon-
strated high antibacterial activity against Gram-positive bacteria Sa, Bc, 
MRSA-1, MRSA-2 (MIC = 1.0–2.0 μM) which exceeded the activity of 
the reference compound – drug norfloxacin by 12 times in the case of Bc 
and 250 times in the case of the resistant strain MRSA-1 (Table 1). TPP- 
conjugate 1c also showed high antibacterial activity against Gram- 
positive bacteria Sa, Ef, MRSA-2 (MIC = 2.1, 8.5, 4.3 μM, respec-
tively) which is comparable to the activity of the reference compound 
norfloxacin (MIC = 7.5 μM). As for the resistant strain MRSA-1, 1c 
inhibited its growth at the concentration 63 times lower than nor-
floxacin (Table 1). It should be noted that TPP-conjugates 1c and 1d 
exhibited bactericidal action against Sa, MRSA-1, MRSA-2, and their 
MIC and MBC values did not differ by >4 times. TPP-conjugate 2c was 
bactericidal only against Sa at MBC value of 4.3 μM (Table 1). 

As it was reported previously, the antibacterial effect of quaternized 
ammonium compounds and phosphonium salts is associated with 
disruption of the bacterial cell membrane [17–19]. To examine whether 

Table 1 
In vitro antimicrobial activity of TPP-conjugates of 1,2,3-triazolyl nucleoside analogues 1c,2c,1d,4c.    

Minimal inhibitory concentration (MIC, μM) 

Compound Structure aSa bBc cEf dMRSA-1 eMRSA-2 fEc gTm hCa 

1c 2.1 ± 0.1 17.0 ± 1.3 8.5 ± 0.7 4.3 ± 0.3 4.3 ± 0.3 136 ± 12 na na 

2c 4.3 ± 0.3 34 ± 2.3 272 ± 22 17 ± 1.4 8.5 ± 0.7 272 ± 20 na na 

1d 1.0 ± 0.08 2.0 ± 0.1 8.3 ± 0.6 1.0 ± 0.08 1.0 ± 0.06 132 ± 10 na na 

4c 1.0 ± 0.09 2.0 ± 0.1 8.2 ± 0.7 1.0 ± 0.06 1.0 ± 0.07 na na na 

Norfloxacin 7.5 ± 0.5 24.4 ± 2.1 7.5 ± 0.5 250 ± 21 7.5 ± 0.5 4.7 ± 0.02 na na 
Ketoconazol nd nd nd nd nd nd 7.3 ± 0.5 7.3 ± 0.5   

Minimal bactericidal concentration (MBC, μM) Minimal fungicidal 
concentration (MFC, μM) 

1c 4.3 ± 0.3 34.0 ± 2.6 68.0 ± 5.7 4.3 ± 0.3 4.3 ± 0.3 272 ± 21 na na 

2c 4.3 ± 0.3 68.0 ± 5.5 na 17.0 ± 1.4 17.0 ± 1.3 na na na 

1d 4.1 ± 0.3 na 33.0 ± 2.6 2.0 ± 0.1 4.1 ± 0.2 132 ± 11 na na 

4c 16.4 ± 1.3 131 ± 21 131 ± 19 1.0 ± 0.08 1.0 ± 0.07 131 ± 12 na na 

Norfloxacin 7.5 ± 0.6 24.4 ± 2.1 7.5 ± 0.6 nd 7.5 ± 0.5 24.4 ± 2.1 nd nd 
Ketoconazol nd nd nd nd nd nd 7.3 ± 0.5 7.3 ± 0.5 

aSa - Staphylococcus aureus; bBc - Bacillus cereus; cEf - Enterococcus faecalis; dMRSA-1 – methicillin-resistant S. aureus resistant to fluoroquinolones and β-lactam anti-
biotics; eMRSA-2 - methicillin-resistant S. aureus resistant to β-lactam antibiotics; hEc - Escherichia coli; gTm - Trichophyton mentagrophytes; hCa - Candida albicans; na - 
non active; nd - not determined. The experiments were repeated 3 times. 
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TPP-conjugates 1c, 2c, 1d, 4c can alter the integrity of the cell mem-
brane of S. aureus or not, its integrity has been verified by measuring the 
absorption of hydrophobic crystal violet (CV) dye. The data obtained 
(Supplementary data) allow to conclude that the mechanism of the 
antibacterial effect of TPP-conjugates 1c, 2c, 1d, 4c differs from that of 
classical surfactants [17–19], that is, it is not associated with a violation 
of the integrity of the cytoplasmic membrane of bacteria. 

To assess the effect of TPP-conjugates 1c, 2c, 1d, 4c on the S. aureus 
plasma membrane we used Molecular Probe LIVE/DEAD® BacLightTM 
Bacterial Viability Kit method which is widely used for the qualitative 
and quantitative analysis of viable and damaged cells after exposure to 
antimicrobial agents [26]. The data obtained (Supplementary data) 
confirmed the results of the absorption of crystal violet (CV) dye, 
namely, TPP-conjugates 1c, 2c, 1d, 4c within the range of their MIC and 
MBC values (1.0–16.4 μM) have no significant effect on the permeability 
of the cytoplasmic membrane of S. aureus. So, we can confidently sup-
pose that the mechanism of bacteriostatic and bactericidal action of TPP- 
conjugates 1c, 2c, 1d, 4c on S. aureus is not associated with damage to 
the bacterial cell wall and cytoplasmic membrane. 

2.2.2. Cytotoxicity 
TPP-conjugates of 1,2,3-triazolyl nucleoside analogues 1c, 2c, 1d, 4c 

were also evaluated for in vitro cytotoxicity against six human cancer cell 
lines: M− HeLa cervical epitheloid carcinoma, MCF-7 breast adenocar-
cinoma, A549 pulmonary adenocarcinoma, HuTu-80 duodenal adeno-
carcinoma, PC3 prostate adenocarcinoma, PANC-1 pancreatic 
carcinoma as well as a diploid human cell strain WI-38 composed of 
fibroblasts. The resulting data expressed as concentrations causing the 
inhibition of the growth of 50% of cells in the experimental population 
(IC50) and selectivity index (SI) which is the ratio IC50(normal cell)/ 
IC50(cancer cell) are presented in Table 2 and Table 3. As one can see in 
Table 2, the tested TPP-conjugates demonstrated high activity against 

some human cancer cell lines and moderate cytotoxicity against normal 
Wi-38 cells of the lung embryo. The most significant results were ob-
tained for TPP-conjugates 1c, 4c and 1d. The first two compounds 
showed selective cytotoxicity against HuTu-80 duodenal adenocarci-
noma cell line (IC50 = 8.3, 10.2 μM, respectively) and MCF-7 breast 
adenocarcinoma cell line (IC50 = 10.2, 7.3 μM, respectively). The lead 
compound 1d showed high selective cytotoxicity against HuTu-80 cell 
line (IC50 = 6.4 μM, SI > 16, Table 2, Table 3). Thus, TPP-conjugates 1c, 
1d, 4c showed cytotoxicity against HuTu-80 cell line which corre-
sponded to the cytotoxicity of the reference drug doxorubicin and 
exceeded the cytotoxicity of the reference compound – drug fluorouracil 
against the same cancer cell lines by 7–10 times. It should be emphasized 
that the selectivity index of the lead compound 1d (SI > 16) is 23 times 
higher than the selectivity index of fluorouracil (SI = 0.7) and 40 times 
higher than the selectivity index of doxorubicin (SI = 0.4) (Table 3). 
And, besides, TPP-conjugates 1c and 4c showed cytotoxicity against 
MCF-7 cell line which corresponded to the cytotoxicity of the reference 
drug doxorubicin and surpassed the cytotoxicity of the reference drug 
tamoxifen against the same cancer cell line by 2–3 times (Table 2). 

In addition to the already mentioned high selective cytotoxicity of 
TPP-conjugates 1c, 1d, 4c, the analysis of Table 2 leads to two more 
important conclusions. First, TPP-conjugate 2c with the 6-methyluracil 
moiety was significantly less active against the used human cancer cell 
lines than TPP-conjugates 1c, 1d with the thymine moiety and TPP- 
conjugate 4c with the quinazoline-2,4-dione moiety. Second, the in-
crease in the length of the polymethylene chain linking the TPP cation 
with the N3 atom of the heterocyclic moiety of TPP-conjugates of 1,2,3- 
triazolyl nucleoside analogues is accompanied by a significant increase 
in their cytotoxicity. This can be seen by comparing the cytotoxicity of 
TPP-conjugates 1e, 1c, 1d against cancer cell lines M− HeLa, PC3, 
PANC-1 presented in Table 2. In the series of compounds 1e, 1c, 1d with 
the increase in the length of the polymethylene chain (n = 4, 8, 10, 

Table 2 
In vitro cytotoxicity of synthesized TPP-conjugates of 1,2,3-triazolyl nucleoside analogues against human cancer and human normal cell lines (IC50 values in μM with 
standard errors).  

Compound Structure Cancer cell lines Normal 
cell line 

aM− HeLa bMCF-7 cA549 dHuTu-80 ePC3 fPANC-1 gWi-38 

1e 81 ± 6.2h >100h nd nd >100h >100h >250h 

1c 50.2 ± 4.5 10.2 ± 0.8 57.9 ± 4.5 8.3 ± 0.6 >100 >100 55.5 ± 4.8 

1d 19.7 ± 1.6 48.7 ± 3.8 39.9 ± 2.7 6.4 ± 0.4 30.8 ± 2.3 60 ± 5.4 >100 

2c 73.2 ± 6.3 55.4 ± 4.6 >100 35.7 ± 2.9 >100 >100 54.5 ± 4.6 

4d >100h >100h nd nd >100h >100h >100h 

4c 22.8 ± 1.9 7.3 ± 0.5 >100 10.2 ± 0.9 25.7 ± 1.7 27.5 ± 1.9 54.2 ± 4.3 

Tamoxifen 28 ± 2.5 25 ± 2.2 nd nd nd nd 45 ± 3.8 
Fluorouracil nd nd 42.5 ± 3.6 65.2 ± 5.5 43 ± 3.6 39.3 ± 2.7 48 ± 4.1 
Doxorubicin 3.0 ± 0.2 3.0 ± 0.1 3.0 ± 0.2 3.0 ± 0.1 3.0 ± 0.1 7.0 ± 0.6 1.3 ± 0.1 

aM− Hela is a human cervix epitheloid carcinoma; bMCF-7 is a human breast adenocarcinoma (pleural fluid); cA549 is a human lung carcinoma; dHuTu-80 is a human 
duodenal adenocarcinoma; ePC3 is a human prostate adenocarcinoma; fPANC-1 is a human pancreatic carcinoma; gWi-38 is a diploid human embryo lung; hpreviously 
published data [21]; ns no selectivity; nd not determined; the experiments were repeated 3 times. 

I. Yu. Strobykina et al.                                                                                                                                                                                                                        



Bioorganic Chemistry 116 (2021) 105328

5

respectively), the IC50 values decrease (Table 2). So, if TPP-conjugate 1e 
in which the TPP cation is attached to the N3 atom of the thymine 
moiety by the butyl chain was inactive against PC3 and PANC-1 cancer 
cell lines and showed moderate cytotoxicity (IC50 = 81 μM) against 
M− HeLa, then TPP-conjugate 1d with decyl chain between the TPP 
cation and the N3 atom of the thymine moiety demonstrated moderate 
to high cytotoxicity against these cancer cell lines with IC50 values of 
30.8, 60, and 19.7 μM, respectively (Table 2). Similarly, if TPP- 
conjugate 4d in which the TPP cation is attached to the N3 atom of 
the quinazoline-2,4-dione moiety via the butyl chain was inactive 
against M− HeLa, MCF-7, PC3, and PANC-1 cancer cell lines, then TPP- 
conjugate 4c possessing the decyl chain between the TPP cation and the 
quinazoline-2,4-dione moiety showed moderate cytotoxicity against 
these cancer cell lines with IC50 values of 22.8, 7.3, 25.7, and 27.5 μM, 
respectively (Table 2). So, the lengthening of the polymethylene linker 
between the TPP cation and the pyrimidine moiety in the studied TPP- 
conjugates considerably increases not only antimicrobial activity but 
also cytotoxicity against some human cancer cell lines. 

Currently, apoptosis is one of the key mechanisms used in the 
development of new anticancer agents. In this regard, it was of consid-
erable interest to study the ability of the lead compound 1d to induce 
apoptosis in HuTu-80 cells. According to the data of flow cytometry, it 
can be seen that as a result of 24 h incubation of HuTu-80 cells in the 
presence of 1d, a dose-dependent induction of the apoptosis process is 
observed (Fig. 1, Fig. 2). Moreover, apoptotic effects were manifested 
only at the stage of early apoptosis. 

There are two mechanisms for the induction of apoptosis: the 
external apoptotic pathway through death receptors and the internal 
apoptotic pathway (mitochondria-dependent apoptosis). The external 
pathway triggers apoptosis in response to extrinsic stimuli, during which 

specific ligands bind to death receptors on the cell membrane surface, 
belonging to the superfamily of tumor necrosis factor receptor (TNFR), 
with their respective protein TNF family ligands [27]. In the case of 
mitochondrial apoptosis, cell death occurs as a result of irreparable 
damage to DNA. For this reason, the cell starts an internal apoptotic 
cascade. The internal pathway of apoptosis induction is accompanied by 
the destruction of the mitochondrial membrane, which leads to a 
decrease in its potential, which is a key indicator of the state of cells 
[28]. The results obtained with the help of flow cytometry using JC-10 
fluorescent dye from the Mitochondria Membrane Potential Kit showed 
that the lead compound 1d induced apoptosis along the mitochondrial 
pathway (Supplementary data). 

The mechanism of action of cytotoxic agents, as a rule, is associated 
with a violation of the passage of cells of the cell cycle, leading to syn-
chronization and slowing down of proliferation of rapidly multiplying 
cells. Cell cycle analysis by quantifying the DNA content of a cell is a 
reliable method to assess at which phase the cell cycle has been stopped. 
We have carried out such investigation using fluorescent dye propidium 
iodide, which binds in proportion to the amount of DNA present in the 
cell. The results of the analysis of the cell cycle of a cell line HuTu-80 
after its treatment with the lead compound 1d for 24 h (Supplemen-
tary data) showed that the mechanism of its action is most likely asso-
ciated not only with the induction of apoptosis along the mitochondrial 
pathway but also with the arrest of the cell cycle in the G0/G1 phase. 

3. Conclusion 

Four new triphenylphosphonium (TPP) conjugates of 1,2,3-triazolyl 
nucleoside analogues were synthesized and evaluated for the in vitro 
antibacterial activity against S. aureus, B. cereus, E. faecalis, two MRSA 

Table 3 
Selectivity indices of TPP-conjugates 1c, 1d, 2c, 4c synthesized in this work and TPP-conjugates 1e, 4d previously published [21].  

Compound Structure Cancer cell lines 
aM-HeLa bMCF-7 cA549 dHuTu-80 ePC3 fPANC-1 

1e >3g nsg nd nd nsg nsg 

1c 1.1 5.4 0.9 6.7 ns ns 

1d >5 >2 >3 >16 >3 >1.7 

2c 0.7 1.0 ns 1.5 ns ns 

4d nsg nsg nd nd nsg nsg 

4c 2.4 7.4 ns 5.3 2.1 2.0 

Tamoxifen 1.6 1.8 nd nd nd nd 
Fluorouracil nd nd 1.1 0.7 1.1 1.2 
Doxorubicin 0.4 0.4 0.4 0.4 0.4 0.2 

aM-Hela is a human cervix epitheloid carcinoma; bMCF-7 is a human breast adenocarcinoma (pleural fluid); cA549 is a adenocarcinomic human alveolar basal epi-
thelial cell line; dHuTu-80 is a duodenal adenocarcinoma; ePC3 is a human prostate adenocarcinoma; fPANC-1 is a human pancreatic cancer cell line isolated from a 
pancreatic carcinoma of ductal cell origin; gpreviously published data [21]; ns no selectivity; nd not determined. 
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strains isolated from patients and resistant to fluoroquinolone antibiotic 
ciprofloxacin and β-lactam antibiotic amoxicillin, E. coli, antifungal ac-
tivity against T. mentagrophytes, C. albicans and cytotoxicity against 
human cancer cell lines M− HeLa, MCF-7, A549, HuTu-80, PC3, PANC-1 
and normal cell line Wi-38. All synthesized compounds showed high 
antibacterial activity against S. aureus within the range of MIC values 
1.2–4.3 μM, and three of them appeared to be bactericidal with respect 
to this bacterium at MBC values of 4.1–4.3 μM. Moreover, TPP- 
conjugates 1c and 1d in which the TPP cation was attached to the N3 
atom of the thymine moiety via an octyl (or a decyl) linker respevtively 
and TPP-conjugate 4c in which the TPP cation was attached to the N3 
atom of quinazoline-2,4-moiety via an octyl linker showed both high 
antibacterial activity against the MRSA strains resistant to ciprofloxacin 
and amoxicillin within the range of MIC values 1.0–4.3 μM and high 
cytotoxicity against human cancer cell lines HuTu-80 and MCF-7 within 
the range of IC50 values 6.4–10.2 μM. This is one of the few examples 
when phosphonium salts exhibited both antibacterial activity and 
cytotoxicity against human cancer cell lines. According to the results of 
crystal violet dye assay and LIVE/DEAD BacLightTM Bacterial Viability 
Method the synthesized TPP-conjugates within the range of their MIC 
and MBC values, unlike classical surfuctants, do not effect the integrity 
of the cytoplasmic membrane of S. aureus. Therefore, one can suppose 
that the mechanism of antibacterial action of these TPP-conjugates is 
significantly different from that of classical antibacterial agents i.e. is 
not associated with damage to the bacterial cell wall and cytoplasmic 
membrane. It was found that cytotoxic activity of the lead compound 1d 
is due both to induction of apoptosis proceeding along the mitochondrial 
pathway and the arrest of the cell cycle in the G0/G1 phase. 

A full-scale study of the cytotoxicity and antibacterial activity of 

TPP-conjugates of 1,2,3-triazolyl nucleoside analogues with a wide 
range of alkyl chain lengths and both with acylated and unprotected 
hydroxyl groups of the sugar residue will soon follow this preliminary 
short communication. 
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analysis of viable and damaged cells S. aureus after exposure to TPP- 
conjugates 1c, d; 2c, 4c; the data about the estimation of the possibil-
ity of the lead compound 1d to induce apoptosis in a cell line HuTu-80 
along the mitochondrial pathway; the data about the analysis of the cell 
cycle of a cell line HuTu-80 after its treatment with the lead compound 
1d; general procedures for the synthesis of TPP-conjugates 1c, 2c, 1d, 
4c and theit characterizations including 1H, 13C and 31P spectra; detailes 
of all biological experiments. Supplementary data to this article can be 
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